
Algorithms and implementations for exponential
decay models

Hans Petter Langtangen1,2

Center for Biomedical Computing, Simula Research Laboratory1

Department of Informatics, University of Oslo2

Aug 21, 2023

Professor Hans Petter Langtangen (1962-2016)

2011-2015 Editor-In-Chief SIAM J of Scientific Computing
Author of 13 published books on scientific computing
Professor of Mechanics, University of Oslo 1998
Developed INF5620 (which became IN5270 and now
MAT-MEK4270)
Memorial page

http://hpl-memorial.simula.no

Myself

Professor of mechanics (2019-)
PhD in mathematical modelling of turbulent combustion
Norwegian Defence Research Establishment (2007-2012)
Computational Fluid Dynamics
High Performance Computing

https://mikaem.github.io

1 MAT-MEK4270 in a nutshell

2 Finite difference methods

3 Implementation

4 Verifying the implementation

MAT-MEK4270 in a nutshell

Numerical methods for partial differential equations (PDEs)
How do we solve a PDE in practice and produce numbers?
How do we trust the answer?
Approach: simplify, understand, generalize
IN5670 -> IN5270 -> MAT-MEK4270 - Lots of old material

After the course
You see a PDE and can’t wait to program a method and visualize a
solution! Somebody asks if the solution is right and you can give a
convincing answer.

More specific contents: finite difference methods

Simple ODEs
Exponential decay ut = −au(t) in time
Helmholtz’ equation utt + ω2u(t) = 0 (Vibration)
write your own software from scratch
understand how the methods work and why they fail

1 Langtangen, Finite Difference Computing with exponential
decay - Chapters 1 and 2.

2 Langtangen and Linge, Finite Difference Computing with
PDEs - Parts of chapters 1 and 2.

https://link.springer.com/book/10.1007/978-3-319-29439-1
https://link.springer.com/book/10.1007/978-3-319-29439-1
https://link.springer.com/book/10.1007/978-3-319-55456-3
https://link.springer.com/book/10.1007/978-3-319-55456-3

More specific contents: Variational methods (Galerkin)

Approximating functions with global variational methods
Approximating functions with finite element methods
Approximating equations with global variational methods
Approximating equations with finite element methods

More advanced PDEs (e.g., utt = ∇2u in 1D, 2D, 3D)
perform hand-calculations, write your own software (1D)
understand how the methods work and why they fail

1 Langtangen and Mardal, Introduction to Numerical Methods
for Variational Problems

https://link.springer.com/book/10.1007/978-3-030-23788-2
https://link.springer.com/book/10.1007/978-3-030-23788-2

Philosophy: simplify, understand, generalize

Start with simplified ODE/PDE problems
Learn to reason about the discretization
Learn to implement, verify, and experiment
Understand the method, program, and results
Generalize the problem, method, and program

This is the power of applied mathematics!

Required software

Our software platform: Python (sometimes combined with
Cython, Fortran, C, C++)
Important Python packages: numpy, scipy, matplotlib,
sympy, fenics, shenfun, ...
Anaconda Python
Jupyter notebooks

Assumed/ideal background

IN1900: Python programming, solution of ODEs
Some experience with finite difference methods
Some analytical and numerical knowledge of PDEs
Much experience with calculus and linear algebra
Much experience with programming of mathematical problems
Experience with mathematical modeling with PDEs (from
physics, mechanics, geophysics, or ...)

Start-up example for the course

What if you don’t have this ideal background?

Students come to this course with very different backgrounds
First task: summarize assumed background knowledge by
going through a simple example
Also in this example:

Some fundamental material on software implementation and
software testing
Material on analyzing numerical methods to understand why
they can fail
Applications to real-world problems

Start-up example

ODE problem

u′ = −au, u(0) = I , t ∈ (0,T],

where a > 0 is a constant.

Everything we do is motivated by what we need as building blocks
for solving Partial Differential Equations (PDEs)!

