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1 Logic

The Introduction says that a theorem is a logical consequence of a collection of axioms;
within the context of those axioms it is a true mathematical statement. Qur goal in this
chapter is to say exactly what we mean by all of these words and to begin to see how to
prove theorems.

E_.1.1 True or False?

This section is a preliminary “thought experiment.” Its goal is to help you think very
explicitly about your own intuition regarding truth and falsehood in mathematics and
your intuitive understanding of what is meant by proof. Then we want to build upon
that understanding—to tame it, systematize it, and make it into a tool for rigorous
mathematical thinking.

I recommend that you compare your own work in this section (your answers and
your reasoning) with the work of a fellow student.

Thought Experiment: True or False?

Below you will find a number of mathematical assertions. Most of them deal with
arithmetic, algebra, or geometry, since these subjects form a likely base of “common
knowledge” for the readers of this book. They are in no particular order. Some statements
are true and some are false. Sometimes you will have to assume a context that has not
been spelled out for you.

Your goal is figure out the meaning of each statement and then to determine whether
it is true or false. Try to justify your answers by a convincing argument, one that would
convince a hardened skeptic. (You should be your own harshest critic.) Work with pencil
and paper. Keep notes.

I ought to warn you that some of these statements are easy to settle, some are harder,
and in one case the answer is unknown. (You are unlikely to resolve this one, but if you
do, don’t keep the answer to yourself!) Try not to get bogged down in any one problem.
There are plenty to keep you busy.
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1. The points ¢ 1. 1) (20 —1hand (3.0) ie ena line.

2. If x is an integer. then 2,

3. If v is an integer. then a Ves 1.,

4. For all real numbers v, x* = x.

5. There exists a real number x such that K==

6. /2 is an irrational number.

7. x4+ visodd and y + 2 is odd, then ¥ + 2 is odd.

8. If x is an even integer. then X2 is an even integer.

9. Every positive integer is the sum of distinct powers of two.

10. Every positive integer is the sum of distinct powers of three.

1. If & is an integer. then v is even or v is odd.

12. If x is an integer. then v cannot be both even and odd.

13. Every even integer greater than 2 can be expressed as the sum of two pri
numbers.

14, There are infinitely many prime numbers.

15. For any positive real number x there exists a positive real number y such t
=,

16. Given three distinet points in space. there is one and only one plane pass
through them.

Look back over your work. You will probably find that some of your argume
are sound and convincing while others are less so. In some cases you may “know™
answer, but may be unable to justify it—that’s OK (for now). Divide your answers i
four categories: (Most students will have answers in all four categories.)

a. 1 am confident that the justification [ gave is conclusive.

b. Tam not confident that the justification I gave is conclusive.

. T am confident that the justification 1 gave is nor conclusive. (If you gave
justification at all. your answer falls into this category.)

d. 1 could not decide whether the statement was true or fulse.

A number of these problems will be discussed in the coming pages, some will r
But vou should keep them in mind as you read. Look back over your notes from ti
to time. Think about how vour work in this section connects with the ideas discussec
the rest of the chapter. Revise your arguments: update the information, as you can. l
point is that the logical principles we are about to discuss are not completely alientoy
You already have some intuition about logic. truth and falsehood. and proof. Your g
in this chapter should be to incorporate the systematic treatment of logical princip
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1.2 Statements and Predicates 9

into your existing understanding, sharpening insights that are right and correcting false
impressions, where necessary.

i 1.2 Statements and Predicates

A statement is a sentence that is either true or false, but not ambiguous. For example:

¢ George Washington was the first President of the United States.
e Bicycles have six wheels.
e The 10%7th digit of 7 is 7.

These are all statements. Each sentence is either true or false; there is no possible
ambiguity. It is not necessary that the truth or falsehood of the statement be known,

only that it be unambiguous.
The following are examples of sentences that are not statements.

o How are you doing ? 1t makes no sense to ask whether this sentence is true or false;
questions have no truth value. Neither do imperative sentences such as “Do your
homework.” Only declarative sentences have truth value.

e Picasso’s Les Demoiselles d’ Avignon is an obedient painting. Sometimes there is
no agreed-upon criterion for the truth or falsechood of a sentence. As far as 1 know.
there is no accepted definition of “obedience” that makes sense when applied to a
painting.

e He was six feet tall. Sometimes the sentence does not provide enough information
to be unambiguously true or false. “George Washington was six feet tall” is a
statement.

1.2.1 EXERCISE

Give some examples of sentences that are statements and some examples of sentences
that are not statements. =

All of these examples bring up some very important issues. Contrast the following
sentences:

e Picasso's Les Demoiselles d’ Avignon is an obedient painting.

s Picasso’s Les Demoiselles d’ Avignon is a beautiful painting.

Most students agree that neither sentence is a statement. When asked why the first one is
not, they usually say that the sentence is absurd, meaningless; therefore, asking whether
it is true or false makes no sense. The second sentence is less wacky, but most still reject
it as a statement because “beauty is in the eye of the beholder.” The truth or falsehood
of the sentence is a matter of personal opinion and is thus ambiguous.

s il R
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1.3 Quantification 11

the movies, and he went fishing.” “x2¥ = 17 and “x 4+ y = 32" all have more than onc
free variable. 3

1.2.2 EXERCISE

Give examples of mathematical predicates that have two and three free variables. o

Once we can recognize statements and predicates, we need to weave them together
to form rigorous logical arguments. To do this, we need to analyze the logical relations
between statements.

In symbolic logic, statements and their Jogical relations are represented by abstract
typographical symbols. Statements are represented by single letters P, Q, and so on.

s P := “Beethoven wrote nine symphonies.”

e Q := “Joyful Noise by Paul Fleishman won the 1989 Newberry Medal.”

e A := “A pickle is a flowering plant.”

It is convenient to borrow the familiar function notation to represent predicates having
one or more free variables: T(x), R(a, b), S(someone, she), and so forth. For instance:

e T(x) := “x has wheels.”

* R(a, b) :="a > 2b”

e S(someone, she) := “‘Someone said that she went to Europe in the summer of

1993

We can make statements out of predicates by assigning values to the free variables. If
T(x) is a predicate in the free variable x, and we assign the value a to x, then T(a) is a
statement.

