Algorithms and implementations for exponential decay models

Hans Petter Langtangen ${ }^{1,2}$

Center for Biomedical Computing, Simula Research Laboratory ${ }^{1}$
Department of Informatics, University of Oslo ${ }^{2}$

Aug 21, 2023
Slides selected/modified by Mikael Mortensen

Professor Hans Petter Langtangen (1962-2016)

- 2011-2015 Editor-In-Chief SIAM J of Scientific Computing
- Author of 13 published books on scientific computing
- Professor of Mechanics, University of Oslo 1998
- Developed INF5620 (which became IN5270 and now MAT-MEK4270)
- Memorial page

- Professor of mechanics (2019-)
- PhD in mathematical modelling of turbulent combustion
- Norwegian Defence Research Establishment (2007-2012)
- Computational Fluid Dynamics
- High Performance Computing
(1) MAT-MEK4270 in a nutshell

(2) Finite difference methods

(3) Implementation

4 Verifying the implementation

- Numerical methods for partial differential equations (PDEs)
- How do we solve a PDE in practice and produce numbers?
- How do we trust the answer?
- Approach: simplify, understand, generalize
- IN5670 -> IN5270 -> MAT-MEK4270 - Lots of old material

After the course

You see a PDE and can't wait to program a method and visualize a solution! Somebody asks if the solution is right and you can give a convincing answer.

More specific contents: finite difference methods

- Simple ODEs
- Exponential decay $u_{t}=-a u(t)$ in time
- Helmholtz' equation $u_{t t}+\omega^{2} u(t)=0$ (Vibration)
- write your own software from scratch
- understand how the methods work and why they fail
(1) Langtangen, Finite Difference Computing with exponential decay - Chapters 1 and 2.
(2) Langtangen and Linge, Finite Difference Computing with PDEs - Parts of chapters 1 and 2.

More specific contents: Variational methods (Galerkin)

- Approximating functions with global variational methods
- Approximating functions with finite element methods
- Approximating equations with global variational methods
- Approximating equations with finite element methods
- More advanced PDEs (e.g., $u_{t t}=\nabla^{2} u$ in 1D, 2D, 3D)
- perform hand-calculations, write your own software (1D)
- understand how the methods work and why they fail
(1) Langtangen and Mardal, Introduction to Numerical Methods for Variational Problems
- Start with simplified ODE/PDE problems
- Learn to reason about the discretization
- Learn to implement, verify, and experiment
- Understand the method, program, and results
- Generalize the problem, method, and program

This is the power of applied mathematics!

- Our software platform: Python (sometimes combined with Cython, Fortran, C, C++)
- Important Python packages: numpy, scipy, matplotlib, sympy, fenics, shenfun, ...
- Anaconda Python
- Jupyter notebooks

Assumed/ideal background

- IN1900: Python programming, solution of ODEs
- Some experience with finite difference methods
- Some analytical and numerical knowledge of PDEs
- Much experience with calculus and linear algebra
- Much experience with programming of mathematical problems
- Experience with mathematical modeling with PDEs (from physics, mechanics, geophysics, or ...)

What if you don't have this ideal background?

- Students come to this course with very different backgrounds
- First task: summarize assumed background knowledge by going through a simple example
- Also in this example:
- Some fundamental material on software implementation and software testing
- Material on analyzing numerical methods to understand why they can fail
- Applications to real-world problems

Start-up example

ODE problem

$$
u^{\prime}=-a u, \quad u(0)=I, t \in(0, T]
$$

where $a>0$ is a constant.

Everything we do is motivated by what we need as building blocks for solving Partial Differential Equations (PDEs)!

