Study guide: Analysis of exponential decay models

Hans Petter Langtangen!-?

Center for Biomedical Computing, Simula Research Laboratory?!

Department of Informatics, University of Oslo?
Aug 25, 2023

Slides selected /modified by Mikael Mortensen

Recap - Finite differencing of exponential decay

The ordinary differential equation

u'(t) = —au(t), u(0)=1, ye(0,T],

where a > 0 is a constant.

Solve the ODE by finite difference methods:
@ Discretize in time:
O=th<ti<b< ---<ty_1<ty =T
o Satisfy the ODE at N; discrete time steps n € [1,2,..., N¢|:
)

U (ty) = —au(t,) or u(t 1)=—au(t

1 1
n=3 =3

Finite difference algorithms

o Discretization by a generic 8-rule

u" — un—l

N —(1—0)au"t —u"

=0 Forward Euler
0=1 Backward Euler
6 =1/2 Crank-Nicolson

Note u” = u(t,)
@ Solve recursively: Set u® = /| and then

1—-(1—-0)art , 4
n: n _F
1+0a0t orn >0

Implicit vs explicit algorithms

o Discretization by a generic 6-rule

n_ ,n—1
% = —(1—-0)au"t —0u"
=0 Forward Euler
=1 Backward Euler
6 =1/2 Crank-Nicolson

@ Implicit Backward Euler: —au computed from unknown u”
o Explicit Forward Euler: —au computed from known 4”1
@ Crank-Nicolson is semi-implicit

Analysis of finite difference equations

Model:
u(t) = —au(t), u(0) = (1)
Method: 1 (1 6)aht
n+1 _ B B a n 2
Y 14+ faAt Y (2)

Problem setting

How good is this method? Is it safe to use it?

Encouraging numerical solutions; Backward Euler

I=1a=26=1, At=1.25,0.75,0.5,0.1.

Method: theta-rule, theta=1, dt=1.25

Method: theta-rule, theta=1, dt=0.75

0.6

0.4

0.6

0.4

Discouraging numerical solutions; Crank-Nicolson

I=1a=2 0=1/2, At=1.250.7505,0.1.

Method: theta-rule, theta=0.5, dt=1.25

Method: theta-rule, theta=0.5, dt=0.75

0.6

0.4

0.6

0.4

Discouraging numerical solutions; Forward Euler

I=1a=26=0, At=1.250.75,0.5,0.1.

Method: theta-rule, theta=0, dt=1.25 Method: theta-rule, theta=0, dt=0.75

Summary of observations

The characteristics of the displayed curves can be summarized as
follows:

o The Backward Euler scheme always gives a monotone solution,
lying above the exact solution.

@ The Crank-Nicolson scheme gives the most accurate results,
but for At = 1.25 the solution oscillates.

@ The Forward Euler scheme gives a growing, oscillating solution
for At = 1.25; a decaying, oscillating solution for At = 0.75;
a strange solution u”™ =0 for n > 1 when At =0.5; and a
solution seemingly as accurate as the one by the Backward
Euler scheme for At = 0.1, but the curve lies below the exact
solution.

Problem setting

Goal
We ask the question

@ Under what circumstances, i.e., values of the input data /, a,
and At will the Forward Euler and Crank-Nicolson schemes
result in undesired oscillatory solutions?

Techniques of investigation:

@ Numerical experiments

o Mathematical analysis
Another question to be raised is

@ How does At impact the error in the numerical solution?

Experimental investigation of oscillatory solutions

The solution is oscillatory if for some n
u" >yt

("Safe choices" of At lie under following curve as a function of a.)

theta=0 theta=0.5

35 b 35 F L

5 L 5 L
15 15 b
1t s
05 L * 05 L

Seems that aAt < 1 for FE and 2 for CN.

Exact numerical solution

Starting with 1® = I, the simple recursion (2) can be applied
repeatedly n times, with the result that

1—(1—-0)aAt

"—JA" A= 3
Y ’ 1+ faAt (3)

Such a formula for the exact discrete solution is unusual to obtain
in practice, but very handy for our analysis here.

Note: An exact dicrete solution fulfills a discrete equation (without
round-off errors), whereas an exact solution fulfills the original
mathematical equation.

