
Study guide: Analysis of exponential decay models

Hans Petter Langtangen1,2

Center for Biomedical Computing, Simula Research Laboratory1

Department of Informatics, University of Oslo2

Aug 25, 2023

Recap - Finite differencing of exponential decay

The ordinary differential equation

u′(t) = −au(t), u(0) = I , y ∈ (0,T],

where a > 0 is a constant.

Solve the ODE by finite difference methods:

Discretize in time:

0 = t0 < t1 < t2 < · · · < tNt−1 < tNt = T

Satisfy the ODE at Nt discrete time steps n ∈ [1, 2, . . . ,Nt]:

u′(tn) = −au(tn) or u′(t
n−1

2
) = −au(t

n−1
2

)

Finite difference algorithms

Discretization by a generic θ-rule

un − un−1

4t
= −(1− θ)aun−1 − θun

θ = 0 Forward Euler
θ = 1 Backward Euler
θ = 1/2 Crank-Nicolson

Note un = u(tn)

Solve recursively: Set u0 = I and then

un =
1− (1− θ)a4t

1 + θa4t
un−1 for n > 0

Implicit vs explicit algorithms

Discretization by a generic θ-rule

un − un−1

4t
= −(1− θ)aun−1 − θun

θ = 0 Forward Euler
θ = 1 Backward Euler
θ = 1/2 Crank-Nicolson

Implicit Backward Euler: −au computed from unknown un

Explicit Forward Euler: −au computed from known un−1

Crank-Nicolson is semi-implicit

Analysis of finite difference equations

Model:
u′(t) = −au(t), u(0) = I (1)

Method:
un+1 =

1− (1− θ)a∆t

1 + θa∆t
un (2)

Problem setting
How good is this method? Is it safe to use it?

Encouraging numerical solutions; Backward Euler
I = 1, a = 2, θ = 1, ∆t = 1.25, 0.75, 0.5, 0.1.

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=1, dt=1.25

numerical
exact

0 1 2 3 4 5 6
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=1, dt=0.75

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=1, dt=0.5

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=1, dt=0.1

numerical
exact

Discouraging numerical solutions; Crank-Nicolson
I = 1, a = 2, θ = 1/2, ∆t = 1.25, 0.75, 0.5, 0.1.

0 1 2 3 4 5
t

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0.5, dt=1.25

numerical
exact

0 1 2 3 4 5 6
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0.5, dt=0.75

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0.5, dt=0.5

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0.5, dt=0.1

numerical
exact

Discouraging numerical solutions; Forward Euler
I = 1, a = 2, θ = 0, ∆t = 1.25, 0.75, 0.5, 0.1.

0 1 2 3 4 5
t

4

2

0

2

4

6

u

Method: theta-rule, theta=0, dt=1.25

numerical
exact

0 1 2 3 4 5 6
t

0.5

0.0

0.5

1.0

u

Method: theta-rule, theta=0, dt=0.75

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0, dt=0.5

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0, dt=0.1

numerical
exact

Summary of observations

The characteristics of the displayed curves can be summarized as
follows:

The Backward Euler scheme always gives a monotone solution,
lying above the exact solution.
The Crank-Nicolson scheme gives the most accurate results,
but for ∆t = 1.25 the solution oscillates.
The Forward Euler scheme gives a growing, oscillating solution
for ∆t = 1.25; a decaying, oscillating solution for ∆t = 0.75;
a strange solution un = 0 for n ≥ 1 when ∆t = 0.5; and a
solution seemingly as accurate as the one by the Backward
Euler scheme for ∆t = 0.1, but the curve lies below the exact
solution.

Problem setting

Goal
We ask the question

Under what circumstances, i.e., values of the input data I , a,
and ∆t will the Forward Euler and Crank-Nicolson schemes
result in undesired oscillatory solutions?

Techniques of investigation:
Numerical experiments
Mathematical analysis

Another question to be raised is
How does ∆t impact the error in the numerical solution?

Experimental investigation of oscillatory solutions

The solution is oscillatory if for some n

un > un−1

("Safe choices" of ∆t lie under following curve as a function of a.)

Seems that a∆t < 1 for FE and 2 for CN.

Exact numerical solution

Starting with u0 = I , the simple recursion (2) can be applied
repeatedly n times, with the result that

un = IAn, A =
1− (1− θ)a∆t

1 + θa∆t
(3)

Such a formula for the exact discrete solution is unusual to obtain
in practice, but very handy for our analysis here.

Note: An exact dicrete solution fulfills a discrete equation (without
round-off errors), whereas an exact solution fulfills the original
mathematical equation.

