Exs.
IN
$$V = IR^n$$
 med prikkproductet.
21 ha oss velge toll $P_1 > 0, ..., P_n > 0$.
Definer of myt indeproduct P^n R^n vel
 $\langle u, v \rangle = P_1 u_1 v_1 + ... + P_n u_n v_n$.
Utt & sjekke ut vi fler of indeproduct.
tor even, ha oss sjekke d/:
 $\langle u, u_2 = P_1 u_1^n + ... + P_n u_n^n \ge 0$.
 $h_{vis} \langle u_1 u_1 \ge 0$, da $P_1 u_1^n \ge 0$.
 $h_{vis} \langle u_1 u_2 \ge 0$, da $P_1 u_1^n \ge 0$.
 $h_{vis} \langle u_1 u_2 \ge 0$, da $P_1 u_1^n \ge 0$.
 $h_{vis} \langle u_1 u_2 \ge 0$, de $P_1 u_1^n \ge 0$.
Eks
 v_{s} shrives $u_{1,v} > v_{1,v}$ ex et indeeproduktow,
 $u_{v} \in V$, v_{1} rises at $u \text{ og } v \text{ es ortogoude}$
 v_{g} shrives $u_{1,v} > h_{vis} \langle u_{v}, v \rangle = 0$.
Eks
 $v_{rtogometilet}$ er avhenpig ev indeeproductet.
Defregometilet er avhenpig ev indeeproductet.
Defregometilet er $u_{v} = 1$.
 $V_{1,v} = (\frac{1}{2})$.
 $V_{1,v} = (\frac{1}{2})$.
 $V_{1,v} = (\frac{1}{2})$.
 $V_{1,v} = (u_{v} = 1) \le 1 : (-2) = 0$, så
 $u_{1,v} = 1 : \le 1 : (-2) = 3 \pm 0$, så er
 $u_{v} = v_{v}$ inve estogoude $i(P_{1,v}^{n}, v_{1,v})$.

_

Eus.
N Ta
$$V = P_n = rom av polynomed av grad \leq n$$
.
Ta $m \geq n$ og velg distinkte reelle toll
to,t,r...,tm.: Defines
 $\langle p, g \rangle = p(t_0)q(t_0) + p(t_1)q(t_1) + ...+ p(t_n)p(t_n)$.
La ors sjekke d):
 $\langle p, p \rangle = p(t_0)^2 + ...+ p(t_n)^2 \geq 0$
twis = $p(t_0)^2 + ...+ p(t_n)^2 \geq 0$
twis p(t_0)^2 + ...+ p(t_n)^2 \geq 0
twis p(t_0)^2 + ...+ p(t_n)^2 = 0.
 $p(t_0)^2 + ...+ p(t_n)^2 + ...+ p(t_n)^2 \geq 0$
twis p(t_0)^2 + ...+ p(t_n)^2 + ...+ p(t_n)^2 = 0.
 $p(t_0)^2 + ...+ p(t_n)^2 + ...+ p(t_n)^2 + ...+ p(t_n)^2 = 0$.
 $p(t_0)^2 + ...+ p(t_n)^2 + ...+ p(t_n)^2 + ...+ p(t_n)^2 = 0$.
 $p(t_0)^2 + ...+ p(t_n)^2 + ...$

Untitled.notebook

6

Definer
$$y_{3} = \frac{\langle y, w \rangle}{\langle w, w \rangle} w_{1}^{2} = y - y_{0}^{2}$$

V: hor $\langle z, w \rangle = \langle y - \frac{\langle y, w \rangle}{\langle w, w \rangle} w_{1}^{2} w$