(1) MAT-MEK4270 in a nutshell

(2) Finite difference methods
(3) Implementation

4 Verifying the implementation

- The finite difference method is the simplest method for solving differential equations
- Satisfies the equations in discrete points, not continuously
- Fast to learn, derive, and implement
- A very useful tool to know, even if you aim at using the finite element or the finite volume method

Topics in the first intro to the finite difference method

Contents

- How to think about finite difference discretization
- Key concepts:
- mesh
- mesh function
- finite difference approximations
- The Forward Euler, Backward Euler, and Crank-Nicolson methods
- Finite difference operator notation
- How to derive an algorithm and implement it in Python
- How to test the implementation

Solving a differential equation by a finite difference method consists of four steps:
(1) discretizing the domain,
(2) fulfilling the equation at discrete time points,
(3) replacing derivatives by finite differences,
(9) solve the discretized problem. (Often with a recursive algorithm in 1D)

The time domain $[0, T]$ is represented by a mesh: a finite number of $N_{t}+1$ points

$$
0=t_{0}<t_{1}<t_{2}<\cdots<t_{N_{t}-1}<t_{N_{t}}=T
$$

- We seek the solution u at the mesh points: $u\left(t_{n}\right)$, $n=1,2, \ldots, N_{t}$.
- Note: u^{0} is known as I.
- Notational short-form for the numerical approximation to $u\left(t_{n}\right): u^{n}$
- In the differential equation: u is the exact solution
- In the numerical method and implementation: u^{n} is the numerical approximation, $u_{\mathrm{e}}(t)$ is the exact solution

Step 1: Discretizing the domain

u^{n} is a mesh function, defined at the mesh points $t_{n}, n=0, \ldots, N_{t}$ only.

What about a mesh function between the mesh points?

Can extend the mesh function to yield values between mesh points by linear interpolation:

$$
\begin{equation*}
u(t) \approx u^{n}+\frac{u^{n+1}-u^{n}}{t_{n+1}-t_{n}}\left(t-t_{n}\right) \tag{1}
\end{equation*}
$$

Step 2: Fulfilling the equation at discrete time points

- The ODE holds for all $t \in(0, T]$ (infinite no of points)
- Idea: let the ODE be valid at the mesh points only (finite no of points)

$$
\begin{equation*}
u^{\prime}\left(t_{n}\right)=-a u\left(t_{n}\right), \quad n=1, \ldots, N_{t} \tag{2}
\end{equation*}
$$

Step 3: Replacing derivatives by finite differences

Now it is time for the finite difference approximations of derivatives:

$$
\begin{equation*}
u^{\prime}\left(t_{n}\right) \approx \frac{u^{n+1}-u^{n}}{t_{n+1}-t_{n}} \tag{3}
\end{equation*}
$$

Step 3: Replacing derivatives by finite differences

Inserting the finite difference approximation in

$$
u^{\prime}\left(t_{n}\right)=-a u\left(t_{n}\right)
$$

gives

$$
\begin{equation*}
\frac{u^{n+1}-u^{n}}{t_{n+1}-t_{n}}=-a u^{n}, \quad n=0,1, \ldots, N_{t}-1 \tag{4}
\end{equation*}
$$

(Known as discrete equation, or discrete problem, or finite difference method/scheme)

Step 4: Formulating a recursive algorithm

How can we actually compute the u^{n} values?

- given $u^{0}=I$
- compute u^{1} from u^{0}
- compute u^{2} from u^{1}
- compute u^{3} from u^{2} (and so forth)

In general: we have u^{n} and seek u^{n+1}

The Forward Euler scheme

Solve wrt u^{n+1} to get the computational formula:

$$
\begin{equation*}
u^{n+1}=u^{n}-a\left(t_{n+1}-t_{n}\right) u^{n} \tag{5}
\end{equation*}
$$

Let us apply the scheme by hand

Assume constant time spacing: $\Delta t=t_{n+1}-t_{n}=$ const such that $u^{n+1}=u^{n}(1-a \Delta t)$

$$
\begin{aligned}
& u^{0}=I \\
& u^{1}=I(1-a \Delta t) \\
& u^{2}=I(1-a \Delta t)^{2} \\
& \vdots \\
& u^{N_{t}}=I(1-a \Delta t)^{N_{t}}
\end{aligned}
$$

Ooops - we can find the numerical solution by hand (in this simple example)! No need for a computer (yet)...