Stability

Since un = IAn,

A < 0 gives a factor (−1)n and oscillatory solutions
|A| > 1 gives growing solutions
Recall: the exact solution is monotone and decaying
If these qualitative properties are not met, we say that the
numerical solution is unstable

Computation of stability in this problem

A < 0 if

1− (1− θ)a∆t

1 + θa∆t
< 0

To avoid oscillatory solutions we must have A > 0 and

∆t <
1

(1− θ)a
(4)

Always fulfilled for Backward Euler
∆t ≤ 1/a for Forward Euler
∆t ≤ 2/a for Crank-Nicolson

Computation of stability in this problem

|A| ≤ 1 means −1 ≤ A ≤ 1

−1 ≤ 1− (1− θ)a∆t

1 + θa∆t
≤ 1 (5)

−1 is the critical limit (because A ≤ 1 is always satisfied):

∆t ≤ 2
(1− 2θ)a

, when θ <
1
2

Always fulfilled for Backward Euler and Crank-Nicolson
∆t ≤ 2/a for Forward Euler

Explanation of problems with Forward Euler

0 1 2 3 4 5
t

4

2

0

2

4

6

u

Method: theta-rule, theta=0, dt=1.25

numerical
exact

0 1 2 3 4 5 6
t

0.5

0.0

0.5

1.0

u

Method: theta-rule, theta=0, dt=0.75

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0, dt=0.5

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0, dt=0.1

numerical
exact

a∆t = 2 · 1.25 = 2.5 and A = −1.5: oscillations and growth
a∆t = 2 · 0.75 = 1.5 and A = −0.5: oscillations and decay
∆t = 0.5 and A = 0: un = 0 for n > 0
Smaller ∆t: qualitatively correct solution

Explanation of problems with Crank-Nicolson

0 1 2 3 4 5
t

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0.5, dt=1.25

numerical
exact

0 1 2 3 4 5 6
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0.5, dt=0.75

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0.5, dt=0.5

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0.5, dt=0.1

numerical
exact

∆t = 1.25 and A = −0.25: oscillatory solution
Never any growing solution

Summary of stability

1 Forward Euler is conditionally stable
∆t < 2/a for avoiding growth
∆t ≤ 1/a for avoiding oscillations

2 The Crank-Nicolson is unconditionally stable wrt growth and
conditionally stable wrt oscillations

∆t < 2/a for avoiding oscillations

3 Backward Euler is unconditionally stable

Comparing amplification factors

un+1 is an amplification A of un:

un+1 = Aun, A =
1− (1− θ)a∆t

1 + θa∆t

The exact solution is also an amplification:

u(tn+1) = Aeu(tn), Ae = e−a∆t

A possible measure of accuracy: Ae − A

Plot of amplification factors

0.0 0.5 1.0 1.5 2.0 2.5 3.0
p=a∆t

2.0

1.5

1.0

0.5

0.0

0.5

1.0
A

m
p
lif

ic
a
ti

o
n
 f

a
ct

o
r

Amplification factors

exact
FE
BE
CN

p = a∆t is the important parameter for numerical
performance

p = a∆t is a dimensionless parameter
all expressions for stability and accuracy involve p

Note that ∆t alone is not so important, it is the combination
with a through p = a∆t that matters

Another “proof” why p = a∆t is key

If we scale the model by t̄ = at, ū = u/I , we get dū/dt̄ = −ū,
ū(0) = 1 (no physical parameters!). The analysis show that ∆t̄ is
key, corresponding to a∆t in the unscaled model.

Series expansion of amplification factors

To investigate Ae − A mathematically, we can Taylor expand the
expression, using p = a∆t as variable.

>>> from sympy import *
>>> # Create p as a mathematical symbol with name 'p'
>>> p = Symbol('p')
>>> # Create a mathematical expression with p
>>> A_e = exp(-p)
>>>
>>> # Find the first 6 terms of the Taylor series of A_e
>>> A_e.series(p, 0, 6)
1 + (1/2)*p**2 - p - 1/6*p**3 - 1/120*p**5 + (1/24)*p**4 + O(p**6)

>>> theta = Symbol('theta')
>>> A = (1-(1-theta)*p)/(1+theta*p)
>>> FE = A_e.series(p, 0, 4) - A.subs(theta, 0).series(p, 0, 4)
>>> BE = A_e.series(p, 0, 4) - A.subs(theta, 1).series(p, 0, 4)
>>> half = Rational(1,2) # exact fraction 1/2
>>> CN = A_e.series(p, 0, 4) - A.subs(theta, half).series(p, 0, 4)
>>> FE
(1/2)*p**2 - 1/6*p**3 + O(p**4)
>>> BE
-1/2*p**2 + (5/6)*p**3 + O(p**4)
>>> CN
(1/12)*p**3 + O(p**4)