1 MAT-MEK4270 in a nutshell

2 Finite difference methods

3 Implementation

4 Verifying the implementation

Finite difference methods

The finite difference method is the simplest method for solving
differential equations
Satisfies the equations in discrete points, not continuously
Fast to learn, derive, and implement
A very useful tool to know, even if you aim at using the finite
element or the finite volume method

Topics in the first intro to the finite difference method

Contents
How to think about finite difference discretization
Key concepts:

mesh
mesh function
finite difference approximations

The Forward Euler, Backward Euler, and Crank-Nicolson
methods
Finite difference operator notation
How to derive an algorithm and implement it in Python
How to test the implementation

The steps in the finite difference method

Solving a differential equation by a finite difference method consists
of four steps:

1 discretizing the domain,
2 fulfilling the equation at discrete time points,
3 replacing derivatives by finite differences,
4 solve the discretized problem. (Often with a recursive

algorithm in 1D)

Step 1: Discretizing the domain

The time domain [0,T] is represented by a mesh: a finite number
of Nt + 1 points

0 = t0 < t1 < t2 < · · · < tNt−1 < tNt = T

We seek the solution u at the mesh points: u(tn),
n = 1, 2, . . . ,Nt .
Note: u0 is known as I .
Notational short-form for the numerical approximation to
u(tn): un

In the differential equation: u is the exact solution
In the numerical method and implementation: un is the
numerical approximation, ue(t) is the exact solution

Step 1: Discretizing the domain

un is a mesh function, defined at the mesh points tn, n = 0, . . . ,Nt

only.

What about a mesh function between the mesh points?
Can extend the mesh function to yield values between mesh points
by linear interpolation:

u(t) ≈ un +
un+1 − un

tn+1 − tn
(t − tn) (1)

Step 2: Fulfilling the equation at discrete time points

The ODE holds for all t ∈ (0,T] (infinite no of points)
Idea: let the ODE be valid at the mesh points only (finite no
of points)

u′(tn) = −au(tn), n = 1, . . . ,Nt (2)

Step 3: Replacing derivatives by finite differences
Now it is time for the finite difference approximations of derivatives:

u′(tn) ≈ un+1 − un

tn+1 − tn
(3)

forward

u(t)

tntn−1 tn+1

Step 3: Replacing derivatives by finite differences

Inserting the finite difference approximation in

u′(tn) = −au(tn)

gives

un+1 − un

tn+1 − tn
= −aun, n = 0, 1, . . . ,Nt − 1 (4)

(Known as discrete equation, or discrete problem, or finite
difference method/scheme)

Step 4: Formulating a recursive algorithm

How can we actually compute the un values?

given u0 = I

compute u1 from u0

compute u2 from u1

compute u3 from u2 (and so forth)

In general: we have un and seek un+1

The Forward Euler scheme

Solve wrt un+1 to get the computational formula:

un+1 = un − a(tn+1 − tn)un (5)

Let us apply the scheme by hand

Assume constant time spacing: ∆t = tn+1 − tn = const such that
un+1 = un(1− a∆t)

u0 = I ,

u1 = I (1− a∆t),

u2 = I (1− a∆t)2,

...

uNt = I (1− a∆t)Nt

Ooops - we can find the numerical solution by hand (in this simple
example)! No need for a computer (yet)...

A backward difference
Here is another finite difference approximation to the derivative
(backward difference):

u′(tn) ≈ un − un−1

tn − tn−1
(6)

backward

u(t)

tntn−1 tn+1

The Backward Euler scheme

Inserting the finite difference approximation in u′(tn) = −au(tn)
yields the Backward Euler (BE) scheme:

un − un−1

tn − tn−1
= −aun (7)

Solve with respect to the unknown un+1:

un+1 =
1

1 + a(tn+1 − tn)
un (8)

Notice

We use un+1 as unknown, so above we rename un −→ un+1 and
un−1 −→ un.

