Study guide: Finite difference methods for vibration problems

$$
\text { Hans Petter Langtangen }{ }^{1,2} \text { Svein Linge }{ }^{3,1}
$$

Center for Biomedical Computing, Simula Research Laboratory ${ }^{1}$
Department of Informatics, University of Oslo ${ }^{2}$
Department of Process, Energy and Environmental Technology, University College of Southeast Norway ${ }^{3}$

Aug 28, 2023
Slides selected/modified by Mikael Mortensen
(C) 2023, Hans Petter Langtangen, Svein Linge. Released under CC Attribution 4.0 license
(1) A simple vibration problem

(2) Implementation and verification

A simple vibration problem

$$
u^{\prime \prime}(t)+\omega^{2} u=0, \quad u(0)=I, u^{\prime}(0)=0, t \in(0, T]
$$

Exact solution:

$$
u(t)=I \cos (\omega t)
$$

$u(t)$ oscillates with constant amplitude I and (angular) frequency ω.
Period: $P=2 \pi / \omega$.

A centered finite difference scheme; step 1 and 2

Strategy: follow the "four steps" of the finite difference method.

- Step 1: Introduce a time mesh, here uniform on $[0, T]$: $t_{n}=n \Delta t$
- Step 2: Let the ODE be satisfied at each mesh point:

$$
u^{\prime \prime}\left(t_{n}\right)+\omega^{2} u\left(t_{n}\right)=0, \quad n=2, \ldots, N_{t}
$$

Notice

u^{0} and u^{1} are obtained from initial conditions.

A centered finite difference scheme; step 3

Step 3: Approximate derivative(s) by finite difference approximation(s). Very common (standard!) formula for $u^{\prime \prime}$:

$$
u^{\prime \prime}\left(t_{n}\right) \approx \frac{u^{n+1}-2 u^{n}+u^{n-1}}{\Delta t^{2}}
$$

Use this in the ODE for $n=1,2, \ldots, N_{t}-1$

$$
\frac{u^{n+1}-2 u^{n}+u^{n-1}}{\Delta t^{2}}=-\omega^{2} u^{n}
$$

Notice

We thus solve for $u^{2}, u^{3}, \ldots, u^{N_{t}}$.

A centered finite difference scheme; step 4

Step 4: Formulate the computational algorithm. Assume u^{n-1} and u^{n} are known, solve for unknown u^{n+1} :

$$
u^{n+1}=2 u^{n}-u^{n-1}-\Delta t^{2} \omega^{2} u^{n}
$$

Nick names for this scheme: Störmer's method or Verlet integration.

Computing the first step - alternative 1

- Two initial conditions $u(0)=I, \quad u^{\prime}(0)=0$
- $u^{0}=u(0)=I$ is already fixed. What about u^{1} ? Need to use $u^{\prime}(0)=0$ somehow.

Alternative 1: Use a forward difference:

$$
\begin{array}{ll}
u^{\prime}(0)=\frac{u^{1}-u^{0}}{\Delta t} & \longrightarrow u^{1}=u^{0}=I \\
u^{\prime}(0)=\frac{-u^{2}+4 u^{1}-3 u^{0}}{2 \Delta t} & \longrightarrow u^{1}=\frac{u^{2}+3 u^{0}}{4}
\end{array}
$$

Notice

First is merely first order accurate, second is second order, but implicit (depends on the unknown u^{2}.)

Computing the first step - alternative 2

Use the discrete ODE at $t=0$ together with a central difference at $t=0$ and a ghost cell u^{-1}. The central difference is

$$
u^{\prime}(0)=\frac{u^{1}-u^{-1}}{2 \Delta t} \quad \longrightarrow u^{-1}=u^{1}
$$

The central ODE at $n=0$ is:

$$
u^{1}=2 u^{0}-u^{-1}-\Delta t^{2} \omega^{2} u^{0}
$$

Insert for ghost cell u^{-1} and obtain

$$
u^{1}=u^{0}-\frac{1}{2} \Delta t^{2} \omega^{2} u^{0}
$$

Remark

Alternative 2 is favoured because the first order forward difference is inaccurate and the second order is implicit.
(1) $u^{0}=1$
(2) compute u^{1} with alternative 2
(3) for $n=1,2, \ldots, N_{t}-1$:

- compute u^{n+1}

More precisly expressed in Python:

```
import numpy as np
t = np.linspace(0, T, Nt+1) # mesh points in time
dt = t[1] - t[0] # constant time step.
u = np.zeros(Nt+1) # solution
u[0] = I
u[1] = u[0] - 0.5*dt**2*w**2*u[0]
for n in range(1, Nt):
    u[n+1] = 2*u[n] - u[n-1] - dt**2*W**2*u[n]
```

Note: w is used in code for ω.

Computing u^{\prime}

u is often displacement/position, u^{\prime} is velocity and can be computed by a second order central difference

$$
u^{\prime}\left(t_{n}\right) \approx \frac{u^{n+1}-u^{n-1}}{2 \Delta t}=\left[D_{2 t} u\right]^{n}
$$

For $u^{\prime}\left(t_{0}\right)$ and $u^{\prime}\left(t_{N_{t}}\right)$ it is possible to use forward or backwards differences, respectively. However, we know from initial conditions that $u^{\prime}\left(t_{0}\right)=0$.

(1) A simple vibration problem

(2) Implementation and verification

Implementation and verification

Move to notebook

More mathematical analysis

The exact solution to the continuous vibration equation is

$$
u_{e}(t)=I \cos (\omega t)
$$

An exact discrete solution is

$$
u\left(t_{n}\right)=I \cos \left(\tilde{\omega} t_{n}\right)
$$

We can study the error in $\tilde{\omega}$ compared to the true ω

Insert the numerical solution $u^{n}=I \cos \left(\tilde{\omega} t_{n}\right)$ into the discrete equation

$$
\frac{u^{n+1}-2 u^{n}+u^{n-1}}{\Delta t^{2}}+\omega^{2} u^{n}=0
$$

Quite messy, but Wolfram Alpha (or a long derivation in the book) will give you

$$
\begin{align*}
\frac{u^{n+1}-2 u^{n}+u^{n-1}}{\Delta t^{2}} & =\frac{l}{\Delta t^{2}}\left(\cos \left(\tilde{\omega} t_{n+1}\right)-2 \cos \left(\tilde{\omega} t_{n}\right)+\cos \left(\tilde{\omega} t_{n-1}\right)\right) \tag{1}\\
& =\frac{2 I}{\Delta t^{2}}(\cos (\tilde{\omega} \Delta t)-1) \cos (\tilde{\omega} n \Delta t) \tag{2}\\
& =-\frac{4}{\Delta t^{2}} \sin ^{2}(\tilde{\omega} \Delta t) \cos (\tilde{\omega} n \Delta t) \tag{3}
\end{align*}
$$

Insert into discrete equation

$$
\frac{u^{n+1}-2 u^{n}+u^{n-1}}{\Delta t^{2}}+\omega^{2} u^{n}=0
$$

We get

$$
-\frac{4}{\Delta t^{2}} \sin ^{2}(\tilde{\omega} \Delta t) \cos (\tilde{\omega} n \Delta t)+\omega^{2} \cos (\tilde{\omega} n \Delta t)=0
$$

and thus

$$
\omega^{2}=\frac{4}{\Delta t^{2}} \sin ^{2}\left(\frac{\tilde{\omega} \Delta t}{2}\right)
$$

Solve for $\tilde{\omega}$..

$$
\tilde{\omega}= \pm \frac{2}{\Delta t} \sin ^{-1}\left(\frac{\omega \Delta t}{2}\right)
$$

- Frequency error because $\tilde{\omega} \neq \omega$.
- Note: dimensionless number $p=\omega \Delta t$ is the key parameter <linebreak> (i.e., no of time intervals per period is important, not Δt itself)
- But how good is the approximation $\tilde{\omega}$ to ω ?