Error in amplification factors

Focus: the error measure A− Ae as function of ∆t (recall that
p = a∆t):

A− Ae =

{
O(∆t2), Forward and Backward Euler,
O(∆t3), Crank-Nicolson

(6)

The fraction of numerical and exact amplification factors

Focus: the error measure 1− A/Ae as function of p = a∆t:

>>> FE = 1 - (A.subs(theta, 0)/A_e).series(p, 0, 4)
>>> BE = 1 - (A.subs(theta, 1)/A_e).series(p, 0, 4)
>>> CN = 1 - (A.subs(theta, half)/A_e).series(p, 0, 4)
>>> FE
(1/2)*p**2 + (1/3)*p**3 + O(p**4)
>>> BE
-1/2*p**2 + (1/3)*p**3 + O(p**4)
>>> CN
(1/12)*p**3 + O(p**4)

Same leading-order terms as for the error measure A− Ae.

The true/global error at a point

The error in A reflects the local (amplification) error when
going from one time step to the next
What is the global (true) error at tn?
en = ue(tn)− un = Ie−atn − IAn

Taylor series expansions of en simplify the expression

Computing the global error at a point

>>> n = Symbol('n')
>>> u_e = exp(-p*n) # I=1
>>> u_n = A**n # I=1
>>> FE = u_e.series(p, 0, 4) - u_n.subs(theta, 0).series(p, 0, 4)
>>> BE = u_e.series(p, 0, 4) - u_n.subs(theta, 1).series(p, 0, 4)
>>> CN = u_e.series(p, 0, 4) - u_n.subs(theta, half).series(p, 0, 4)
>>> FE
(1/2)*n*p**2 - 1/2*n**2*p**3 + (1/3)*n*p**3 + O(p**4)
>>> BE
(1/2)*n**2*p**3 - 1/2*n*p**2 + (1/3)*n*p**3 + O(p**4)
>>> CN
(1/12)*n*p**3 + O(p**4)

Substitute n by t/∆t:

Forward and Backward Euler: leading order term 1
2 ta

2∆t

Crank-Nicolson: leading order term 1
12 ta

3∆t2

Convergence

The numerical scheme is convergent if the global error en → 0 as
∆t → 0. If the error has a leading order term ∆tr , the convergence
rate is of order r .

Integrated errors
Focus: norm of the numerical error

||en||`2 =

√√√√∆t
Nt∑
n=0

(ue(tn)− un)2

Forward and Backward Euler:

||en||`2 =
1
4

√
T 3

3
a2∆t

Crank-Nicolson:

||en||`2 =
1
12

√
T 3

3
a3∆t2

Summary of errors
Analysis of both the pointwise and the time-integrated true errors:

1st order for Forward and Backward Euler
2nd order for Crank-Nicolson

Truncation error

How good is the discrete equation?
Possible answer: see how well ue fits the discrete equation

[D+
t u = −au]n

i.e.,

un+1 − un

∆t
= −aun

Insert ue (which does not in general fulfill this discrete equation):

ue(tn+1)− ue(tn)

∆t
+ aue(tn) = Rn 6= 0 (7)

Computation of the truncation error

The residual Rn is the truncation error.
How does Rn vary with ∆t?

Tool: Taylor expand ue around the point where the ODE is sampled
(here tn)

ue(tn+1) = ue(tn) + u′e(tn)∆t +
1
2
u′′e (tn)∆t2 + · · ·

Inserting this Taylor series in (7) gives

Rn = u′e(tn) +
1
2
u′′e (tn)∆t + . . .+ aue(tn)

Now, ue solves the ODE u′e = −aue, and then

Rn ≈ 1
2
u′′e (tn)∆t

This is a mathematical expression for the truncation error.

The truncation error for other schemes

Backward Euler:

Rn ≈ −1
2
u′′e (tn)∆t

Crank-Nicolson:

Rn+ 1
2 ≈ 1

24
u′′′e (tn+ 1

2
)∆t2

Consistency, stability, and convergence

Truncation error measures the residual in the difference
equations. The scheme is consistent if the truncation error
goes to 0 as ∆t → 0. Importance: the difference equations
approaches the differential equation as ∆t → 0.
Stability means that the numerical solution exhibits the same
qualitative properties as the exact solution. Here: monotone,
decaying function.
Convergence implies that the true (global) error
en = ue(tn)− un → 0 as ∆t → 0. This is really what we want!

The Lax equivalence theorem for linear differential equations:
consistency + stability is equivalent with convergence.

(Consistency and stability is in most problems much easier to
establish than convergence.)

