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Problem 1 Function approximation
Let VN = span{ψn(x)}Nn=0 be a function space over the domain Ω = [0, 1] and
let {ψn(x)}Nn=0 be a set of basis functions that are orthogonal in the L2(Ω)
space. The L2(Ω) inner product is defined as

(f, g)L2(Ω) =

∫
Ω

f(x)g(x)dx, (1)

for two real functions f(x) and g(x).

1a

Let u(x) be any real function defined on the domain Ω. Describe the Galerkin
method for approximating u with the expansion uN ∈ VN .

1b

Let ψn(x) = Pn(x), where the reference coordinate x = 2x− 1 ∈ [−1, 1] and
Pn(x) is the n’th Legendre polynomial. The approximation uN ∈ VN now
implies that

uN(x) =
N∑
i=0

ûiPi(x(x)). (2)

Find the expansion coefficients {ûi}Ni=0 expressed as inner products over
[−1, 1]. The squared L2 norm of the Legendre polynomials is |Pn|2 =
(Pn, Pn)L2([−1,1]) =

2
2n+1

for n ≥ 0.

(Continued on page 2.)
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1c

With the chosen Legendre basis, find the approximation to u(x) = x(1−x) in
VN . Give the result as the expansion coefficients {ûi}Ni=0 and determine the
smallest possible N for an exact approximation. The Legendre polynomials
are defined as P0 = 1, P1 = x and recursively

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x), x ∈ [−1, 1], (3)

for integer n > 0.

Problem 2 Ordinary differential equation
An ordinary differential equation is given as

u′′(x) + αu′(x) + βu(x) = f(x), x ∈ Ω = [−1, 1], (4)

where u(x) is the solution, f(x) a real function and α and β are real
constants. Assume at first homogeneous Dirichlet boundary conditions
u(±1) = 0 and that VN = span{ψj(x)}Nj=0 is an appropriate function space
for approximations to the solution u(x).

2a

Describe a Galerkin method that solves Eq. (4) for an approximation uN ∈
VN . Use integration by parts on the inner product containing the highest
derivative.

2b

Describe the linear algebra problem that solves the variational problem
defined in 2a. Suggest two different specific global bases {ψj(x)}Nj=0, that
both can be used to solve the described problem.

The finite element method

We will now make use of the finite element method in order to solve Eq. (4)
with α = 0. To this end the basis functions are chosen as piecewise linear

ψj(x) =


x−xj−1

xj−xj−1
x ∈ [xj−1, xj],

x−xj+1

xj−xj+1
x ∈ [xj, xj+1],

0, x < xj−1 orx > xj+1,

(5)

where the mesh is xj = −1+jh for j = 0, 1, . . . , N , the element size h = 2/N ,
and N + 1 is the chosen number of mesh points. The element e is found in
the interval Ω(e) = [xe, xe+1] for e = 0, 1, . . . , N − 1.

The mass matrix A = (aij)
N
i,j=0 and stiffness matrix S = (sij)

N
i,j=0 have

components

(Continued on page 3.)
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aij =

∫
Ω

ψj(x)ψi(x)dx and sij =

∫
Ω

ψ′
j(x)ψ

′
i(x)dx, (6)

respectively. These matrices are assembled as

A =
N−1∑
e=0

A(e) and S =
N−1∑
e=0

S(e), (7)

where A(e) = (a
(e)
ij )

N
i,j=0, S(e) = (s

(e)
ij )

N
i,j=0 and

a
(e)
ij =

∫
Ω(e)

ψj(x)ψi(x)dx and s
(e)
ij =

∫
Ω(e)

ψ′
j(x)ψ

′
i(x)dx. (8)

The element matrices A(e) and S(e) contain only 4 nonzero items each and
we compute these nonzero items as

ã(e)rs =

∫
Ω(e)

ψq(e,s)(x)ψq(e,r)(x)dx and s̃(e)rs =

∫
Ω(e)

ψ′
q(e,s)(x)ψ

′
q(e,r)(x)dx,

(9)
where (r, s) ∈ {0, 1} × {0, 1} and q(e, r) = e+ r is a map from local index r
on element e to global index q(e, r).

The basis functions on each element are given as ψq(e,r)(x) = ℓr(x), where
the Lagrange polynomials

ℓ0(x) =
1

2
(1− x) and ℓ1(x) =

1

2
(1 + x), (10)

for the reference coordinate x ∈ [−1, 1]. The linear map from x to x on any
element e can be written as

x =
1

2
(xe + xe+1) +

h

2
x. (11)

2c

Write the local element matrices ã(e)rs and s̃
(e)
rs as integrals over the reference

domain [−1, 1] and compute all elements of these matrices. (Hint: The
matrices are symmetric.)

2d

Assume Neumann boundary conditions u′(−1) = a and u′(1) = b. Describe
how Eq. (4) (with α = 0) can be solved with the FEM using the Lagrange
polynomials (10) for the basis functions. Describe also how the finite element
solution uN(x) ∈ VN can be evaluated for any single point x ∈ [−1, 1].

(Continued on page 4.)
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Problem 3 Time-dependent wave equation
Consider the time-dependent wave equation

∂2u

∂t2
= c2

∂2u

∂x2
, x, t ∈ [0, L]× [0, T ], (12)

where c, T and L are positive constants. Equation (12) is solved with two
suitable boundary conditions at x = 0 and x = L and initial conditions
u(x, 0) = I(x) for some real function I(x) and ∂u(x,0)

∂t
= 0.

A central finite difference method for solving the time-dependent wave
equation can be written for all internal mesh points as

un+1
j − 2unj + un−1

j

∆t2
= c2

unj+1 − 2unj + unj−1

∆x2
, (13)

where time is discretized as tn = n∆t, space as xj = j∆x and ∆t and ∆x
are assumed to be constant. In vector form we write un = {unj }Nj=0 and thus
Eq. (13) can be written as

un+1 − 2un + un−1 =

(
c∆t

∆x

)2

D(2)un, (14)

where the matrix D(2) = (d
(2)
ij )

N
i,j=0 is

d
(2)
ij =


1, j = i± 1,

−2, j = i,

0, otherwise,
(15)

for i = 1, 2, . . . , N − 1, and with appropriate modifications to rows i = 0 and
i = N to accommodate boundary conditions.

3a

Describe ∆t,∆x, unj , and how the two initial conditions can be specified.

3b

Assume Dirichlet boundary conditions u(0, t) = u(L, t) = 0 and describe the
complete solution algorithm for the wave equation.

3c

Assume Neumann boundary conditions ∂u
∂x
(0, t) = ∂u

∂x
(L, t) = 0 and describe

the complete solution algorithm for the wave equation.