1.2.3 EXAMPLE
Suppose T(x) := “x has wheels.” Then

e T(Airforce One) := “Airforce One has wheels.”
e T(grass) := “Grass has wheels.” E

[}3 Quantification

We can turn a predicate into a statement by substituting particular values for its free
variables. There are at least two other ways in which predicates with free variables can
be used to build statements. We do this by making a claim about which values of the
free variable turn the predicate into a true statement. Consider the predicate about real
numbers x2 — 1 = 0. Then we can write the following sentences:

o For all real numbers x, x2 — 1 =0.

o There exists a real number x such that x* — 1 =0,

=
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t
‘Lhese are both statements, even though each contains :
the variable x without any specific meaning attached I mathematical English, i
(o it. The first statement is false, since 4% =1 #£0, when we say “there exists
and the second is true, since (—1)> — 1 =0. The a bludger,” we don’tim-
phrases for all and there exists are called quanti- ply that there exists only
fiers, and the process of using quantifiers to make one bludger. e meit :
statements out of predicates is called quantification. l}f‘“‘ Hipre 15 4t 'Tm“ e ?
If we want to say that )
1.3.1 EXERCISE there is one and only one z
bludger, we have to say ¥
Suppose we understand the free variable z to refer to “there exists a unique i
fish. bludger.” ‘
1. Give an example of a predicate A(z) for which :
“For all z. A(z)" is a true statement. i
2. Give an example of a predicate B(z) for which “For all z. B(z)" is false but “There :
exists z such that B(z)7 is true. O
“For all” is called the universal quantifier and “there exists . . . such that” $
is called the existential quantifier. They are so common in mathematical £
language that there are universally recognized symbols to represent them. i
The symbol for “for ull” is V. the symbol for “there exists™ is 3, and the
symbol for “such that” is o, For instance, we might say “¥ positive real
numbers v. v has a positive square roor” or “3 a positive integern 3 1 is ;
even.”
These symbols are not generally used in formal writing, so [ will not i
use them again in the text. However. they are very convenient and are
used all the time in informal mathematical discourse. My advice is to
adopt them for your own use.
Quantification is so important in mathematical language that further remarks are in
order. First, notice that we must take care to specify the “universe” of acceptable values
for the free variables. If we are talking about real numbers, then “For all x. x + 1> b <l
i a true statements but if x could be Elsie the Cow, then matters are not so clear! If
there is any possibility of confusion, we will have to state the range of acceptable values
explicitly by saying something like “For all real numbers x, x 4+ | > x.” This can be
vitally important. Compare, for instance, the statements
o For all positive real numbers x, x > x/2, and
o For all real numbers x, x > x/2.
It is essential to provide enough (,:t)ntcxt to avoid ambiguities. ;
i

i
i
1

ol b Sl B e G i s i . AR A T AR f
e il b i S i 05 5




e i Lt e el o e S ki, Tk i i b e, <l ARk ¢ s bt

1.3 Quantification 13

Second, you may find it curious that a sentence.might contain a variable, as quanti-
ficd statements do, and yet be a statement. The variables in staterments with quantifiers
are called bound variables. Suppose that x is a free variable taking values in the integers.

o The predicate “x > 0" makes an assertion about a single (but unspecified)integer x.

» The statement “For all 1, ¥ > 07 makes an assertion about all integers x. namely

that they are all positive.

e Likewise. “There exists v such that x = 07 makes an assertion about all integers

x, namely that among them there is a positive one.
The first is not a statement, the last two are. When the variables are bound, there is no
ambiguity. When the variables are free, the sentence is ambiguous.

If a predicate has more than one free variable, then we can build statements by

7 . g 2 f 5 e i . 3 ;
using quantifiers for each variable. The sentence “y= = x 18 @ predicate with two frec
variables, which we will suppose refer to positive real numbers. From this we could mahe
the statement

For all x there exists y such that y* = x
Note that the order of the quantifiers matters greatly. The statement
There exists y such that for all x, yr=x

is quite different—in fact, it is false, while the previous statement is truc. (Take a moment
to reflect on this; make sure you understand the difference.)

1.3.2 EXERCISE

Consider the following two statements,

1. There exists x and there exists v such that Ve =x.

2. There exists y and there exists x such that Y =x.
Did quantifying over y first and then x (rather than the other way around) change the
meaning of the statement? What if the quantifiers had both been “for all” instead of

“there exists™? o

1.3.3 EXERCISE

Consider the predicate about integers “x = 2y,” which contains two free variables. There
are six distinct ways to use quantification to turn this predicate into a statement. (Why
six?) Find all six statements and determine the truth or falsechood of each. m]

It is worth noting that the phrases “for all,” “for any,” and “for every” are used inter-
changeably. Though they may convey slightly different shades of meaning in colloquial
English, they all mean the same thing in mathematical English. Similarly, we might say
“For some positive real number x, x3 — 100 > 0" instead of “There exists some positive
real number x such that x* ~ 100 > 0.

R T S T S T T R Wi 52
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14 Chaprer 1 Logic

1.4 Mathematical Statements

We are interested in mathematics, so we will focus on mathematical statements from now
on. Since we are not yet working with a specific mathematical context, 1 will (for the
moment) discuss statements whose context and meaning you should be able to provide
from your previous mathematical education. (If you occasionally run across one that
you don’t understand, don't worry. We are not really interested in content here, just
form. Read for the general message.)

The vast majority of mathematical statements can be written in the form “If A,
then B” where A and B are predicates.

But wait! If A and B are predicates involving free variables, then surely
“If A, then B is also a predicate. How do I get away with calling
it a statement? Tn fact, by itself it is not. But it is standard pructice
to interpret the predicate “1f A, then B” as a statement, by assuming
universal quantification over the variable(s); that s, “If A(x), then B(x)”
is interpreted as “For all .x. if A(x), then B(x)”" We will follow this
convention. (I suspect that you, unknowingly, follow the convention
yourself—Or did you look at virtually every statement in the “thought
experiment” and argue that it was ambiguous because you didn’t know
the values of the free variables?) We will say more about this a litile later.

1.4.1 DEFINITION
A statement in the form “If A, then B,” where A and B are statements or predicates, is

called an implication.
A is called the hypothesis of the statement “If A, then B.” B is called the conclusion.

Here are some examples of implications.

1.4.2 EXAMPLE
1. Ifx +yisoddand y + 2 is odd, then x + z is odd.
2. If x is an integer, then x is either even or odd, but not both.
3. 1If x2 < 17, then x is a positive real number.
4. If x is an integer, then x? > x.
5, If f is a polynomial of odd degree, then f has at least one real root. ]

1.4.3 EXERCISE
Identify the hypotheses and conclusions in each of the implications given in Exam-
ple 1.4.2. o

i

N




1.5 Mathematical Implication 15

Often mathematical statements that don’t appear to be implications really are. since
they can be rephrased as implications.

1.4.4 EXAMPLE

= ¥ 7 F P 5 9 ;
1. *v/2 is an irrational number” is the same as “If x > 0 and x> = 2. then x is

irrational ”
2. “For all real numbers x. 13 = x7 is often written as “If x is a real number. then
3 b
X = E

Most mathematical statements that are not implications are statements that assert
the existence of something—in effect, predicates with existential quantification over the
variables. Here are a couple of examples of existence statements.

1.4.5 EXAMPLE
1. There exists a real number x, such that =x.

2. There exists a line in the plane that passes through the points (—1, 1), (2, —1),
and (3, 0). E

)
i 1.5 Mathematical Implication

Since most mathematical statements are implications (that is, they can be writien in the
form “if A, then B.” where A and B are predicates in one or more variables) we will
spend considerable time talking about them. I will begin by appealing to your intuition
to motivate the definition of what it means to say that an implication is true. Then we
will discuss the logical principles governing the truth and falsehood of more complicated
statements. Finally we will talk about various methods of proof.

