Study guide: Finite difference methods for

vibration problems

2

Hans Petter Langtangen’?  Svein Linge3!

Center for Biomedical Computing, Simula Research Laboratory®
Department of Informatics, University of Oslo?

Department of Process, Energy and Environmental Technology, University College
of Southeast Norway3

Aug 28, 2023

Slides selected /modified by Mikael Mortensen

(© 2023, Hans Petter Langtangen, Svein Linge. Released under CC Attribution 4.0 license



@ A simple vibration problem



A simple vibration problem

u'(t) +wPu=0, w(0)=1, u/(0)=0, te(0,T]
Exact solution:
u(t) = I cos(wt)

u(t) oscillates with constant amplitude / and (angular) frequency w.

Period: P =27 /w.



A centered finite difference scheme; step 1 and 2

Strategy: follow the "four steps" of the finite difference method.

@ Step 1: Introduce a time mesh, here uniform on [0, T]:
t, = nAt
@ Step 2: Let the ODE be satisfied at each mesh point:

u"(ty) +wlu(t,) =0, n=2,...,N;

u® and u! are obtained from initial conditions. \




A centered finite difference scheme; step 3

Step 3: Approximate derivative(s) by finite difference
approximation(s). Very common (standard!) formula for u”:

un+1 —oun 4 un—l

" —
u(tn) = At2

Use this in the ODE for n=1,2,... Ny —1

un+1 —oy" 4 un—l
= —w"u
At?

We thus solve for u?, u3,. .., uMe.




A centered finite difference scheme; step 4

Step 4: Formulate the computational algorithm. Assume u"~! and
u" are known, solve for unknown u"*1:

1:2un_ At22n

Nick names for this scheme: Stormer's method or Verlet
integration.


http://en.wikipedia.org/wiki/Velocity_Verlet
http://en.wikipedia.org/wiki/Velocity_Verlet

Computing the first step - alternative 1

e Two initial conditions u(0) =1/, u'(0)=0
o 1 = u(0) = / is already fixed. What about u'? Need to use
u'(0) = 0 somehow.

Alternative 1; Use a forward difference:

u’():uA_tu —ut=u0=1
2 1 0 2 0
/ —u® +4u” —3u 1 u"+3u
= — =
«(0) 20t ! 4

First is merely first order accurate, second is second order, but
implicit (depends on the unknown u?))




Computing the first step - alternative 2

Use the discrete ODE at t = 0 together with a central difference at
t = 0 and a ghost cell u=1. The central difference is

2At
The central ODE at n =0 is:

1

ut =200 — vt — AP

Insert for ghost cell u=! and obtain

1
ut = — §At2w2uo

Alternative 2 is favoured because the first order forward difference
is inaccurate and the second order is implicit.




The computational algorithm

0 =1
@ compute u! with alternative 2
Q@ forn=1,2,...,N; —1:

e compute u"t!

More precisly expressed in Python:

import numpy as np
t = np.linspace(0, T, Nt+1) # mesh points in time

dt = t[1] - t[0] # constant time step.
u = np.zeros(Nt+1) # solution

ul0] = 1I

ul1] = ul0] - 0.5*dt**2*wx*2*ul0]

for n in range(1l, Nt):
uln+1] = 2*%u[n] - uln-1] - dt*x2xwx*2*uln]

Note: w is used in code for w.



u is often displacement/position, v’ is velocity and can be
computed by a second order central difference

U (tn) &~ = [Dact]"

For u/(tp) and u'(tp,) it is possible to use forward or backwards
differences, respectively. However, we know from initial conditions
that u'(tp) = 0.



© Implementation and verification



Implementation and verification

Move to notebook



More mathematical analysis

The exact solution to the continuous vibration equation is

ue(t) = I cos(wt)

An exact discrete solution is

u(ty) = I cos(&ty)

We can study the error in & compared to the true w



Find the truncation error

Insert the numerical solution u” = | cos(&t,) into the discrete
equation

un+1 —oun & unfl
At?

+w?u" =0

Quite messy, but Wolfram Alpha (or a long derivation in the book)
will give you

n+1 _ oyn n—1 /
- Allz L INZ (cos(Gtny1) — 2 cos(@ty) + cos(@tn_1))
(1)
21 ) )
= A—ﬂ(cos(wAt) — 1) cos(@nAt) (2)
4
= ——— sin?(OAt) cos(WnAt) (3)

At2



Insert into discrete equation

un+1 oyt un—l
At?

+wu" =0

We get

4
N sin?(WAt)cos(wnAt) + w?cos(@nAt) = 0

and thus

4 OAt
2 - 2
w- = 7{'2 Sin <2 )

Solve for & ..



Numerical frequency

2 At
&= iEsin’l (“2>

@ Frequency error because & # w.

@ Note: dimensionless number p = wAt is the key parameter
<linebreak> (i.e., no of time intervals per period is important,
not At itself)

@ But how good is the approximation & to w?



Polynomial approximation of the frequency error

Taylor series expansion for small At gives a formula that is easier
to understand:

>>> from sympy import *

>>> dt, w = symbols('dt w')

>>> w_tilde = asin(w*dt/2).series(dt, 0, 4)#*2/dt

>>> print w_tilde
(dt*w + dt**3*wx*3/24 + 0(dt**4))/dt # note the final "/dt"

1
H=w <1 + 24W2At2> +O(A)

The numerical frequency is too large (to fast oscillations).



Simple improvement of previous solver

What happens if we use w = w(1 — w?At?/24)?

The leading order numerical error disappears and

~_ 1, 22
w-w(l <24wAt)>++

Dirty trick, and only usable when you can compute the numerical
error exactly




The global error

2 At
u" = I cos(@nAt), &= sin? <w2 >
The error mesh function,
e" = ue(ty) — u" = I cos (wnAt) — [ cos (WnAt)

is ideal for verification and further analysis!

e" = I cos (wnAt) — | cos (OnAt)

~ 2/sin (ré (w— w)) sin (t; (w+ w))



Convergence of the numerical scheme

Can easily show convergence:

e” - 0as At — 0,

because

l. ~ | 2 A LL)At
m w = Im ——sSin —_— = W
At—0 At—0 At 2 ’

by L'Hopital’s rule or simply asking sympy: or WolframAlpha:

>>> import sympy as sym

>>> dt, w = sym.symbols('x w')

>>> sym.limit ((2/dt)*sym.asin(wxdt/2), dt, 0, dir='+")
W


http://www.wolframalpha.com/input/?i=%282%2Fx%29*asin%28w*x%2F2%29+as+x-%3E0

Observations:

@ Numerical solution has constant amplitude (desired!), but an
angular frequency error

o Constant amplitude requires sin"1(wAt/2) to be real-valued
= [wAt/2| <1

o sin"!(x) is complex if |x| > 1, and then & becomes complex.
Can be shown that this leads to error in amplitude.



The stability criterion

Cannot tolerate growth and must therefore demand a stability

criterion A 5
wAt

— <1 = At< =

2 w

Try At = % +9.01 - 107° (slightly too big!):

dt=0.3184

25 T T T
& - numerical
2.0 — exact o

I




Summary of the analysis

We can draw three important conclusions:

© The key parameter in the formulas is p = wAt (dimensionless)

@ Period of oscillations: P =27 /w

® Number of time steps per period: Np = P/At
(3 I p:wAt:27T/Np~ l/NP

O The smallest possible Np is 2 = p € (0, 7]

@ For p <2 the amplitude of u” is constant (stable solution)

© u" has a relative frequency error ©/w ~ 1 + ipz, making
numerical peaks occur too early



	A simple vibration problem
	Implementation and verification

