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A simple vibration problem

u′′(t) + ω2u = 0, u(0) = I , u′(0) = 0, t ∈ (0,T ]

Exact solution:

u(t) = I cos(ωt)

u(t) oscillates with constant amplitude I and (angular) frequency ω.

Period: P = 2π/ω.



A centered finite difference scheme; step 1 and 2

Strategy: follow the "four steps" of the finite difference method.

Step 1: Introduce a time mesh, here uniform on [0,T ]:
tn = n∆t

Step 2: Let the ODE be satisfied at each mesh point:

u′′(tn) + ω2u(tn) = 0, n = 2, . . . ,Nt

Notice

u0 and u1 are obtained from initial conditions.



A centered finite difference scheme; step 3

Step 3: Approximate derivative(s) by finite difference
approximation(s). Very common (standard!) formula for u′′:

u′′(tn) ≈ un+1 − 2un + un−1

∆t2

Use this in the ODE for n = 1, 2, . . . ,Nt − 1

un+1 − 2un + un−1

∆t2
= −ω2un

Notice

We thus solve for u2, u3, . . . , uNt .



A centered finite difference scheme; step 4

Step 4: Formulate the computational algorithm. Assume un−1 and
un are known, solve for unknown un+1:

un+1 = 2un − un−1 −∆t2ω2un

Nick names for this scheme: Störmer’s method or Verlet
integration.

http://en.wikipedia.org/wiki/Velocity_Verlet
http://en.wikipedia.org/wiki/Velocity_Verlet


Computing the first step - alternative 1

Two initial conditions u(0) = I , u′(0) = 0
u0 = u(0) = I is already fixed. What about u1? Need to use
u′(0) = 0 somehow.

Alternative 1: Use a forward difference:

u′(0) =
u1 − u0

∆t
−→ u1 = u0 = I

u′(0) =
−u2 + 4u1 − 3u0

2∆t
−→ u1 =

u2 + 3u0

4

Notice
First is merely first order accurate, second is second order, but
implicit (depends on the unknown u2.)



Computing the first step - alternative 2
Use the discrete ODE at t = 0 together with a central difference at
t = 0 and a ghost cell u−1. The central difference is

u′(0) =
u1 − u−1

2∆t
−→ u−1 = u1

The central ODE at n = 0 is:

u1 = 2u0 − u−1 −∆t2ω2u0

Insert for ghost cell u−1 and obtain

u1 = u0 − 1
2

∆t2ω2u0

Remark
Alternative 2 is favoured because the first order forward difference
is inaccurate and the second order is implicit.



The computational algorithm

1 u0 = I

2 compute u1 with alternative 2
3 for n = 1, 2, . . . ,Nt − 1:

compute un+1

More precisly expressed in Python:

import numpy as np
t = np.linspace(0, T, Nt+1) # mesh points in time
dt = t[1] - t[0] # constant time step.
u = np.zeros(Nt+1) # solution

u[0] = I
u[1] = u[0] - 0.5*dt**2*w**2*u[0]
for n in range(1, Nt):

u[n+1] = 2*u[n] - u[n-1] - dt**2*w**2*u[n]

Note: w is used in code for ω.



Computing u′

u is often displacement/position, u′ is velocity and can be
computed by a second order central difference

u′(tn) ≈ un+1 − un−1

2∆t
= [D2tu]n

For u′(t0) and u′(tNt ) it is possible to use forward or backwards
differences, respectively. However, we know from initial conditions
that u′(t0) = 0.
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Implementation and verification

Move to notebook



More mathematical analysis

The exact solution to the continuous vibration equation is

ue(t) = I cos(ωt)

An exact discrete solution is

u(tn) = I cos(ω̃tn)

We can study the error in ω̃ compared to the true ω



Find the truncation error

Insert the numerical solution un = I cos(ω̃tn) into the discrete
equation

un+1 − 2un + un−1

∆t2
+ ω2un = 0

Quite messy, but Wolfram Alpha (or a long derivation in the book)
will give you

un+1 − 2un + un−1

∆t2
=

I

∆t2
(cos(ω̃tn+1)− 2 cos(ω̃tn) + cos(ω̃tn−1))