Taylor series expansion for small Δt gives a formula that is easier to understand:

```
>>> from sympy import *
>>> dt, w = symbols('dt w')
>>> w_tilde = asin(w*dt/2).series(dt, 0, 4)*2/dt
>>> print w_tilde
(dt*w + dt**3*W**3/24 + O(dt**4))/dt # note the final "/dt"
```

$$
\tilde{\omega}=\omega\left(1+\frac{1}{24} \omega^{2} \Delta t^{2}\right)+\mathcal{O}\left(\Delta t^{3}\right)
$$

The numerical frequency is too large (to fast oscillations).

Notice

What happens if we use $\omega=\omega\left(1-\omega^{2} \Delta t^{2} / 24\right)$?

The leading order numerical error disappears and

$$
\tilde{\omega}=\omega\left(1-\left(\frac{1}{24} \omega^{2} \Delta t^{2}\right)^{2}\right)++
$$

Notice

Dirty trick, and only usable when you can compute the numerical error exactly

$$
u^{n}=I \cos (\tilde{\omega} n \Delta t), \quad \tilde{\omega}=\frac{2}{\Delta t} \sin ^{-1}\left(\frac{\omega \Delta t}{2}\right)
$$

The error mesh function,

$$
e^{n}=u_{\mathrm{e}}\left(t_{n}\right)-u^{n}=I \cos (\omega n \Delta t)-I \cos (\tilde{\omega} n \Delta t)
$$

is ideal for verification and further analysis!

$$
\begin{aligned}
e^{n} & =I \cos (\omega n \Delta t)-I \cos (\tilde{\omega} n \Delta t) \\
& =-2 I \sin \left(t \frac{1}{2}(\omega-\tilde{\omega})\right) \sin \left(t \frac{1}{2}(\omega+\tilde{\omega})\right)
\end{aligned}
$$

Convergence of the numerical scheme

Can easily show convergence:

$$
e^{n} \rightarrow 0 \text { as } \Delta t \rightarrow 0
$$

because

$$
\lim _{\Delta t \rightarrow 0} \tilde{\omega}=\lim _{\Delta t \rightarrow 0} \frac{2}{\Delta t} \sin ^{-1}\left(\frac{\omega \Delta t}{2}\right)=\omega
$$

by L'Hopital's rule or simply asking sympy: or WolframAlpha:

```
>>> import sympy as sym
>>> dt, w = sym.symbols('x w')
>>> sym.limit((2/dt)*sym.asin(w*dt/2), dt, 0, dir='+')
W
```

Observations:

- Numerical solution has constant amplitude (desired!), but an angular frequency error
- Constant amplitude requires $\sin ^{-1}(\omega \Delta t / 2)$ to be real-valued $\Rightarrow|\omega \Delta t / 2| \leq 1$
- $\sin ^{-1}(x)$ is complex if $|x|>1$, and then $\tilde{\omega}$ becomes complex. Can be shown that this leads to error in amplitude.

The stability criterion
Cannot tolerate growth and must therefore demand a stability criterion

$$
\frac{\omega \Delta t}{2} \leq 1 \quad \Rightarrow \quad \Delta t \leq \frac{2}{\omega}
$$

Try $\Delta t=\frac{2}{\omega}+9.01 \cdot 10^{-5}$ (slightly too big!):

We can draw three important conclusions:
(1) The key parameter in the formulas is $p=\omega \Delta t$ (dimensionless)
(1) Period of oscillations: $P=2 \pi / \omega$
(2) Number of time steps per period: $N_{P}=P / \Delta t$
(3) $\Rightarrow p=\omega \Delta t=2 \pi / N_{P} \sim 1 / N_{P}$
(1) The smallest possible N_{P} is $2 \Rightarrow p \in(0, \pi]$
(2) For $p \leq 2$ the amplitude of u^{n} is constant (stable solution)
(3) u^{n} has a relative frequency error $\tilde{\omega} / \omega \approx 1+\frac{1}{24} p^{2}$, making numerical peaks occur too early