A centered difference

Centered differences are better approximations than forward or
backward differences.

centered

u(t)

tn+1
2

tn tn+1

The Crank-Nicolson scheme; ideas

Idea 1: let the ODE hold at tn+ 1
2
. With Nt + 1 points, that is Nt

equations for n = 0, 1, . . .Nt − 1

u′(tn+ 1
2
) = −au(tn+ 1

2
)

Idea 2: approximate u′(tn+ 1
2
) by a centered difference

u′(tn+ 1
2
) ≈ un+1 − un

tn+1 − tn
(9)

Problem: u(tn+ 1
2
) is not defined, only un = u(tn) and

un+1 = u(tn+1)

Solution:

u(tn+ 1
2
) ≈ 1

2
(un + un+1)

The Crank-Nicolson scheme; result

Result:

un+1 − un

tn+1 − tn
= −a1

2
(un + un+1) (10)

Solve wrt to un+1:

un+1 =
1− 1

2a(tn+1 − tn)

1 + 1
2a(tn+1 − tn)

un (11)

This is a Crank-Nicolson (CN) scheme or a midpoint or centered
scheme.

The unifying θ-rule

The Forward Euler, Backward Euler, and Crank-Nicolson schemes
can be formulated as one scheme with a varying parameter θ:

un+1 − un

tn+1 − tn
= −a(θun+1 + (1− θ)un) (12)

θ = 0: Forward Euler
θ = 1: Backward Euler
θ = 1/2: Crank-Nicolson
We may alternatively choose any θ ∈ [0, 1].

un is known, solve for un+1:

un+1 =
1− (1− θ)a(tn+1 − tn)

1 + θa(tn+1 − tn)
un (13)

Constant time step

Very common assumption (not important, but exclusively used for
simplicity hereafter): constant time step tn+1 − tn ≡ ∆t

Summary of schemes for constant time step

un+1 = (1− a∆t)un Forward Euler (14)

un+1 =
1

1 + a∆t
un Backward Euler (15)

un+1 =
1− 1

2a∆t

1 + 1
2a∆t

un Crank-Nicolson (16)

un+1 =
1− (1− θ)a∆t

1 + θa∆t
un The θ − rule (17)

Compact operator notation for finite differences

Finite difference formulas can be tedious to write and
read/understand
Handy tool: finite difference operator notation
Advantage: communicates the nature of the difference in a
compact way

[D−t u = −au]n (18)

Specific notation for difference operators

Forward difference:

[D+
t u]n =

un+1 − un

∆t
≈ d

dt
u(tn) (19)

Centered difference (around tn):

[Dtu]n =
un+

1
2 − un−

1
2

∆t
≈ d

dt
u(tn), (20)

Backward difference:

[D−t u]n =
un − un−1

∆t
≈ d

dt
u(tn) (21)

The Backward Euler scheme with operator notation

[D−t u]n = −aun

Common to put the whole equation inside square brackets:

[D−t u = −au]n (22)

The Forward Euler scheme with operator notation

[D+
t u = −au]n (23)

The Crank-Nicolson scheme with operator notation

Introduce an averaging operator:

[ut]n =
1
2

(un−
1
2 + un+

1
2) ≈ u(tn) (24)

The Crank-Nicolson scheme can then be written as

[Dtu = −aut]n+
1
2 (25)

Test: use the definitions and write out the above formula to see
that it really is the Crank-Nicolson scheme!

1 MAT-MEK4270 in a nutshell

2 Finite difference methods

3 Implementation

4 Verifying the implementation

Implementation

Model:
u′(t) = −au(t), t ∈ (0,T], u(0) = I

Numerical method:

un+1 =
1− (1− θ)a∆t

1 + θa∆t
un

for θ ∈ [0, 1]. Note

θ = 0 gives Forward Euler
θ = 1 gives Backward Euler
θ = 1/2 gives Crank-Nicolson

Requirements of a program

Compute the numerical solution un, n = 1, 2, . . . ,Nt

Display the numerical and exact solution ue(t) = e−at

Bring evidence to a correct implementation (verification)
Compare the numerical and the exact solution in a plot
Compute the error ue(tn)− un

Tools to learn

Basic Python programming
Array computing with numpy

Plotting with matplotlib.pyplot

File writing and reading

http://python.org
http://numpy.org/
https://matplotlib.org

Why implement in Python?

Python has a very clean, readable syntax (often known as
"executable pseudo-code").
Python code is very similar to MATLAB code (and MATLAB
has a particularly widespread use for scientific computing).
Python is a full-fledged, very powerful programming language.
Python is similar to, but much simpler to work with and
results in more reliable code than C++.

