

Ded For u, v e Rⁿ, indeeproducted un
u og v (pick producted) es
u. v = u, v, t...t un vn (i)
Meak u.v = u v = (u, ..., u) (i)
Normen (eller lengden) til u er
U u II = (u.u) = (u? + ... + un
Distancen unllow u, v e Rⁿ er
d(u,v) = 11 u - vII
Sä II uII = d(v, u).
Eus:

$$n=(a, b]$$

 $Teoren (hourdegensweger en prikk produkted)
Tos u, v, w e Rn vg c e R, har vi
a) (u v) w = u.w + v.w,
u.(v+w) = u.w + v.w,
u.(v+w) = u.v +$

$$(c_{1}u_{1}+...+c_{k}u_{k}) = c_{1}u_{1}v_{1}+...+c_{k}u_{k}v_{1}$$

$$v_{1}(c_{1}u_{1}+...+c_{k}u_{k}) = c_{1}v_{1}u_{1}+...+c_{k}v_{1}u_{k}$$

$$Q_{x} \quad dl_{k} \quad u_{1},...,u_{k}, v \in \mathbb{R}^{N} \quad og \quad C_{1},...,c_{k} \in \mathbb{R}.$$

Hovedegenskeper av noomen; (hud: Hull= Junt)

$$a_{1} ||c u_{1}|| = |c|||u_{1}||c|$$

$$b_{1} ||u_{1}|| \ge 0, og ||u_{1}|=0 |lu_{1}|s og base luvie u=0.$$

Senese; ||u_{1}v_{1}| \le ||u_{1}|=1 |lu_{1}||c|| (Trechastulic luden)

$$v_{1}v_{2}v_{1}v_{1} = 1.$$

$$d(A_{1}B) \le d(0,B) + d(0,A)$$

$$||v_{2}-u_{1}|| \le ||v_{1}|| + ||u_{1}||$$

$$\frac{\partial d}{\partial u_{1}} ||v_{1}|| = 1.$$

$$flv_{1}v_{2} \in \mathbb{R}^{n} v \neq 0, v_{1} ||e_{au}| v_{1}v_{1}u_{1}||e_{1}||u_{1}||$$

$$\frac{\partial d}{\partial u_{1}} ||v_{1}|| = 1.$$

$$flv_{1}v_{2} \in \mathbb{R}^{n} v \neq 0, v_{1} ||e_{au}| v_{1}v_{1}u_{1}||e_{1}||v_{1}||$$

$$\frac{\partial d}{\partial u_{1}} ||v_{1}|| = 1.$$

$$flv_{1}v_{2} \in \mathbb{R}^{n} v \neq 0, v_{1} ||e_{au}| v_{1}v_{1}u_{1}||e_{1}||v_{1}||$$

$$\int b_{0} u_{1} = \frac{1}{||v_{1}||} ||v_{1}|| = 1.$$

$$\int c_{1}v_{1}e_{1}u_{1}||v_{1}|| = \frac{1}{||v_{1}||} ||v_{1}|| = 1.$$

$$\int c_{1}v_{2} ||v_{1}|| = \frac{1}{||v_{1}||} ||v_{1}|| = 1.$$

$$\int c_{2}v_{3} ||v_{1}|| = \frac{1}{||v_{1}||} ||v_{1}|| = \frac{1}{||v_{1}|||} ||v_{1}|| = \frac{1}{||v_{1}|||v_{1}||||} ||v_{1}||| = \frac{1}{||v_{1}||||||||||||||||||||||||||||||$$

hvis
$$v \in W^{\perp}$$
, $c \in \mathbb{R}$, $w \in W$, be
 $(cv) \cdot w = c(v \cdot w) = 0$, $v \in cv \in W^{\perp}$.
 cl hvis $v \in W \cap W^{\perp}$, de
 $v \cdot v = 0$, $v \in cv = 0$.
 $w = w^{\perp}$
 cl hvis $v \in W^{\perp}$ of $W = \text{Spent}(w_1, \dots, w_k)$, de
 $v \cdot w_1 = \dots = v \cdot w_k = 0$.
 $hvis v \in \mathbb{R}^n$ or dil oft
 $v \cdot w_1 = \dots = v \cdot w_k = 0$.
 $hvis w \in W$, vi lean choive
 $w = c_1w_1 + \dots + c_kw_k = c_1(v \cdot w_1) + \dots + (u(v \cdot w_k))$
 $V_i = uon ultiderer of $v \in W^{\perp}$.
 $W^{\perp} = i = 0$.
 $W^{\perp} = 0$.
 $W^{\perp} = i = 0$.
 $W^{\perp} =$$

5

Testen
Le A være en mxn metriv. Da
(Row A) = Nul A og (Col A) = Nul A
Bevin
La occ choice AT = (Firm Tw) (Fir F R")
Row A = spen { Firm: Firx = 0 hs i=1,..., m}
Da his vi et
(Row A) = {x c(R": Firx) = Ax = 0}
= Nul A
(Col A) = Mul AT van vies på Seume måle tellar:
(Col A) = Mul AT van vies på Seume måle tellar:
(Col A) = (Row AT) = Nul AT.
ELS
W = spen ? (
$$\binom{b}{2}$$
, ($\binom{b}{1}$)'s C R'
Mul A = Nul $\binom{b}{2}$ or $\binom{b}{1}$, ($\binom{c}{1}$)'s C R'
Da er W = Col A hs A = [a, u_2].
Da vandudærer vi od
wt = (Col A)^t = Nul AT = Nul $\binom{c}{0}$, ($\binom{c}{1}$)'s $(\binom{c}{1}$, ($\binom{c}{2}$)
= Spen ? ($\binom{c}{2}$, ($\binom{c}{1}$)'s $(\binom{c}{1}$)'s $(\binom{c}{1}$, ($\binom{c}{1}$)'s $(\binom{c}{1}$, ($\binom{c}{1}$)'s $(\binom{c}{1}$)'s $(\binom{c}{1}$, (($\binom{c}{1}$)'s $(\binom{c}{1}$)'s $(\binom{c}{1}$, (($\binom{c}{1}$)'s $(\binom{c}{1}$)'s $(\binom{c}{1}$, (($\binom{c}{1}$)'s $(\binom{c}{1}$)'s $(\binom{c}{1}$, ((($\binom{c}{1}$))'s $(\binom{c}{1}$)'s $(\binom{c}{1}$, ((((\binom{c}{1})))'s $(\binom{c}{1}$)'s $(\binom{c}{$

Vi ser et w¹ hos bosis $\begin{cases}
\binom{2}{-1} \\
\binom{$