A backward difference

Here is another finite difference approximation to the derivative (backward difference):

$$
\begin{equation*}
u^{\prime}\left(t_{n}\right) \approx \frac{u^{n}-u^{n-1}}{t_{n}-t_{n-1}} \tag{6}
\end{equation*}
$$

Inserting the finite difference approximation in $u^{\prime}\left(t_{n}\right)=-a u\left(t_{n}\right)$ yields the Backward Euler (BE) scheme:

$$
\begin{equation*}
\frac{u^{n}-u^{n-1}}{t_{n}-t_{n-1}}=-a u^{n} \tag{7}
\end{equation*}
$$

Solve with respect to the unknown u^{n+1} :

$$
\begin{equation*}
u^{n+1}=\frac{1}{1+a\left(t_{n+1}-t_{n}\right)} u^{n} \tag{8}
\end{equation*}
$$

Notice

We use u^{n+1} as unknown, so above we rename $u^{n} \longrightarrow u^{n+1}$ and $u^{n-1} \longrightarrow u^{n}$.

A centered difference

Centered differences are better approximations than forward or backward differences.

The Crank-Nicolson scheme; ideas

Idea 1: let the ODE hold at $t_{n+\frac{1}{2}}$. With $N_{t}+1$ points, that is N_{t} equations for $n=0,1, \ldots N_{t}-1$

$$
u^{\prime}\left(t_{n+\frac{1}{2}}\right)=-a u\left(t_{n+\frac{1}{2}}\right)
$$

Idea 2: approximate $u^{\prime}\left(t_{n+\frac{1}{2}}\right)$ by a centered difference

$$
\begin{equation*}
u^{\prime}\left(t_{n+\frac{1}{2}}\right) \approx \frac{u^{n+1}-u^{n}}{t_{n+1}-t_{n}} \tag{9}
\end{equation*}
$$

Problem: $u\left(t_{n+\frac{1}{2}}\right)$ is not defined, only $u^{n}=u\left(t_{n}\right)$ and $u^{n+1}=u\left(t_{n+1}\right)$

Solution:

$$
u\left(t_{n+\frac{1}{2}}\right) \approx \frac{1}{2}\left(u^{n}+u^{n+1}\right)
$$

Result:

$$
\begin{equation*}
\frac{u^{n+1}-u^{n}}{t_{n+1}-t_{n}}=-a \frac{1}{2}\left(u^{n}+u^{n+1}\right) \tag{10}
\end{equation*}
$$

Solve wrt to u^{n+1} :

$$
\begin{equation*}
u^{n+1}=\frac{1-\frac{1}{2} a\left(t_{n+1}-t_{n}\right)}{1+\frac{1}{2} a\left(t_{n+1}-t_{n}\right)} u^{n} \tag{11}
\end{equation*}
$$

This is a Crank-Nicolson (CN) scheme or a midpoint or centered scheme.

The Forward Euler, Backward Euler, and Crank-Nicolson schemes can be formulated as one scheme with a varying parameter θ :

$$
\begin{equation*}
\frac{u^{n+1}-u^{n}}{t_{n+1}-t_{n}}=-a\left(\theta u^{n+1}+(1-\theta) u^{n}\right) \tag{12}
\end{equation*}
$$

- $\theta=0$: Forward Euler
- $\theta=1$: Backward Euler
- $\theta=1 / 2$: Crank-Nicolson
- We may alternatively choose any $\theta \in[0,1]$.
u^{n} is known, solve for u^{n+1} :

$$
\begin{equation*}
u^{n+1}=\frac{1-(1-\theta) a\left(t_{n+1}-t_{n}\right)}{1+\theta a\left(t_{n+1}-t_{n}\right)} u^{n} \tag{13}
\end{equation*}
$$