Why implement in Python?

Python has a rich set of modules for scientific computing, and
its popularity in scientific computing is rapidly growing.
Python was made for being combined with compiled languages
(C, C++, Fortran) to reuse existing numerical software and to
reach high computational performance of new
implementations.
Python has extensive support for administrative task needed
when doing large-scale computational investigations.
Python has extensive support for graphics (visualization, user
interfaces, web applications).
FEniCS, a very powerful tool for solving PDEs by the finite
element method, is most human-efficient to operate from
Python.

Algorithm

Store un, n = 0, 1, . . . ,Nt in an array u.
Algorithm:

1 initialize u0

2 for t = tn, n = 1, 2, . . . ,Nt : compute un using the θ-rule
formula

Translation to Python function

import numpy as np

def solver(I, a, T, dt, theta):
"""Solve u'=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
Nt = int(T/dt) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = np.zeros(Nt+1) # array of u[n] values
t = np.linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

Note about the for loop: range(0, Nt, s) generates all integers
from 0 to Nt in steps of s (default 1), but not including Nt (!).

Sample call:

u, t = solver(I=1, a=2, T=8, dt=0.8, theta=1)

Integer division

Python applies integer division: 1/2 is 0, while 1./2 or 1.0/2 or
1/2. or 1/2.0 or 1.0/2.0 all give 0.5.

A safer solver function (dt = float(dt) - guarantee float):

import numpy as np

def solver(I, a, T, dt, theta):
"""Solve u'=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = np.zeros(Nt+1) # array of u[n] values
t = np.linspace(0, T, Nt+1) # time mesh
u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

Doc strings

First string after the function heading
Used for documenting the function
Automatic documentation tools can make fancy manuals for
you
Can be used for automatic testing

def solver(I, a, T, dt, theta):
"""
Solve

u'(t) = -a*u(t),

with initial condition u(0)=I, for t in the time interval
(0,T]. The time interval is divided into time steps of
length dt.

theta=1 corresponds to the Backward Euler scheme, theta=0
to the Forward Euler scheme, and theta=0.5 to the Crank-
Nicolson method.
"""
...

Formatting of numbers

Can control formatting of reals and integers through the printf
format:

print('t=%6.3f u=%g' % (t[i], u[i]))

Or the alternative format string syntax:

print('t={t:6.3f} u={u:g}'.format(t=t[i], u=u[i]))

Or even better through the alternative f-string syntax:

print(f't={t[i]:6.3f} u={u[i]:g}')

Running the program

How to run the program decay_v1.py.

Terminal> python decay_v1.py

Can also run it as "normal" Unix programs: ./decay_v1.py if the
first line is

`#!/usr/bin/env python`

Then

Terminal> chmod a+rx decay_v1.py
Terminal> ./decay_v1.py

http://tinyurl.com/ofkw6kc/alg/decay_v1.py

Plotting the solution

Basic syntax:

import matplotlib.pyplot as plt

plt.plot(t, u)
plt.show()

Can (and should!) add labels on axes, title, legends.

Comparing with the exact solution

Python function for the exact solution ue(t) = Ie−at :

def u_exact(t, I, a):
return I*np.exp(-a*t)

Quick plotting:

u_e = u_exact(t, I, a)
plt.plot(t, u, t, u_e)

Problem: ue(t) applies the same mesh as un and looks as a
piecewise linear function.

Remedy: Introduce a very fine mesh for ue.

t_e = np.linspace(0, T, 1001) # fine mesh
u_e = u_exact(t_e, I, a)

plt.plot(t_e, u_e, 'b-', # blue line for u_e
t, u, 'r--o') # red dashes w/circles

Add legends, axes labels, title, and wrap in a function
def plot_numerical_and_exact(theta, I, a, T, dt):

"""Compare the numerical and exact solution in a plot."""
u, t = solver(I=I, a=a, T=T, dt=dt, theta=theta)
t_e = np.linspace(0, T, 1001) # fine mesh for u_e
u_e = u_exact(t_e, I, a)
plt.plot(t, u, 'r--o', t_e, u_e, 'b-')
plt.legend(['numerical', 'exact'])
plt.xlabel('t'); plt.ylabel('u')
plt.title('theta=%g, dt=%g' % (theta, dt))
plt.savefig('plot_%s_%g.png' % (theta, dt))