Since u" = IA",

e A < 0 gives a factor (—1)" and oscillatory solutions

@ |A| > 1 gives growing solutions

@ Recall: the exact solution is monotone and decaying

o If these qualitative properties are not met, we say that the
numerical solution is unstable

Computation of stability in this problem

A<O0if

1—(1-0)aAt
1+ AaAt

To avoid oscillatory solutions we must have A > 0 and

<0

o Always fulfilled for Backward Euler
o At <1/a for Forward Euler
e At < 2/a for Crank-Nicolson

Computation of stability in this problem

Al <1means -1<A<1

1—(1-0)aAt
1< — = <
1= 1+ 0aAt =1 (%)

—1 is the critical limit (because A < 1 is always satisfied):

2 1
< —
At < (1= 20)2" when 6 < >

e Always fulfilled for Backward Euler and Crank-Nicolson
o At < 2/a for Forward Euler

Explanation of problems with Forward Euler

aAt=2-125=25 and A= —1.5: oscillations and growth
aAt =2-0.75 = 1.5 and A = —0.5: oscillations and decay
At=05and A=0: v"=0forn>0

Smaller At: qualitatively correct solution

Explanation of problems with Crank-Nicolson

e At =1.25 and A= —0.25: oscillatory solution

@ Never any growing solution

Summary of stability

© Forward Euler is conditionally stable
o At < 2/a for avoiding growth
o At < 1/a for avoiding oscillations
@ The Crank-Nicolson is unconditionally stable wrt growth and
conditionally stable wrt oscillations
o At < 2/a for avoiding oscillations

© Backward Euler is unconditionally stable

Comparing amplification factors

u™t1 is an amplification A of u”:

1—(1-0)aAt

n+1:An A=
! o 1+ haAt

The exact solution is also an amplification:

U(tpe1) = Aeu(ty), Ae= e At

A possible measure of accuracy: Ae — A

Plot of amplification factors

Amplification factors

1.0
0.5F---- - — - e - e - e e
(R o o) S S — i A % —
S
%)
£
s
s —0.5F---- - - S - W - e - Sieee R
©
o
£
£ : : : : :
< 1.0 N . R . L . N .- . SR . i
e—e exact : : : :
—1.5,| == FE N
v—v BE
a—a CN
-2.0 1 I | | |
0.0 0.5 1.0 15 2.0 2.5 3.0

p=alt

p = aAt is the important parameter for numerical

performance

@ p = alt is a dimensionless parameter
@ all expressions for stability and accuracy involve p

@ Note that At alone is not so important, it is the combination
with a through p = aAt that matters

Another “proof” why p = aAt is key

If we scale the model by t = at, & = u/l, we get di/dt = —a,
7(0) = 1 (no physical parameters!). The analysis show that At is
key, corresponding to aAt in the unscaled model.

Series expansion of amplification factors

To investigate Ae — A mathematically, we can Taylor expand the
expression, using p = a/At as variable.

>>> from sympy import *

>>> # (Create p as a mathematical symbol with name
>>> p = Symbol('p')

>>> # (Create a mathematical expression with p

>>> A_e = exp(-p)

>>>

>>> # Find the first 6 terms of the Taylor series of A_e

>>> A_e.series(p, 0, 6)

1+ (1/2)*%p**2 - p - 1/6xp**3 - 1/120%p**5 + (1/24)*px*4 + 0(p**6)

oy !

p

>>> theta = Symbol('theta')

>>> A = (1-(1-theta)*p)/(l+theta*p)

>>> FE = A_e.series(p, 0, 4) - A.subs(theta, 0).series(p, 0, 4)
>>> BE = A_e.series(p, 0, 4) - A.subs(theta, 1).series(p, 0, 4)
>>> half = Rational(1,2) # ezact fraction 1/2

>>> CN = A_e.series(p, 0, 4) - A.subs(theta, half).series(p, 0, 4)

>>> FE
(1/2)*p**2 - 1/6*p**3 + 0(p**4)
>>> BE
_1/2*p**2 + (5/6)*p**3 + 0(p**4)
>>> CN

(1/12)*p**3 + 0(p**4)