1.5.1 EXAMPLE

If x is an integer, then x?

=X,

Proof. If x =0, then x% = x, so certainly x> > x. The same is true if x = 1. If x > 1,
then x2> 1.x =x.Ifx <0, then x2 > 0 > x. This accounts for all integer values of x.
E

What exactly did we do when we proved the theorem? We studied all values of the
variable x for which the hypothesis “x is an integer” is true and showed that for those
cases the conclusion “x2 > x” is true also. We didn’t consider values of x that were
not integers (that is, values of x for which the hypothesis was false). We understood
intuitively that those values were irrelevant to our case.

Bt LAl - B
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e v

Notice that we have intuitively assumed universal quantification over the free vari-
able.! To clarify. we actually proved “For all x. if x is an integer, then TET

More generally, let us assumne that A(x) and B(x) are predicates involving the free
variable x. Let P(x) be the predicate “1f A(x). then B(x).” In the discussion above. we

considered all values of x for which A(x) is trug, and we said that P(x) should be

considered to be true if B(x) was true for all those values. We also said that we were
uninterested in the truth value of B(x) at values of the variable x that made A(x) false, :
for those values of x were not relevant to the truth (or falschood) of P(x). In fact, we 56
dealt, in one way or another, with all possible values of x. We have said what it means i

for the statement “For all x, P(x)” to be true! “For all x, P(x)” is true unless there is at
least one value of x for which A(x) is true and B(x) is false. That is, for specific values
of x, P(x) is true unless A(x)is true and B(x) is false. In summary, for a given value of x,

true  if A(x) and B(x) are both true.
Pex)is 4 false if A(x)istrue and B(x) is false.
true  if Afx)is false (regardless of the truth value of B(x)).

1.5.2 EXERCISE

Consider now the slightly different statement “If x is an integer, then % m?

{. Show that “If x is an integer, then x* = x™ is false.
2. Thinking in terms of hypotheses and conclusions, explain what you did to show
that the statement is false. 8]

A value of x that makes the hypothesis A true and the conclusion B false is called
a counterexample. In order to show that an implication is false, all we need to do is to
provide one such example. We now see what differentiates true implications from false
ones. An implication “If A(x), then B(x)" is true if B(x) is true whenever A(x) is. The
implication is false if there is even one value of the variable for which the hypothesis is :
true and the conclusion is false.

1.5.3 EXERCISE

Occasionally you will see “If A, then B written as “A is sufficient for B” or “B is
vecessary for A” or “B, if A7 or “A only if B." Explain why it is sensible to say that each

of these means the same thing. O

We can summarize our discussion of the truth and falsehood of implications with :
the following table.

I For simplicity, the predicates that 1 refer to have only one variable. Parallel statements apply to predicates
with more than one variable. Quantification is assumed over all relevant variables.

[

el e i ¢ J B L AR R M S T T e i =
RAPCY: STE i
dr. s e o e e RN

: Ly A
ST AR ERU IR, - SRR o



1.5 Mathematical Iniplication 17

A B If A then B
T T T
1 F B
F T T
F F T

The various lines in the table give all possible combinations of truth values for generic
statements A and B. (Of course, for any specific pair of statements the truth values aie
determined and will therefore lie in a single line of the table.) The final colunin then
gives the truth value for the resulting implication.

For predicates A(x) and B(x), “If A(x), then B(x)” is true if for all possible values
of x the truth v..lues of A and B fall only in the first, third, or fourth lines of the table. It
is false if even a single value of x lands A(x) and B(x) in the sccond line.

An implication in which the hypothesis is false is often said to be vacuously true.

The term “vacuous” is used in the sense of “devoid of meaning.” Some-
times statements that are vacuously true seem to us meaningless or even
false. Consider. for instance, the statement

If the moon is made of green cheese. then chocolate prevents
cavities. :

One might think that the statements “The moon is made of green cheese”
and “Chocolate prevents cavities™ are surely unrelated. Clearly one does
not “imply” the other in everyday usage. But since the moon is not made
of green cheese, the hypothesis is false, and our formal rules say that the
implication is true. The moral is: Though the commonplace ideas about
implication are closely related to the mathematical ones, it is important
to remember that to a mathematician, implication is a specialized logical
relation that need not have anything to do with cause and effect, as it does
in everyday usage. '

Why then did we define the truth of implications in such a peculiar
way? Remember the proof of Example 1.5.1: We considered only integers
x because we understood intuitively that the cases in which the hypothesis
was false were irrelevant to our situtation. It would have been strange to
consider the case in which x was a leopard. Such a case could never
generate a counterexample, so the truth of the implication was not in
danger from leopards. '
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18  Chapier I Logic

4.6 Compound Statements and Truth Tables

Suppose that A and B are statements. More complex statements can be built from these.
and we can examine their logical structure from the point of view of truth or falsehood.
We have already studied “If A, then B in detail. Symbolically, we write “If A, then B”
as A == B, which is read “A implies B.” Recall the table that we used to summarize
our discussion of implications:

I

A B A==B

1 T T

1 F E
F T T i
i
F F T :
This is an example of a truth table. As you rememaer, ecach line of the truth table gives i
all possible truth values for A and B and the resulting truth value of the implication. It i
A and B are predicates, “If A, then B is true if all possible values of the free variable(s) i
make the truth values of A and B fall in the first, third, or fourth line of the table. ;
[n addition to implication, statements A and B can be combined in a nuimber of i
ways. The most important are in the following list. :
« “A and B is called the conjunction of A and B. We denote itby A A B. i
e “A or B" is called the disjunction of A and B. We denote it by AV B. i
o “Not A" is called the negation of A. We denote it by ~A.
4
« A ifand only if B is called the equivalence of A and B. We denote ithy A &= B. i
(“If and only if” is often abbreviated iff.) i
All of these are called compound statements. As in the case of implication, the truth ;
values of these compound stalements are defined in terms of the truth values of their §
individual components. :f
1.6.1 DEFINITION
i

-

Suppose that A and B are statements. The following truth table gives the truth values of
A==B AAB AV B.~A,and A =B in terms of the truth values of A and B.

A implies B A and B AorB not A Ailt B
A B A-—=>B AnB AvDB ~A Ae—B
T T T T iR F T
i F E ¥ Rl F F
F T 2 ' gl F
F F T . F F P B

; _i
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1.6.2 EXERCISE
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Compound Statements and Truth Tables

N s, o . A

19

Examine the preceding table. Given the colloguial meaning of the terms “and.” “or,”
“not” and Tequivalent,” explain why the truth values given in the tble make sense.
(Note that the mathematical “or™ corresponds to the colloquial “and/or.” If you wish to
indicate that one or the other of two statements is true bur not both, you must say so

explicitly.)