0 1 2 3 4 5 6 7 8
t

0.0

0.2

0.4

0.6

0.8

1.0

u

theta=1, dt=0.8

numerical
exact

1 MAT-MEK4270 in a nutshell

2 Finite difference methods

3 Implementation

4 Verifying the implementation

Verifying the implementation

Verification = bring evidence that the program works
Find suitable test problems
Make function for each test problem
Later: put the verification tests in a professional testing
framework

Simplest method: run a few algorithmic steps by hand

Use a calculator (I = 0.1, θ = 0.8, ∆t = 0.8):

A ≡ 1− (1− θ)a∆t

1 + θa∆t
= 0.298245614035

u1 = AI = 0.0298245614035,

u2 = Au1 = 0.00889504462912,

u3 = Au2 = 0.00265290804728

See the function test_solver_three_steps in decay_v3.py.

https://github.com/hplgit/decay-book/blob/master/src/alg/decay_v3.py

Comparison with an exact discrete solution

Best verification
Compare computed numerical solution with a closed-form exact
discrete solution (if possible).

Define
A =

1− (1− θ)a∆t

1 + θa∆t

Repeated use of the θ-rule:

u0 = I ,

u1 = Au0 = AI

un = Anun−1 = AnI

Making a test based on an exact discrete solution

The exact discrete solution is

un = IAn (26)

Notice
Understand what n in un and in An means!

Test if

max
n
|un − ue(tn)| < ε ∼ 10−15

Computing the numerical error as a mesh function

Task: compute the numerical error en = ue(tn)− un

Exact solution: ue(t) = Ie−at , implemented as

def u_exact(t, I, a):
return I*np.exp(-a*t)

Compute en by

u, t = solver(I, a, T, dt, theta) # Numerical solution
u_e = u_exact(t, I, a)
e = u_e - u

Array arithmetics - we compute on entire arrays!
u_exact(t, I, a) works with t as array
Must have exp from numpy (not math)
e = u_e - u: array subtraction
Array arithmetics gives shorter and much faster code

Computing the norm of the error

en is a mesh function
Usually we want one number for the error
Use a norm of en

Norms of a function f (t):

||f ||L2 =

(∫ T

0
f (t)2dt

)1/2

(27)

||f ||L1 =

∫ T

0
|f (t)|dt (28)

||f ||L∞ = max
t∈[0,T]

|f (t)| (29)

Norms of mesh functions

Problem: f n = f (tn) is a mesh function and hence not defined
for all t. How to integrate f n?
Idea: Apply a numerical integration rule, using only the mesh
points of the mesh function.

The Trapezoidal rule:

||f n|| =

(
∆t

(
1
2

(f 0)2 +
1
2

(f Nt)2 +
Nt−1∑
n=1

(f n)2

))1/2

Common simplification yields the L2 norm of a mesh function:

||f n||`2 =

(
∆t

Nt∑
n=0

(f n)2

)1/2

Norms - notice!

Notice

The continuous norms use capital L2, L1, L∞

The discrete norm uses lowercase `2

Implementation of the norm of the error

E = ||en||`2 =

√√√√∆t
Nt∑
n=0

(en)2

Python w/array arithmetics:

e = u_exact(t) - u
E = np.sqrt(dt*np.sum(e**2))

Comment on array vs scalar computation

Scalar computing of E = np.sqrt(dt*np.sum(e**2)):

m = len(u) # length of u array (alt: u.size)
u_e = np.zeros(m)
t = 0
for i in range(m):

u_e[i] = u_exact(t, a, I)
t = t + dt

e = np.zeros(m)
for i in range(m):

e[i] = u_e[i] - u[i]
s = 0 # summation variable
for i in range(m):

s = s + e[i]**2
error = np.sqrt(dt*s)

Scalar computing
takes more code, is less readable and runs much slower

Rule
Compute on entire arrays (when possible)! Vectorization!

	MAT-MEK4270 in a nutshell
	Finite difference methods
	Implementation
	Verifying the implementation

