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In mathematics, and also in the real life, one usually faces with the question of finding
optimal values of a given function. For example, and this will be the main application to be
aimed with in the course, at the core of its, Deep Learning can be formulated mathematically
as follows: You have some given data called xi (say a bunch of pictures, and here the xi
represents the values of the pixels in the computer for the image i) and you would like to
correctly assign a label yi (say whether there is a cat yi = 0, there is a dog yi = 1, there are
both a cat and a dog yi = 2, or there is neither cat nor dog yi = 3). You will then design
a neural network, which simply is a function f(α) =

∑
i f(xi, yi, α) - called cost function -

where i runs all over a part of the data set called training set, and α is a set of parameters,
and want to find the values of α which minimise this function. [In practice, you need to
modify this, by using the so-called mini-batches, but that’s not important here.]

Another example, which is more pure mathematics, is usually when you want to solve a
PDE, you can cook up some map F (u) whose arguments are functions u satisfying certain
conditions, and whose optima will solve the PDE you want.

In some cases, where the function is really simple, such as f(α1, α2) = (2α1+α2−1)2+2α1,
you can actually solve (either by hand or by computers) to find the correct optima. However,
this is rare when you are doing real life questions and you have pressure on time. Thus
approximation methods are needed. Gradient descent is such a method.

In its standard form, the gradient descent method is the following. Given f : Rm → R
which is C1. You choose a fixed number δ > 0, and a given point x0 ∈ Rm. You construct
the sequence xn+1 = xn− δ∇f(xn), and hope that it will converge to a minimum point. It
does not always do so, but surprisingly, it usually do in practice. In this course, under the
guidance from the lecturer, the student will study to know the reason for this and many
more.

I can offer two directions:
Direction 1: Theory. The student will study theoretical properties of optimisation

methods.
Direction 2: Applied. The student will run experiments to test the optimisation

methods on Deep Neural Networks.
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