)

More complex compound statements can be formed by combining conjunction,
disjunction, negation, imiplication. and equivalence in various wavs. Given the basic

truth tables presented. we can find the truth tables for other compound statements.

1.6.3 EXAMPLE

Given that A and B are statements. here are the truth tables for

1. B n ~B:

~B BA~B
[.' }:
T F

Notice that the statement B A ~B is always false regardless of the truth value for
B. There is no need to check values for free variables. No choice of a free variable
will ever yield a true statement of the form B A ~B. (Think about what is meant
by B A ~B. Explain why it makes sense for this statement to be false always.)
A compound statement that is always false regardless of the truth values of the

simpler statements involved is called a contradiction.
2. (AA~B) &= ~(A = B):

A B ~B AA~B A=B ~A=B) (AA~B)e=
~(A == B)

T T F F T F T

T F T T F T T

F T F E. T F T

F E T F 1 E T

Just as B A ~B was false regardless of the truth value for B, notice that
(A A ~B) <= ~(A == B) is true regardless of the truth values of A and B.
A compound statement that is always true is called a tautology.

You can also form compound statements involving three or more simpler statements.
Work out the following example of a tautology for yourself.
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1.6.4 EXERCISE

Verify that :
i
(A == (BV ) &= (AA~B)=C) i
|
is a tautology by showing that f
(A=>BvC) and (AA~B)=0)
have the same truth values. {
A B C BvC ~B Aa~B A=@BvVO (Anr ~B) == C !
;L
T T K i
1 F i
i F o
H T 3 iy
F T F
F E T ¢
E F F )

Notice that truth tables for statements involving only one primitive state-
ment have only two rows. (See part 1 of Example 1.6.3.) If there are two E
primitive statements (e.g., part 2 of Example 1.6.3) we use four rows. Ex- .

ercise 1.6.4 involved three primitive statements and we used eight rows,
These were the number of rows necessary to list all possible combina- g
tions of true and false for the primitive statements. How many rows will .
you need to work out a truth table for a compound statement involving :
four or more statements? '
We could list combinations of T's and F's in any order, but then we '
would have to keep track of which have been listed and which not, make
sure there were no repetitions, and so forth. It is convenient to have a 9
patiern scheme that is guaranteed to give us what we want without a lot '
of trial and error. Look back at the examples and notice the patterns of ,
T’s and F’s used to give all possible combinations of true and fulse for i
one. two (Example 1.6.3), and three statements (Exercise 1.6.4). Can you '
guess what pattern of T°s and F's will work if there are four statements?
What if there are more than four? '_
\

:

I
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1.7 Learning from Truth Tables-

Ultimately. truth tables are not really much good unless they teach us something. This
section will, in a few sample lessons, give you a sense of what sorts of things we can
learn from truth tables.

For the entire section, the capital letters A, B, and C will be understood to be

predicates.

Lesson 1—Tautologies

Since a tautology is true regardless of the truth values of the underlying primitive
statements, tautological statements express logical relationships that hold in any conteat.
The following exercise contains some early lessons.

1.7.1 EXERCISE T
Consider the following slawmem‘&
1. (A = (B~ (C)) == (A== B).
2. (A A (A= B))=—=B.
3. (A= B)A(B==C))==(A=C).
Each of these statements is a tautology and each embodies an important (and fairly
intuitive) logical principle.
e Your first task is to verify that the statements are tautological by constructing truth
tables for them.

* Your second task is to figure out what the logical principles are and what they tell
us about proving theorems. (It will help to convert the symbols into words.) O

Lesson 2—What About the Converse?

1.7.2 DEFINITION

The implication B == A is called the converse of A == B.

1.7.3 EXERCISE

Construct a truth table to show that it is possible for A = B to be true while its converse
B == A is false, and vice versa. o

So what is the moral of this exercise? The truth of the statement “If A, then B” does
not imply the truth of its converse. That is, knowing that A implies B does not tell us
that B implies A. ;
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Figure 1.1 Confusing the statement with its converse

1.7.4 EXAMPLE
Construct the converses of the following statements.

1. If Elsie is a cow. then Elsie is a mammal.

2. It v =0, then x* = 0.

Note that “If Elsie is a cow, then Elsie is a mammal” is a true statement, whereas
its converse is false. After all, Elsie might be a kangaroo, a mammal that 1s not a cow.
Note, however, that the truth table you constructed in Exercise 1.7.3 does not g0 $0 far
as to tell us that if A == B is true, then its converse is false. Sometimes an implication
and its converse are both true, as illustrated by the example “If x = 0, then X2 =0
Moral. You have to treat a statement and its converse as distinct mathematical claims,
each of which requires separate verification.

1.7.5 EXERCISE

Find an example of a true st

true.

atement whose converse is false and one whose converse is
o

Lesson 3—Equivalence and Rephrasing

Consider the truth table for A < B:

T

— Lo 2/ - - -
= r . H
[ " e = 2 3 AT b =

ek T TR

T 8 T

e
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A . B Ae=RB
i T 1
T F P
I 1 F
F I I

Notice that A <= B is true exactly when A and B have the same truth value.
Suppose A and B are predicates and A ¢=3 B is true; then we say that A and B are
equivalent. This is because A and B are either both true or both false. Thus if we manage
to prove A, we know that B is true, wo. Conversely. if we prove B, we hnow that A is
true. For all mathematical purposes we may view them as the same statement phrased
in different ways.

Since equivalent statements are just different ways of stating the same idea, we
can use truth tables to explore different ways of phrasing certain sorts of mathematical
statements.

1.7.6 EXAMPLE

In Exercise 1.6.4 you showed that
(A=—= (Bv()) and (A A ~B)=>0C)

are equivalent statements. In other words, any statement in the form “If A. then B or €7
can be rephrased in the form “If A and not B, then C.” (Of course. since "B or C has
the same meaning as “C or B.” it is easy to see that “If A and not C. then B” is also
equivalent.)

This is an important principle because when we want to prove a statement of the
form “If A, then B or C,” we usually prove one of the two equivalent forms:

* If A and not B, then C.

e If A and not C, then B. E

1.7.7 EXERCISE
Show by constructing a truth table that
(A= B)e—= (A=B) A (B= A))
is a tautology. O
This truth table shows that the statement “A <= B” is equivalent to the conjunction

of “If A, then B” and “If B, then A.” That is, “A <= B is true” can be rephrased by
saying that “If A, then B™ and its converse are both true statements.
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This gives us a method for proving that two statements A and B are
equivalent. We have to prove two implications. We first prove that A
implies B and then that B implies A.

The phrases “A is equivalent to B” and “A if and only if B” are used interchangeably.
You will also occasionally see “A is necessary and sufficient for B.”

1.7.8 EXERCISE

There are some very useful rephrasings that involve negation. Construct a truth table that
will allow you to compare the truth values of the following four statements.

~(A A B) ~A A~B ~(A v B) ~A v ~B

Which pairs are equivalent?

We will discuss other rephrasings that involve negation later in the chapter.