Constant time step

Very common assumption (not important, but exclusively used for simplicity hereafter): constant time step $t_{n+1}-t_{n} \equiv \Delta t$

Summary of schemes for constant time step

$$
\begin{align*}
u^{n+1} & =(1-a \Delta t) u^{n} & \text { Forward Euler } \tag{14}\\
u^{n+1} & =\frac{1}{1+a \Delta t} u^{n} & \text { Backward Euler } \tag{15}\\
u^{n+1} & =\frac{1-\frac{1}{2} a \Delta t}{1+\frac{1}{2} a \Delta t} u^{n} & \text { Crank-Nicolson } \tag{16}\\
u^{n+1} & =\frac{1-(1-\theta) a \Delta t}{1+\theta a \Delta t} u^{n} & \text { The } \theta-\text { rule } \tag{17}
\end{align*}
$$

Compact operator notation for finite differences

- Finite difference formulas can be tedious to write and read/understand
- Handy tool: finite difference operator notation
- Advantage: communicates the nature of the difference in a compact way

$$
\begin{equation*}
\left[D_{t}^{-} u=-a u\right]^{n} \tag{18}
\end{equation*}
$$

Forward difference:

$$
\begin{equation*}
\left[D_{t}^{+} u\right]^{n}=\frac{u^{n+1}-u^{n}}{\Delta t} \approx \frac{d}{d t} u\left(t_{n}\right) \tag{19}
\end{equation*}
$$

Centered difference (around t_{n}):

$$
\begin{equation*}
\left[D_{t} u\right]^{n}=\frac{u^{n+\frac{1}{2}}-u^{n-\frac{1}{2}}}{\Delta t} \approx \frac{d}{d t} u\left(t_{n}\right), \tag{20}
\end{equation*}
$$

Backward difference:

$$
\begin{equation*}
\left[D_{t}^{-} u\right]^{n}=\frac{u^{n}-u^{n-1}}{\Delta t} \approx \frac{d}{d t} u\left(t_{n}\right) \tag{21}
\end{equation*}
$$

$$
\left[D_{t}^{-} u\right]^{n}=-a u^{n}
$$

Common to put the whole equation inside square brackets:

$$
\begin{equation*}
\left[D_{t}^{-} u=-a u\right]^{n} \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
\left[D_{t}^{+} u=-a u\right]^{n} \tag{23}
\end{equation*}
$$

Introduce an averaging operator:

$$
\begin{equation*}
\left[\bar{u}^{t}\right]^{n}=\frac{1}{2}\left(u^{n-\frac{1}{2}}+u^{n+\frac{1}{2}}\right) \approx u\left(t_{n}\right) \tag{24}
\end{equation*}
$$

The Crank-Nicolson scheme can then be written as

$$
\begin{equation*}
\left[D_{t} u=-a \bar{u}^{t}\right]^{n+\frac{1}{2}} \tag{25}
\end{equation*}
$$

Test: use the definitions and write out the above formula to see that it really is the Crank-Nicolson scheme!

(1) MAT-MEK4270 in a nutshell

(2) Finite difference methods
(3) Implementation

4 Verifying the implementation

Model:

$$
u^{\prime}(t)=-a u(t), \quad t \in(0, T], \quad u(0)=I
$$

Numerical method:

$$
u^{n+1}=\frac{1-(1-\theta) a \Delta t}{1+\theta a \Delta t} u^{n}
$$

for $\theta \in[0,1]$. Note

- $\theta=0$ gives Forward Euler
- $\theta=1$ gives Backward Euler
- $\theta=1 / 2$ gives Crank-Nicolson
- Compute the numerical solution $u^{n}, n=1,2, \ldots, N_{t}$
- Display the numerical and exact solution $u_{\mathrm{e}}(t)=e^{-a t}$
- Bring evidence to a correct implementation (verification)
- Compare the numerical and the exact solution in a plot
- Compute the error $u_{\mathrm{e}}\left(t_{n}\right)-u^{n}$
- Basic Python programming
- Array computing with numpy
- Plotting with matplotlib.pyplot
- File writing and reading

Why implement in Python?