(1)

=
2I

∆t2
(cos(ω̃∆t)− 1) cos(ω̃n∆t) (2)

= − 4
∆t2

sin2(ω̃∆t) cos(ω̃n∆t) (3)



Insert into discrete equation

un+1 − 2un + un−1

∆t2
+ ω2un = 0

We get

− 4
∆t2

sin2(ω̃∆t)cos(ω̃n∆t) + ω2cos(ω̃n∆t) = 0

and thus

ω2 =
4

∆t2
sin2

(
ω̃∆t

2

)
Solve for ω̃ ..



Numerical frequency

ω̃ = ± 2
∆t

sin−1
(
ω∆t

2

)

Frequency error because ω̃ 6= ω.
Note: dimensionless number p = ω∆t is the key parameter
<linebreak> (i.e., no of time intervals per period is important,
not ∆t itself)
But how good is the approximation ω̃ to ω?



Polynomial approximation of the frequency error

Taylor series expansion for small ∆t gives a formula that is easier
to understand:

>>> from sympy import *
>>> dt, w = symbols('dt w')
>>> w_tilde = asin(w*dt/2).series(dt, 0, 4)*2/dt
>>> print w_tilde
(dt*w + dt**3*w**3/24 + O(dt**4))/dt # note the final "/dt"

ω̃ = ω

(
1 +

1
24
ω2∆t2

)
+O(∆t3)

The numerical frequency is too large (to fast oscillations).



Simple improvement of previous solver

Notice

What happens if we use ω = ω(1− ω2∆t2/24)?

The leading order numerical error disappears and

ω̃ = ω

(
1−

(
1
24
ω2∆t2

)2
)

+ +

Notice
Dirty trick, and only usable when you can compute the numerical
error exactly



The global error

un = I cos (ω̃n∆t) , ω̃ =
2

∆t
sin−1

(
ω∆t

2

)
The error mesh function,

en = ue(tn)− un = I cos (ωn∆t)− I cos (ω̃n∆t)

is ideal for verification and further analysis!

en = I cos (ωn∆t)− I cos (ω̃n∆t)

= −2I sin

(
t
1
2

(ω − ω̃)

)
sin

(
t
1
2

(ω + ω̃)

)



Convergence of the numerical scheme

Can easily show convergence:

en → 0 as ∆t → 0,

because

lim
∆t→0

ω̃ = lim
∆t→0

2
∆t

sin−1
(
ω∆t

2

)
= ω,

by L’Hopital’s rule or simply asking sympy: or WolframAlpha:

>>> import sympy as sym
>>> dt, w = sym.symbols('x w')
>>> sym.limit((2/dt)*sym.asin(w*dt/2), dt, 0, dir='+')
w

http://www.wolframalpha.com/input/?i=%282%2Fx%29*asin%28w*x%2F2%29+as+x-%3E0


Stability

Observations:

Numerical solution has constant amplitude (desired!), but an
angular frequency error
Constant amplitude requires sin−1(ω∆t/2) to be real-valued
⇒ |ω∆t/2| ≤ 1
sin−1(x) is complex if |x | > 1, and then ω̃ becomes complex.
Can be shown that this leads to error in amplitude.



The stability criterion
Cannot tolerate growth and must therefore demand a stability
criterion

ω∆t

2
≤ 1 ⇒ ∆t ≤ 2

ω

Try ∆t = 2
ω + 9.01 · 10−5 (slightly too big!):



Summary of the analysis

We can draw three important conclusions:

1 The key parameter in the formulas is p = ω∆t (dimensionless)
1 Period of oscillations: P = 2π/ω
2 Number of time steps per period: NP = P/∆t
3 ⇒ p = ω∆t = 2π/NP ∼ 1/NP

4 The smallest possible NP is 2 ⇒ p ∈ (0, π]

2 For p ≤ 2 the amplitude of un is constant (stable solution)
3 un has a relative frequency error ω̃/ω ≈ 1 + 1

24p
2, making

numerical peaks occur too early
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