Mandatory assignment: MAT1100, Fall 2005. Deadline: September 16, 2005.

Show all your work. Exercise 4 is optional. Good luck!

Exercise 1. Complex numbers:

- a) Find the polar form of $\sqrt{3} + i$.
- **b**) Express

$$\frac{(\sqrt{3}+i)^{15}}{(1-i)^{29}}$$

in a+ib form for real numbers $a,b\in\mathbb{R}$

- c) Find all complex solutions to $z^5 = 1$.
- d) Let z_1 and $z_2 \neq 0$ be complex numbers. Prove that $z_1\overline{z_2}$ is real and positive if and only if $z_1 = rz_2$ for some positive real number $r \in \mathbb{R}$.

Exercise 2. Sequences, continuous functions:

a) Let $n \ge 1$ and

$$a_n = \frac{en+1}{n}.$$

Prove that the sequence $\{a_n\}$ converges to e.

b) Use an $\epsilon - \delta$ -argument to prove

$$f(x) = x^2$$

is a continuous function.

 \mathbf{c}) Define f by

$$f(x) = \begin{cases} x \sin\frac{1}{x} - \cos\frac{1}{x} & \text{for } x \neq 0\\ 0 & \text{for } x = 0. \end{cases}$$

Is f continuous at 0 ?

 \mathbf{d}) Let a > 0 be a constant. Evaluate

$$\lim_{x \to \infty} \frac{a^x}{1 + a^x}.$$

Exercise 3. Differentiable functions:

a) Find the derivative of

$$f(x) = \ln(\frac{x^2}{1+x^2}).$$

b) Find f'(x) when

$$e^{f(x)} = 1 + x^2.$$

Exercise 4. Suppose $f: \mathbb{R} \to \mathbb{R}$ is a function such that for every $y \in \mathbb{R}$, the equation f(x) = y has exactly two distinct solutions. Prove that f cannot be continuous.