- Python has a very clean, readable syntax (often known as "executable pseudo-code").
- Python code is very similar to MATLAB code (and MATLAB has a particularly widespread use for scientific computing).
- Python is a full-fledged, very powerful programming language.
- Python is similar to, but much simpler to work with and results in more reliable code than $\mathrm{C}++$.

Why implement in Python?

- Python has a rich set of modules for scientific computing, and its popularity in scientific computing is rapidly growing.
- Python was made for being combined with compiled languages (C, C ++ , Fortran) to reuse existing numerical software and to reach high computational performance of new implementations.
- Python has extensive support for administrative task needed when doing large-scale computational investigations.
- Python has extensive support for graphics (visualization, user interfaces, web applications).
- FEniCS, a very powerful tool for solving PDEs by the finite element method, is most human-efficient to operate from Python.

Algorithm

- Store $u^{n}, n=0,1, \ldots, N_{t}$ in an array u.
- Algorithm:
(1) initialize u^{0}
(2) for $t=t_{n}, n=1,2, \ldots, N_{t}$: compute u_{n} using the θ-rule formula

```
import numpy as np
def solver(I, a, T, dt, theta):
    """Solve u'=-a*u, u(0)=I, for t in (O,T] with steps of dt."""
    Nt = int(T/dt) # no of time intervals
    T = Nt*dt # adjust T to fit time step dt
    u = np.zeros(Nt+1) # array of u[n] values
    t = np.linspace(0, T, Nt+1) # time mesh
    u[0] = I # assign initial condition
    for n in range(0, Nt): # n=0,1,\ldots,Nt-1
        u[n+1] = (1 - (1-theta)}*a*dt)/(1 + theta*dt*a)*u[n]
    return u, t
```

Note about the for loop: range($0, \mathrm{Nt}, \mathrm{s}$) generates all integers from 0 to Nt in steps of s (default 1), but not including Nt (!).

Sample call:
$\mathrm{u}, \mathrm{t}=$ solver $(\mathrm{I}=1, \mathrm{a}=2, \mathrm{~T}=8, \mathrm{dt}=0.8$, theta=1)

Integer division

Python applies integer division: $1 / 2$ is 0 , while $1 . / 2$ or $1.0 / 2$ or $1 / 2$. or $1 / 2.0$ or $1.0 / 2.0$ all give 0.5 .

A safer solver function ($d t=$ float $(d t)$ - guarantee float):

```
import numpy as np
def solver(I, a, T, dt, theta):
    """Solve u'=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
    dt = float(dt) # avoid integer division
    Nt = int(round(T/dt)) # no of time intervals
    T = Nt*dt # adjust T to fit time step dt
    u = np.zeros(Nt+1) # array of u[n] values
    t = np.linspace(0, T, Nt+1) # time mesh
    u[0] = I # assign initial condition
    for n in range(0, Nt): # n=0,1,\ldots..Nt-1
        u[n+1] = (1 - (1-theta) *a*dt)/(1 + theta*dt*a)*u[n]
    return u, t
```

- First string after the function heading
- Used for documenting the function
- Automatic documentation tools can make fancy manuals for you
- Can be used for automatic testing

```
def solver(I, a, T, dt, theta):
    """
    Solve
        u'(t) = -a*u(t),
    with initial condition u(0)=I, for t in the time interval
    (O,T]. The time interval is divided into time steps of
    length dt.
    theta=1 corresponds to the Backward Euler scheme, theta=0
    to the Forward Euler scheme, and theta=0.5 to the Crank-
    Nicolson method.
    """
```

 ...
 Can control formatting of reals and integers through the printf format:
print('t=\%6.3f u=\%g' \% (t[i], u[i]))

Or the alternative format string syntax:

$$
\operatorname{print}\left(' t=\{t: 6.3 f\} u=\{u: g\}^{\prime} . \text { format }(t=t[i], u=u[i])\right)
$$