1.8 Negating Statements

Consider the truth table for the negation of a statement A.

A ~A
1 F
B T

Notice that if A is a predicate, ~A is a predicate that is true exactly when A is false
and false when A is true. Thus if we manage to prove A, we know that ~A is false.
Conversely, if we disprove A, we know that ~A is true. Thus, the negation of A is a
statement of what it means for A to be false.

We can always write “It is not true that A" for the negation of A, but generally
speaking it is more useful, when we are proving theorems, to say what is true rather than
to say what is not true; negative statements do not generally tell us as much as positive
statements. So it is important to be able to translate a negative statement into a positive
statement. For instance, if x is a free variable taking its values in the integers it is usually
preferable to restate “x is not even” as “x is odd.”

1.8.1 EXERCISE

Rephrase the statement “x is not greater than 7" in positive terms.

s
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Though it is often possible to rephrase a negative statement as a positive statement,
this is not always the case. (In which case, of course, we have to leave it in negative
terms.)

Not only do we need to be able to rephrase simple statements like “x is not even”
in positive terms, we need to be able to negate more complicated statements, as well.
Since mathematical statements are often implications, since they have quantifiers, con-
junctions, and disjunctions, we need to know how to interpret the negations of these in
positive terms. The good news is that there are some general rules to help us along.

Exercise 1.7.8 told us how to negate the conjunction and disjunction of two predi-
cates. The negation of A v B is ~A A ~B and the negation of AnBis~Av ~B.

1.8.2 EXERCISE

Think colloquially about the meaning of AND and AND/OR. Explain why it makes sense
for the negation of A v B to be ~A A ~B and for the negation of A A Btobe ~A v ~B.
o

1.8.3 EXERCISE
Negate the following statements. Write the negation as a positive statement. Lo whatever
extent is possible.

1. x + yisevenand y + z is even. (x, y. and z are fixed integers.)

2. x = 0 and x is rational, (x is a fixed real number.)

3. Either I is parallel to m, or ! and m are the same line. (I and m are fixed lines in
R2.)

4. The roots of this polynomial are either all real or all complex. (A complex root
is, for the purposes of this exercise, one that has a nonzero imaginary part. In
ordinary mathematical usage, real numbers are also complex numbers, they are
just numbers whose imaginary part is zero.) O

Since quantifiers show up in mathematical statements, we must know how to negate
statements containing them. As usual, to negate a statement we must decide what it
means for the statement to be false. Consider the statement “All senators take bribes.”
Under what circumstances would this be false? In order to show it to be false, we would
have to show that there is (at least) one senator who does not take bribes. The negation
of the statement “All senators take bribes” is the statement “There exists some senator
who does not take bribes.”

1.8.4 EXERCISE
Using similar reasoning, find the negation of the statement “There exists a fast snail.” O

R e G G R e S
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1.8.5 EXERCISE
Negate the following statements. Write the negation as a positive statement. 10 whatever
extent is possible.
1. There exists a line in the plane passing through the points (-1. 1), (2. —1), and
(3,0).
. There exists an odd prime number.
. For all real numbers x, P =x.
. Every positive integer is the sum of distinct powers of three.

=5 ik < 2
. For all positive real numbers x there exists a real number v such that y* = x.

= Y

. : - : 5
. There exists a positive real number ¥ such that for all real numbers x, y==x. O
p ] >

1.8.6 EXAMPLE
Sometimes it helps to deal with very complex statements more carcfully. one step at a
time. Consider the statement “All Martians are short and bald. or my name isn’t Darth
Vindle r”
We now consider various substatements:

e A := All Martians are short and bald.

e B := My name isn't Darth Vader.

s C :== All Martians are short.

o D := All Martians are bald.
Clearly. A is equivalent to C A D. Our original statement is A v B. So the negation of
our original statement is

~(A v B) & (~A A ~B) &= (~(CAD)A~B) & (~C v ~D) A~B.
We can now clearly see that the negation of “All Martians are short and bald or my name
isn’t Darth Vader” is “Either some Martian is tall or some Martian has hair, and my name
is Darth Vader.” |

1.8.7 PROBLEM
If you want a challenge, try using this process to negate

You can fool some of the people all of the time, and some of the people none of
the time, but you cannot fool all of the people all of the time. n

1.8.8 EXERCISE

lLet A and B be statements. Show by constructing a truth table that the following
statements are equivalent:

~(A==B) and A A ~B. a
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1.8 Negating Statements 27

1.8.9 EXERCISE

Negate the statement “If x2 > 14, then x < 10.” Using your intuition about this example
to help you, explain why it makes sense to say that if A is true and B is false, then “If AL
then B™ is false. O

Negating a statement of the form “If A(x), then B(x)™ has a slight wrinkle. If A(x)
and B(x) are predicates, A(x) A ~B(x) is not a statement at all, it is a predicate, 100, It
scems bad to negate a statement and get a predicate! The solution to this conundrum lies
in the fuct that “If A, then B is not really a statement, cither. The starement is actually
“Forall x, if A(x), then B(x).” So when we negate the implication, we have to negate the

“There exists x such that A(x) A ~B(x).” But following the convention that suppresses
the universal quantifier in the implication, the existential quantifier in its negation is oflen
suppressed, as well—but only if there is no possibility of confusion as a result! Absolute
clarity is always the goal; if there is any ambiguity, always include the quantifier.

This is a good time to review the discussion of counterexamples on page 16. There
we provided an intuitive discussion of this idea. Notice that our intuitive discussion of
what it means for an implication to be false imposed an existential quantificr.

1.8.10 EXERCISE
Negate the following statements. Write the negation as a positive statement, 1o whatever
extent is possible.

1. If x is an odd integer, then x? is an even integer.

2. If x + y is odd and y + z is odd, then x + z is odd.

3, If f is a continuous function, then f is a differentiable function.

4. If £ is a polynomial, then f has at least one real root. o

1.8.11 EXERCISE
Let f be a function that takes real numbers as inputs and produces real numbers as

outputs. Negate the following statement.

For all positive real numbers r, there exists a positive real number s such that
if the distance from y 10 3 is less than s, then the distance from f(y) to1is less
thanr.

(Hint: This problem is really tricky; it will help to think carefully about quantifiers.

¢ The statement is of the form
For all r there exists s such that (A(s, y) = B(r,y)).
This is, in turn, of the form
For all r there exists s such that P(r.s,y).
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e Since the predicate P, s, v)is quantified over both r and 5. v is the only free vari-
able in the implication (Als, ¥) — Bir. ¥}y which must, therefore, be interpreted
as “For all v, (Afs, ¥) == B(r. ¥

e So to negate the statement properly, we must interpret it as

For all r there exists s such that for all v, (Als, ¥) = B(r.y)).

