
Study guide: Finite difference methods for
vibration problems

Hans Petter Langtangen1,2 Svein Linge3,1

Center for Biomedical Computing, Simula Research Laboratory1

Department of Informatics, University of Oslo2

Department of Process, Energy and Environmental Technology, University College
of Southeast Norway3

Aug 28, 2023

© 2023, Hans Petter Langtangen, Svein Linge. Released under CC Attribution 4.0 license

1 A simple vibration problem

2 Implementation and verification

A simple vibration problem

u′′(t) + ω2u = 0, u(0) = I , u′(0) = 0, t ∈ (0,T]

Exact solution:

u(t) = I cos(ωt)

u(t) oscillates with constant amplitude I and (angular) frequency ω.

Period: P = 2π/ω.

A centered finite difference scheme; step 1 and 2

Strategy: follow the "four steps" of the finite difference method.

Step 1: Introduce a time mesh, here uniform on [0,T]:
tn = n∆t

Step 2: Let the ODE be satisfied at each mesh point:

u′′(tn) + ω2u(tn) = 0, n = 2, . . . ,Nt

Notice

u0 and u1 are obtained from initial conditions.

A centered finite difference scheme; step 3

Step 3: Approximate derivative(s) by finite difference
approximation(s). Very common (standard!) formula for u′′:

u′′(tn) ≈ un+1 − 2un + un−1

∆t2

Use this in the ODE for n = 1, 2, . . . ,Nt − 1

un+1 − 2un + un−1

∆t2
= −ω2un

Notice

We thus solve for u2, u3, . . . , uNt .

A centered finite difference scheme; step 4

Step 4: Formulate the computational algorithm. Assume un−1 and
un are known, solve for unknown un+1:

un+1 = 2un − un−1 −∆t2ω2un

Nick names for this scheme: Störmer’s method or Verlet
integration.

http://en.wikipedia.org/wiki/Velocity_Verlet
http://en.wikipedia.org/wiki/Velocity_Verlet

Computing the first step - alternative 1

Two initial conditions u(0) = I , u′(0) = 0
u0 = u(0) = I is already fixed. What about u1? Need to use
u′(0) = 0 somehow.

Alternative 1: Use a forward difference:

u′(0) =
u1 − u0

∆t
−→ u1 = u0 = I

u′(0) =
−u2 + 4u1 − 3u0

2∆t
−→ u1 =

u2 + 3u0

4

Notice
First is merely first order accurate, second is second order, but
implicit (depends on the unknown u2.)

Computing the first step - alternative 2
Use the discrete ODE at t = 0 together with a central difference at
t = 0 and a ghost cell u−1. The central difference is

u′(0) =
u1 − u−1

2∆t
−→ u−1 = u1

The central ODE at n = 0 is:

u1 = 2u0 − u−1 −∆t2ω2u0

Insert for ghost cell u−1 and obtain

u1 = u0 − 1
2

∆t2ω2u0

Remark
Alternative 2 is favoured because the first order forward difference
is inaccurate and the second order is implicit.

The computational algorithm

1 u0 = I

2 compute u1 with alternative 2
3 for n = 1, 2, . . . ,Nt − 1:

compute un+1

More precisly expressed in Python:

import numpy as np
t = np.linspace(0, T, Nt+1) # mesh points in time
dt = t[1] - t[0] # constant time step.
u = np.zeros(Nt+1) # solution

u[0] = I
u[1] = u[0] - 0.5*dt**2*w**2*u[0]
for n in range(1, Nt):

u[n+1] = 2*u[n] - u[n-1] - dt**2*w**2*u[n]

Note: w is used in code for ω.

Computing u′

u is often displacement/position, u′ is velocity and can be
computed by a second order central difference

u′(tn) ≈ un+1 − un−1

2∆t
= [D2tu]n

For u′(t0) and u′(tNt) it is possible to use forward or backwards
differences, respectively. However, we know from initial conditions
that u′(t0) = 0.