Or even better through the alternative f-string syntax:

$$
\operatorname{print}\left(f^{\prime} t=\{t[i]: 6.3 f\} \quad u=\{u[i]: g\}^{\prime}\right)
$$

How to run the program decay_v1.py.
Terminal> python decay_v1.py
Can also run it as "normal" Unix programs: ./decay_v1.py if the first line is
[\#!/usr/bin/env python.
Then
Terminal> chmod a+rx decay_v1.py
Terminal> ./decay_v1.py

Basic syntax:
import matplotlib.pyplot as plt
plt.plot(t, u)
plt.show()
Can (and should!) add labels on axes, title, legends.

Comparing with the exact solution

Python function for the exact solution $u_{\mathrm{e}}(t)=l e^{-a t}$:

```
def u_exact(t, I, a):
    return I*np.exp(-a*t)
```

Quick plotting:

```
u_e = u_exact(t, I, a)
plt.plot(t, u, t, u_e)
```

Problem: $u_{\mathrm{e}}(t)$ applies the same mesh as u^{n} and looks as a piecewise linear function.

Remedy: Introduce a very fine mesh for u_{e}.

```
t_e = np.linspace(0, T, 1001) # fine mesh
u_e = u_exact(t_e, I, a)
plt.plot(t_e, u_e, 'b-', # blue line for u_e
    t, u, 'r--0') # red dashes w/circles
```


Add legends, axes labels, title, and wrap in a function

def plot_numerical_and_exact(theta, I, a, T, dt):
"""Compare the numerical and exact solution in a plot."""
$\mathrm{u}, \mathrm{t}=\operatorname{sol} \operatorname{ver}(\mathrm{I}=\mathrm{I}, \mathrm{a}=\mathrm{a}, \mathrm{T}=\mathrm{T}, \mathrm{dt}=\mathrm{dt}$, theta=theta)
$\mathrm{t}_{-} \mathrm{e}=\mathrm{np}$.linspace $(0, \mathrm{~T}, 1001) \quad$ \# fine mesh for $u_{-} e$
u_e $=u_{-}$exact (t_e, $\left.I, a\right)$
plt.plot(t, u, 'r--o', t_e, u_e, 'b-')
plt.legend(['numerical', 'exact'])
plt.xlabel('t'); plt.ylabel('u')
plt.title('theta $=\% \mathrm{~g}, \mathrm{dt}=\% \mathrm{~g}$ ' \% (theta, dt))
plt.savefig('plot_\%s_\%g.png' \% (theta, dt))

(1) MAT-MEK4270 in a nutshell

(2) Finite difference methods

(3) Implementation

4 Verifying the implementation

Verifying the implementation

- Verification $=$ bring evidence that the program works
- Find suitable test problems
- Make function for each test problem
- Later: put the verification tests in a professional testing framework

Use a calculator $(I=0.1, \theta=0.8, \Delta t=0.8)$:

$$
A \equiv \frac{1-(1-\theta) a \Delta t}{1+\theta a \Delta t}=0.298245614035
$$

$$
\begin{aligned}
& u^{1}=A I=0.0298245614035 \\
& u^{2}=A u^{1}=0.00889504462912 \\
& u^{3}=A u^{2}=0.00265290804728
\end{aligned}
$$

See the function test_solver_three_steps in decay_v3.py.

Comparison with an exact discrete solution

Best verification

Compare computed numerical solution with a closed-form exact discrete solution (if possible).

Define

$$
A=\frac{1-(1-\theta) a \Delta t}{1+\theta a \Delta t}
$$

Repeated use of the θ-rule:

$$
\begin{aligned}
& u^{0}=I \\
& u^{1}=A u^{0}=A I \\
& u^{n}=A^{n} u^{n-1}=A^{n} I
\end{aligned}
$$

Making a test based on an exact discrete solution

The exact discrete solution is

$$
\begin{equation*}
u^{n}=I A^{n} \tag{26}
\end{equation*}
$$

Notice

Understand what n in u^{n} and in A^{n} means!