Does the statement that you come up with for the negation coincide with your intuition
about what it would mean for the statement to be false?) o

1.9 Existence Theorems

We are finally ready to discuss proof ! We will start with proofs of existence. A theorem
that asserts the existence of something is called an existence theorem. Recall the
following statement from the “thought experiment.” I presume that you decided the

statement
e . '*
There exists a real number x such that x” =X

was true. How is this demonstrated? Well, the statement asserts the existence of some-
thing, so the best way to demonstrate that it is true is simply to exhibit such an object.

Consider the number 1. Since 17 = 1. the statement is true.

Produce a candidate. Show that it does what you wiant.

We usually have to work harder than this to produce the object that we need, but the
process of proving an existence theorem is always the same. Suppose we want to prove
that “There exists a clacking waggler.” We prove existence theorems in two steps.

1. We produce a “candidate.” That is, we describe an object that we claim should
be a clacking waggler.

2. We show that our candidate actually is what we claim it is. In this case. we show
that it is a waggler and that it clacks.

One thing about existence proofs may seem batfling at first. When a
candidate is produced. the proof need not tell you where the candidate
came from or why it was chosen, justas a chess player need not tell you
what strategy she or he used to decide what move to make. The only
mathematical requirement is that the candidate be given explicitly and
that the proof show the candidate does what it is meant to do.

o R R A AR
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N

The appearance of a candidate out of nowhere can seem 4 little like
mathematical voodoo, espedially if the choice is notan obvious one. There
is a strategy operating. butitis conceived “off stuge”™ where you don’t see
it. The first line of an existence proof is the end result of the reasoning
process: therefore, proving existence theorems usually requires a lot of
“seratch work™ before the proof can be written.

Consider now the statement

There exists a line in the plane passing through the points (=1, 1), (2, =1), and

(3:0)

I presume that in the “thought experiment” you decided this statement was false. For
good measure, we will think through how to prove this, using some of the language we
have been developing.

Saying that the statement is false is the same as saying that its negation is true. In
Exercise 1.8.5 you showed that the negation of this statement is (something like)

If € is a straight line, € fails 10 pass through at least one of the points (— 1: 1)
(2, = 1), and (3,0).

So in order to prove that the statement is false, we have to examine every straight line in
the plane and show that at Jeast one of the three points fails to lie on it. Starting from the
notion that straight lines are of the form {(x) = mx + b, an argument might go something
like this.

Proof. We start with the straight line £(x) = mx + b.1f the points (—1, and (2, —1)
are to lie on the line, the following must be truc:

l=m(=1)+b and —1=m(2)+h

Solving these two equations simultaneously, we see that the only possibilities for m and
b are m = —2/3 and b = 1/3. Therefore, the only line that has any chance of containing
all three points is £(x) = (=2/3)x + 1/3. But it is not truc that 0 = (—2/3)(3) + 1/3,
50 (3, 0) does not lie on the line. The three points do not all lie on a single linc. E

b
11.10 Uniqueness Theorems

Many mathematical objects are unigue. That is, there is only one of them: cube
roots of real numbers, inverses of functions, solutions to differential equations (under
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T

i
cuitable conditions).” You will occasionally be called E
apon to prove the unigueness of a mathematical object Contrary to popular us- L
(frequently right after you have proved its existence). age, the word unique does i
Suppose you know that there isa clacking waggler, and not mean “distinctive” or §
you want to show that it is unique. That is. that there “idiosyncratic,” it means E

£

is only one clacking waggler. You do this by assuming (literally) “one of a kind.”

that you have two clacking wagglers and demonstrating Thus, if we say that some 5
that they must be the same. A thecorem that guarantees objectis unique, we mean {
the uniqueness of a mathematical object is called a that there is only one. P
uniqueness theorem. {
1.10.1 EXAMPLE (
Assume that x° + 37 has a real root. (This is true. All polynomials of odd degree have i
at least one real root.) Prove that it has only one. ;
Preof. Assume that xp and x> are real numbers and that 1:’ —37=0and x:} ~37=0. ;
Then _\.'f’ —31= x; —37. S0 ,xf = 1_3 Since cube roots of real numbers are unique,
X = X2 ]
[ actually proved a stronger uniqueness result. Can you see what it is?
1.11 Examples and Counterexamples
In Section 1.5 we said that in order to prove that an implication is false, we need only
provide a counterexample. That is, if A and B are predicates, the statement “If A, then
B is true, unless there is some value of the variable(s) that makes A true and B false. ;
When we provide a counterexample, we are just showing that such a value exists.” é
1.11.1 EXERCISE I
£
Give counterexamples to the following proposed (but false) statements. i

1. If a real number is greater than 5, then it is less than 10.

2. If x is a real number, x? = x.
3. All prime numbers are odd numbers. What is the hypothesis here? What is the

conclusion?

2never underestimate a theorem that tells you that if you have one you have them all. Uniqueness theorems
are very powerful. You probably use some uniqueness theorems by reflex without even thinking about them.
Yo will run into them a lot as you continue your mathematical studies.

My ifect, providing a counterexample is sort of an existence proof, And it's handled pretty much the same
wit.. Uiive the example and show that it makes the hypothesis true and the conclusion false.

.
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4. If x + yisodd and y 4 z is odd, then x + 2 is odd.
5. Given three distinet points in space, there is one and only one plane passing
through all three points, 8]

1.11.2 EXERCISE

Think again about the implications givenin the “thought experiment.” When you decided
that one of them was false, did you justify your conclusion by means of a counterexan-
ple? If there are some you haven’t justified satisfactorily. does this language help you to
“fill out” the arguments? 0

Counterexamples give us a straightforwad procedure for showing that an implica-
tion is false. But how do we prove that an implication is true? Betore we answer this
guestion, I want to discuss a final preliminary issue. Let’s consider the statement

Every positive integer is the sum of distinct powers of two.

In trying to evaluate the truth or falsehood Sf a theorem like this, I start by trying a lot
of examples.

*3=2+1=2+2"

o5=4+4+1=22+2"

c6=4+42=22+2.

«7=22+2+420

«9=23420
(So far, so good. Let’s skip around a bit.)

©29=244+234241.

¢« 113=20 42542442,

(OK, so what about really big numbers?)
. 5.678.984 = 222 4 220 4. 218 4 217 4 215 4 913 4 210 4. 29 4 D8 4 21420

All these still wouldn’t quite convince me, so I would try a bunch more. As I check more
and more cases, I begin to think that the statement is probably true.

The hunch that makes me want to draw this conclusion is called inductive rea-
soning. It is the process by which we draw conclusions about the general based on the
particular. (That is, we look at some examples, identify a common element, and then
guess that the common element holds in all cases.) This is contrasted with deductive rea-
soning, which is the process of using the rules of logic to deduce logical consequences
from assumed premises or previously proved theorems. Things can only be conclusively
proved by deductive reasoning. In the preceding example, checking 100 or 1000 cases
might strengthen my hunch, but it still would not prove anything conclusively.

Inductive reasoning is still important for mathematicians, of course, because it is
the tool by which we make conjectures. Once you think you know what is true, you
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can concentrate on finding a proot. But making a guess about what is true—<cven a very
informed gtiess- -is simply not the same as proving it.