1 A simple vibration problem

2 Implementation and verification

Implementation and verification

Move to notebook

More mathematical analysis

The exact solution to the continuous vibration equation is

ue(t) = I cos(ωt)

An exact discrete solution is

u(tn) = I cos(ω̃tn)

We can study the error in ω̃ compared to the true ω

Find the truncation error

Insert the numerical solution un = I cos(ω̃tn) into the discrete
equation

un+1 − 2un + un−1

∆t2
+ ω2un = 0

Quite messy, but Wolfram Alpha (or a long derivation in the book)
will give you

un+1 − 2un + un−1

∆t2
=

I

∆t2
(cos(ω̃tn+1)− 2 cos(ω̃tn) + cos(ω̃tn−1))

(1)

=
2I

∆t2
(cos(ω̃∆t)− 1) cos(ω̃n∆t) (2)

= − 4
∆t2

sin2(ω̃∆t) cos(ω̃n∆t) (3)

Insert into discrete equation

un+1 − 2un + un−1

∆t2
+ ω2un = 0

We get

− 4
∆t2

sin2(ω̃∆t)cos(ω̃n∆t) + ω2cos(ω̃n∆t) = 0

and thus

ω2 =
4

∆t2
sin2

(
ω̃∆t

2

)
Solve for ω̃ ..

Numerical frequency

ω̃ = ± 2
∆t

sin−1
(
ω∆t

2

)

Frequency error because ω̃ 6= ω.
Note: dimensionless number p = ω∆t is the key parameter
<linebreak> (i.e., no of time intervals per period is important,
not ∆t itself)
But how good is the approximation ω̃ to ω?

Polynomial approximation of the frequency error

Taylor series expansion for small ∆t gives a formula that is easier
to understand:

>>> from sympy import *
>>> dt, w = symbols('dt w')
>>> w_tilde = asin(w*dt/2).series(dt, 0, 4)*2/dt
>>> print w_tilde
(dt*w + dt**3*w**3/24 + O(dt**4))/dt # note the final "/dt"

ω̃ = ω

(
1 +

1
24
ω2∆t2

)
+O(∆t3)

The numerical frequency is too large (to fast oscillations).

Simple improvement of previous solver

Notice

What happens if we use ω = ω(1− ω2∆t2/24)?

The leading order numerical error disappears and

ω̃ = ω

(
1−

(
1
24
ω2∆t2

)2
)

+ +

Notice
Dirty trick, and only usable when you can compute the numerical
error exactly

The global error

un = I cos (ω̃n∆t) , ω̃ =
2

∆t
sin−1

(
ω∆t

2

)
The error mesh function,

en = ue(tn)− un = I cos (ωn∆t)− I cos (ω̃n∆t)

is ideal for verification and further analysis!

en = I cos (ωn∆t)− I cos (ω̃n∆t)

= −2I sin

(
t
1
2

(ω − ω̃)

)
sin

(
t
1
2

(ω + ω̃)

)

Convergence of the numerical scheme

Can easily show convergence:

en → 0 as ∆t → 0,

because

lim
∆t→0

ω̃ = lim
∆t→0

2
∆t

sin−1
(
ω∆t

2

)
= ω,

by L’Hopital’s rule or simply asking sympy: or WolframAlpha:

>>> import sympy as sym
>>> dt, w = sym.symbols('x w')
>>> sym.limit((2/dt)*sym.asin(w*dt/2), dt, 0, dir='+')
w

http://www.wolframalpha.com/input/?i=%282%2Fx%29*asin%28w*x%2F2%29+as+x-%3E0

Stability

Observations:

Numerical solution has constant amplitude (desired!), but an
angular frequency error
Constant amplitude requires sin−1(ω∆t/2) to be real-valued
⇒ |ω∆t/2| ≤ 1
sin−1(x) is complex if |x | > 1, and then ω̃ becomes complex.
Can be shown that this leads to error in amplitude.

The stability criterion
Cannot tolerate growth and must therefore demand a stability
criterion

ω∆t

2
≤ 1 ⇒ ∆t ≤ 2

ω

Try ∆t = 2
ω + 9.01 · 10−5 (slightly too big!):

Summary of the analysis

We can draw three important conclusions:

1 The key parameter in the formulas is p = ω∆t (dimensionless)
1 Period of oscillations: P = 2π/ω
2 Number of time steps per period: NP = P/∆t
3 ⇒ p = ω∆t = 2π/NP ∼ 1/NP

4 The smallest possible NP is 2 ⇒ p ∈ (0, π]

2 For p ≤ 2 the amplitude of un is constant (stable solution)
3 un has a relative frequency error ω̃/ω ≈ 1 + 1

24p
2, making

numerical peaks occur too early

	A simple vibration problem
	Implementation and verification