Test if

$$
\max _{n}\left|u^{n}-u_{\mathrm{e}}\left(t_{n}\right)\right|<\epsilon \sim 10^{-15}
$$

Computing the numerical error as a mesh function

Task: compute the numerical error $e^{n}=u_{\mathrm{e}}\left(t_{n}\right)-u^{n}$
Exact solution: $u_{\mathrm{e}}(t)=l e^{-a t}$, implemented as

```
def u_exact(t, I, a):
    return I*np.exp(-a*t)
```

Compute e^{n} by

```
u, t = solver(I, a, T, dt, theta) # Numerical solution
u_e = u_exact(t, I, a)
e = u_e - u
```


Array arithmetics - we compute on entire arrays!

- u_exact (t, I, a) works with t as array
- Must have exp from numpy (not math)
- e = u_e - u: array subtraction
- Array arithmetics gives shorter and much faster code

Computing the norm of the error

- e^{n} is a mesh function
- Usually we want one number for the error
- Use a norm of e^{n}

Norms of a function $f(t)$:

$$
\begin{align*}
\|f\|_{L^{2}} & =\left(\int_{0}^{T} f(t)^{2} d t\right)^{1 / 2} \tag{27}\\
\|f\|_{L^{1}} & =\int_{0}^{T}|f(t)| d t \tag{28}\\
\|f\|_{L^{\infty}} & =\max _{t \in[0, T]}|f(t)| \tag{29}
\end{align*}
$$

- Problem: $f^{n}=f\left(t_{n}\right)$ is a mesh function and hence not defined for all t. How to integrate f^{n} ?
- Idea: Apply a numerical integration rule, using only the mesh points of the mesh function.

The Trapezoidal rule:

$$
\left\|f^{n}\right\|=\left(\Delta t\left(\frac{1}{2}\left(f^{0}\right)^{2}+\frac{1}{2}\left(f^{N_{t}}\right)^{2}+\sum_{n=1}^{N_{t}-1}\left(f^{n}\right)^{2}\right)\right)^{1 / 2}
$$

Common simplification yields the L^{2} norm of a mesh function:

$$
\left\|f^{n}\right\|_{\ell^{2}}=\left(\Delta t \sum_{n=0}^{N_{t}}\left(f^{n}\right)^{2}\right)^{1 / 2}
$$

Norms - notice!

Notice

- The continuous norms use capital L^{2}, L^{1}, L^{∞}
- The discrete norm uses lowercase ℓ^{2}

Implementation of the norm of the error

$$
E=\left\|e^{n}\right\|_{\ell^{2}}=\sqrt{\Delta t \sum_{n=0}^{N_{t}}\left(e^{n}\right)^{2}}
$$

Python w/array arithmetics:

$$
\begin{aligned}
& \mathrm{e}=\mathrm{u}_{-} \operatorname{exact}(\mathrm{t})-\mathrm{u} \\
& \mathrm{E}=\mathrm{np} \cdot \operatorname{sqrt}(\mathrm{dt} * \mathrm{np} \cdot \operatorname{sum}(\mathrm{e} * * 2))
\end{aligned}
$$

Comment on array vs scalar computation

Scalar computing of $E=n p . s q r t(d t * n p . \operatorname{sum}(e * * 2))$:

```
m = len(u) # length of u array (alt: u.size)
u_e = np.zeros(m)
t = 0
for i in range(m):
    u_e[i] = u_exact(t, a, I)
    t = t + dt
e = np.zeros(m)
for i in range(m):
    e[i] = u_e[i] - u[i]
s = 0 # summation variable
for i in range(m):
    s = s + e[i]**2
error = np.sqrt(dt*s)
```


Scalar computing

takes more code, is less readable and runs much slower

Rule

Compute on entire arrays (when possible)! Vectorization!