I'm not just being picky here. To show you how dangerous it is to assert that
something is proved based on having checked even a large number of examples, consider
the following example found in Induction in Geometry by L. L Golovina and I. M.

Yaglom.

1.11.3 EXAMPLE

Consider the polynomial 991n° + 1. Suppose that you were to start evaluating this
polynomial at successive positive integers at the rate of one per second. You would never
get a perfect square. Not because it never is a perfect square, but because it would take
you on the order of 4 x 10%” years to find the smallest natural number n for which it is.
(The age of the universe is about 1.5 x 10! years.) The smallest natural number n for
which 991#° + 1 is a perfect square is:

n = 12,055,735,790,331,359,447,442,538,767 = 1.2 x 107,

(Check, it works.)

Moral. Providing acounterexample is conclusive proof that an implication is false, but
checking even a large number of examples (unless you can exhaust all possible cases!)
doesn’t prove in implication in general.

-1.12 Direct Proof

Remember that if A and B are predicates, the statement “If A, then B” is true if for all
values of the variable(s) that make A true, B is true, also. One way to prove “If A, then B”
is to check all possible cases where the hypothesis holds and see if the conclusion is also
true. Of course this becomes cumbersome if the number of cases is large and impossible
if it4s infinite. We certainly cannot check them one by one. So we assume an abstract
situlation in which the hypothesis holds (nothing can be assumed beyond the hypothesis
itself) und show that the conclusion must hold also.

Thinking about an example should help. Consider the statement “If x is an even
integer. then 12 is an even integer.” | suspect that when

you conducted the “thought experiment” you decided When an implication is
that this is true. It is a case in which there are infinitely proved by assuming that
many values of x that make the hypothesis true. So we the hypothesis is true and
will have to assume (in the abstract) that x is even and then showing that the
then shuw that x2 has to be even, too. conclusion is also, the

If we are to get anywhere, we first have to recall proof is called a direct
what it means to say that an integer is even: . proof.

s
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Let 7 be an integer. Then z is said to be even if there exists an integer w such

that z = 2w.
Here is the proof that if x is an even integer, then a2 is an even integer.

Proof. Suppose that x is an even integer. Then by definition of even integer, we know
that there must exist an integer y such that x = 2y. Now we have to show that there is
an integer w so that x2 = 2w, Let w = 2. Since the product of integers is an integer,
w = 2y? is an integer. Notice that

=202y = 2(2_\-‘?] = 2u.

Thus x? is an even integer. e

This argument works for any even number; thus all cases have, in some sense. been
checked.

The Role of Definition: The engine that drove our argument was the
definition of even number. The vague notion that even integers arc those
in the 1ist 0, £2, +4. 16, 8, . . . could not give us the power we need to
prove the theorem. As I stresced in the Introduction. definitions are fools
that we use to express abstract concepts using mathematical statements.
Without careful definitions, we have nothing on which to apply the rules
of logic. Insight comes from an intuitive understanding of what the terms
mean, from checking examples, and so forth. But theorems are proved by
applying logical principles to abstract definitions.

1.12.1 EXERCISE

If you haven’t done so already, use a direct proof to prove that “If x + y is even and
y 4 z iseven, then x + z is even.” 0

Besides the direct proof, two other methods for proving theorems are very com monly
used: proof by contrapositive and proof by contradiction.

[’1 13 Proof by Contrapositive

1.13.1 EXERCISE
Let A and B be predicates. Construct a truth table to show that the following statements
are equivalent:

A=—B and ~B = ~A. O

s e
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Remember. we have said that equivalent statements can be thought of as the same
statement expressed in different ways. In this case. “If not B. then not A” should be
viewed as a rephrasing of “If A, then B.”

1.13.2 DEFINITION

The statement ~B == ~A is called the contrapositive of the statement A == B.

1.13.3 EXERCISE
Find the contrapositives of the following staiements. Write things in positive terms
wherever possible.

1. If x < 0, then x* > 0.

2. 1f x % 0. then there exists y for which xy = 1.

3. If x is an even integer, then x7 is an even integer.

4, If x + vy is odd and y + z is odd, then x + 2 is odd.

5. If f is a polynomial of odd degree, then f has at least one real root. O

1.13.4 EXERCISE

Use your intuition about implication to explain why “If A, then B” and its contrapositive

are saying the same thing. !

Sometimes it is easier to prove the contrapositive of a statement than it is to prove the
statement itself. (The contrapositive gives you different statements to work with which
may simply be more tractable.) Since they are equivalent, proving “If not B.thennot A" is
the same as proving “If A, then B.” A proofin which the contrapositive is proved instead
of “If A. then B” is called a proof by contraposition or a proof by contrapositive.*

Since the contrapositive of an implication is itself an implication, the procedure
for doing a proof by contraposition is to figure out what the contrapositive is (as in
Exercise 1.13.3) and then to proceed exactly as one does in a direct proof.

1.14 ~ Proof by Contradiction

1.14.1 EXERCISE
Let A, B, Q, and P be statements. Construct a truth table to show that the following

statements are equivalent:

Q and (~Q) = (PA~P).

The latior is less grammatical, but more commonly used!
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In particular. explain why this means that:

A= B anil (A A~B)=— (PA~P)

B

35

are also equivalent. (Note that logically the statement P need have no connection what-

soever with the statements A, B, or Q. though it often does in practice.)

1.14.2 EXERCISE

O

To help you see why this equivalence makes sense. suppose you have statements X and

Y in which
X = (A — B). sothat ~X = A »n ~B, and
Yi=Pa-<i

If you know that ~X == Y is true and Y is false, what can you say about the truth value

of X7

O

Recall that “P A ~P™ is a contradiction, a statement that is always false. (Clearly.
a statement and its negation cannot both be true.) There is a proof technique. called
proof by contradiction, in which we first assume that the statement we want to prove
is false and then show that this implies the truth of something that we know to be false.
(For instance, if your reasoning ends in the conclusion that 1 = 0. you have arrived at a

contradiction since 1 = 0 and 1 # 0 cannot both be true.)

To be specific, suppose that we want to prove that A == B is true. We know that
the negation of A == B is A A ~B. Exercise 1.14.1 tells us thut if we assume AA~B
and can reason our way to a contradiction, we will be able to conclude that A = B is

true. When we do this, we are doing a proof by contradiction.

1.14.3 EXAMPLE (Proof by contradiction)
Ifa > 0, then 1/a = 0.

Proof. The proof is by contradiction. Thus we assume the hypothesis (¢ > 0) and the
negation of the conclusion (1/a < 0). Since 1/a <0, there is some nonnegative number

b so that

lja+b=0
Multiplying both sides by a, we get

1+ ab=0.