Error in amplification factors

Focus: the error measure A — Ae as function of At (recall that
p = aAt):

A A — O(At?), Forward and Backward Euler, (6)
¢~ | O(At3), Crank-Nicolson

The fraction of numerical and exact amplification factors

Focus: the error measure 1 — A/Ae as function of p = aAt:

>>> FE = 1 - (A.subs(theta, 0)/A_e).series(p, 0, 4)
>>> BE = 1 - (A.subs(theta, 1)/A_e).series(p, 0, 4)
>>> CN = 1 - (A.subs(theta, half)/A_e).series(p, 0, 4)
>>> FE

(1/2)*p**2 + (1/3)*p**3 + 0(p**4)

>>> BE

-1/2%p**2 + (1/3)*p**3 + 0(p**4)

>>> CN

(1/12)*p**3 + 0(p**4)

Same leading-order terms as for the error measure A — Ae.

The true/global error at a point

@ The error in A reflects the local (amplification) error when
going from one time step to the next

e What is the global (true) error at t,?
e" = ue(ty) — u" = le7? — JA"

@ Taylor series expansions of e” simplify the expression

Computing the global error at a point

>>> n = Symbol('n')

>>> u_e = exp(-p*n) # I=1

>>> u_n = A*x*n # I=1

>>> FE = u_e.series(p, 0, 4) - u_n.subs(theta, 0).series(p, 0, 4)

>>> BE = u_e.series(p, 0, 4) - u_n.subs(theta, 1).series(p, 0, 4)

>>> CN = u_e.series(p, 0, 4) - u_n.subs(theta, half).series(p, 0, 4)
>>> FE

(1/2) *n*xp**2 - 1/2xn**2xp**3 + (1/3)*nxp**3 + 0(p**4)

>>> BE

(1/2)*n**2*p**3 - 1/2*n*p**2 + (1/3)*n*p**3 + U(p**4)

>>> CN

(1/12) *n*xp**3 + 0(p**4)
Substitute n by t/At:

@ Forward and Backward Euler: leading order term %ta2At

@ Crank-Nicolson: leading order term 1—12ta3At2

Convergence

The numerical scheme is convergent if the global error €” — 0 as
At — 0. If the error has a leading order term At", the convergence
rate is of order r.

Integrated errors

Focus: norm of the numerical error

Ny
1e”llez = | At > (ue(ta) — um)?
n=0

Forward and Backward Euler:

1 /T3
1e”llez = ?32&-‘

Crank-Nicolson:

Summary of errors

Analysis of both the pointwise and the time-integrated true errors:
@ 1st order for Forward and Backward Euler

@ 2nd order for Crank-Nicolson

Truncation error

@ How good is the discrete equation?

@ Possible answer: see how well ue fits the discrete equation

+,, n
[D; u = —au]
ie.,
un+1 —uy" ,
= —au
At

Insert ue (which does not in general fulfill this discrete equation):

ue(tn+1) - Ue(tn)
At

+aue(ta) = R" £ 0 (7)

Computation of the truncation error

@ The residual R" is the truncation error.

@ How does R" vary with At?
Tool: Taylor expand ue around the point where the ODE is sampled
(here t,)
1
Ue(tni1) = ve(tn) + ub(t,)At + 5ug(t,,)At2 SEP

Inserting this Taylor series in (7) gives

1
R™ = u(tn) + 5ug(t,,)At + ...+ aue(ts)

Now, ue solves the ODE u) = —aue, and then

1
R" ~ §ug(t,,)At

This is a mathematical expression for the truncation error.

The truncation error for other schemes

Backward Euler:

Crank-Nicolson:

Consistency, stability, and convergence

@ Truncation error measures the residual in the difference
equations. The scheme is consistent if the truncation error
goes to 0 as At — 0. Importance: the difference equations
approaches the differential equation as At — 0.

@ Stability means that the numerical solution exhibits the same
qualitative properties as the exact solution. Here: monotone,
decaying function.

o Convergence implies that the true (global) error
e" = ue(ty) — u™ — 0 as At — 0. This is really what we want!

The Lax equivalence theorem for linear differential equations:
consistency + stability is equivalent with convergence.

(Consistency and stability is in most problems much easier to
establish than convergence.)

