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Nonlinear partial differential equations (PDEs) are the mathematical formulations of physical laws.
And like the laws of physics, separate PDEs can create very different phenomena. The study of a
particular PDE may require specially tailored mathematical tools (there is in fact no general theory
for nonlinear PDEs).

This project is devoted to the study of hyperbolic conservation laws

ut + divxf(u) = 0,

where u(x, t) : Rd × R+ → R is the unknown density of mass and f : R → Rd is a given flux function
(which determines the ‘physics’). Such PDEs serve as simple models for the flow of fluids, traffic, and
crowds. A typical ‘nasty’ feature of such equations is the development of discontinuities (like a sudden
traffic cork) where the function u is no longer differentiable (or continuous) rendering the original PDE
meaningless. The project will develop the theory of entropy solutions that overcomes the discontinuity-
issue by re-interpreting the equation in an energy-preserving sense. The mathematics will include the
method of characteristics, elliptic regularization, and the classical existence and uniqueness proofs for
entropy solutions of hyperbolic conservation laws.

For sources take a look at

1. The book: Front Tracking for Hyperbolic Conservation Laws, Helge Holden, Nils Henrik Risebro,

2. The Wikipedia articles: https://en.wikipedia.org/wiki/Burgers%27_equation

3. and https://en.wikipedia.org/wiki/Conservation_law

Figure 1: A space-time diagram of a solution u solved using the method of characteristics
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