Since ¢ > 0 and b > 0, ab > 0. Hence 1 < 0. Since we also know that 1 > 0. we get
the desired contradiction. We therefore conclude that our orginal assumption must have

been false, so
Ifa >0, then1/a >0

18 true.
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1.14.4 EXERCISE

-

Lise proot by contradiction to prove that “If 1 is an integer, thep v cannot be both even {
and odd.” (=] i
i

Remark. The problem with the preceding proofs is that cach proof necessarily ap- ‘
pealed 10 statements that were at least as in doubt as the statements that were being :
proved. {Go back and ook at the proofs. Can you see where?) This is the basic problem ‘
with exercises that ask you to prove mathematical statements before any real mathe- i
matics has been discussed. They almost alvways amount to proving statements that we 4
already "know™ to be true using other statements that we already “know™ to be true. ;
You should think of the proofs in this chapter as giving you practice only in using i

the “logical form™ of the proof techniques. You should not think of them as having 1
i

mathematical content. After this chapter, the proofs that you do should appeal only to the
detinitions and theorems that have already been discussed in a mathematically rigorous
way. When you do this, you will know exactly what the starting assumptions were. You
will be building a strong chain of mathematical reasoning whose beginning and end you
can see. You will, thus, be standing on much firmer mathematical ground than you have
been in the preceding proofs.

1.15 Proving Theorems: What Now?

In the latter part of this chapter, we have talked a bit about the logical basis for severa]
proof techniques: direct proof. proof by contraposition, proof by contradiction. And we
have talked about what general approach to take when proving existence and uniqueness
theorems. But caution! You are far from being an expert on how to use these techniques;
therefore. you are not leaving this chapter! You are just beginning to use it. In the
course of working through the mathematics in the pages that lic before you, you should
turn back to this chapter on a regular basis (at least for a while). When trying to decide on
astrategy for proving something. review the various proof techniques and weigh them as
options in your mind. Semetimes [ will give vou a hint as to what [ would do. However,
there is rarely only a single way of doing things. If my hint doesn’t seem to be working
tor you, try something else. Proving theorems is a creative process. You may create
something ditterent from your neighbor. One proof may be shorter or more elegant or

A A s

more revealing or simply more aesthetically pleasing than another, and you may want
to strive for such improvements as you get more proficient. But the bottom line is that
a proof is a proof is a proof. For now, concentrate on finding sound areuments that will
prove the theorems you encounter. Use any and all tools at your disposal.
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¥ PROBLEMS

1. Suppose we understand the free variable 2 o refer 1o () books, thy automobiles, and (1 pen
cils. For each context,
= Give an example of a predicate Acz) for which “Tor all 2. Atz17 is a true statement.
= Give an example of a predicate Btz) for which “For all 2. B )7 is false but “There exists
such that B(z)" is true.

L

Is it possible 1o Lave a predicaie T such that “For all v, To)™ s troe, but “There exists
some x such that T )™ is false? Justify your answer,

3. Consider the statenments

P := “Dogs eat mear.”

Q := "Rome is in Ialy.”

R

S := "The moon is made of green cheese.”

“Chocolate prevents cavities”

Determine whether cach of the following is true or false.
(a) I P, then Q. (b) If P then R, (c) i R. then S.
(d) It S. then Q. (e) it Q. then S.
4. With apologies to Sidicy Huiris for wodding on his terrific cartoon (shown in Figure 1.1, 1°d
like 1o play a little with the dog’s statement. Consider the assertions made by the dog:
A = "All cats have four legs.”
B :="1 have four Jegs.”
C:="lamaca”
(Arc these assertions statements or predicates? Explain.)
The dog’s statement is of the torm i’ A and B, then C.°
(a) Construct a truth table for the statement “If A and B, then C.°
(b) Now consider the actual truth values of the assertions made by the dog. Cross out the lines
of the truth table that don’t apply in this particular instunce. What do you sec?

5. This problem refers to the equivalence discussed in Example 1.7.6.

(a) Using your intuition about implication, explain why it makes sense to say that

If A is true, then either B iy true or C s true
means the same thing as
If A is true and B is false, then Cis true.

(b) Go back to the “thought experiment” in Section 1.1. Find a statement that is written in the
form “If A, then B or C.” Find two equivalent rephrasings of the statement. (Did you intuit
these rephrasings when you worked with the problem during the thought experiment?)

(c) Construct a truth table to show that (A = (B v ) cannor be rephrased as
((A = B) v (A == ()). Using the statement you discussed in part (b) as an example,
explain why.

Consider the statement “Marlene has brown hair” When asked to negate this statement. some

students are apt to say, “Marlene has blond hair”™ Explain why this is incorrect. (Hine: There

&
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i« an important difference between a statement that is false when “Marlene has brown hair”

is true. and the negation of “Marlene has brown hair”)
(For a more mathematical, but parallel, example: Ask yoursell why x = 3 is not the

negation of x = 7. What is the negation of x = 77)

7. Suppose that (a. b) and (¢, d) are two distinct points in R2. Use the processes described in
Sections 1.9 and 1.10 to prove that there exists a unigue line passing through the two points.

(Remember that the work you do to determine the candidate in the existence part is not part

of your proof.)
8. Describe what you would have to do to show that an object is not unique.

P - i " LN , o5
9. Your goal will be to prove that “IF v is an odd integer, then x~ is an odd integer.

(a) Here are two possible definitions for un odd integer.
= An integer 2 is odd if it 1s not even.,
= An inteser 7 is odd if there exists an integer w such that z = 2w + L.

Which of these two detinitions do you think will be more useful to you in the proof? Why?

(b) Prove that the square of an odd integer 15 odd.

© QUESTIONS TO PONDER

first in a series of sections titled Questions to Ponder. In these sections you will find

This is the
other students in your class or

questions that you can play with at your leisure: you may work with
o friends that are not in your class. Some of the questions should be resolvable with a bit

challeng
book. Some will be harder, and

of work. Some will become tractable as you proceed through the
not be able to solve them completely, but I will enly include such problems if you can

VO may
g at examples. Sume questions are philosuphical

make some progress on them at least by lookin
in nature and their answers may be open-ended.
1. The following two statements were given as alternate definitions for an odd integer:
= Ap integer z is odd if it is not even.
= An integer z is odd if there exists an integer w s0 that ; =2w + 1.
One would hope that these definitions are equivalent. (That one is just a rephrasing of the
other!) Can you prove this?
/3 is irrational. (Remember: A rational number is a nuniber that

\/E is rational; that is, v/2 = %

"

2. You should try to prove that
can be written as a ratio of integers. One classic proof assumes

: % - 1 :, 4 g
What can you say about the prime factors of and 207 and what does this tell you?)

3. Try to prove that there are infinitely many prime numbers.
4. Try to prove that every positive number has a positive square root. (That is. prove that “For
L . L g ae
any positive real number v there exists a positive real number y such that y= =x.7)
5. Can every positive integer be written as the sum of distinct powers of two?

n integer greater than 2 he expressed as the sum of two prime numbers? (This

6. Cun every eve
“The question was first asked in 1742, Mathematicians

is the famous “Goldbach conjecture!”
continue to struggle with it today. No one knows the answer.)
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