MAT2000 PROJECT PROPOSAL OPTIMAL MATCHING, THEORY AND NUMERICS

PETER H.C. PANG

(Complete bipartite) matching problems ask about the best way to pair up two collections of objects of the same cardinality, i.e., in such a way that a cost function is minimised. Matching problems have been given much attention in computer science and statistical physics. For this project, we look at two sets each of n random points taking values in a box $[0, 1]^d$ of d dimensions.

Since the original paper of Ajtai–Komlós–Tusnády [1], there have been several proofs (see [5, Section 4.5]) of the matching upper and lower bounds as given by (variations on) the following theorem:

Theorem 1. Let X_1, \ldots, X_n and Y_1, \ldots, Y_n be independently uniformly distributed on $[0,1]^d$. Define the transportation cost

$$c_{n,p,d} := \mathbb{E} \min_{\pi \in S^n} \frac{1}{n} \sum_{i=1}^n |X_i - Y_{\pi(i)}|^p$$

where S^n is the permutation group on on $\{1, ..., n\}$, and the absolute value denotes the *d*-Euclidean distance. The following asymptotics hold:

$$c_{n,p,d} \sim \begin{cases} n^{-p/2} & d = 1\\ (\log(n))^{p/2} n^{-p/2} & d = 2\\ n^{-p/d} & d \ge 3 \end{cases}$$

Here, $a_n \sim b_n$ means that $\limsup_n a_n/b_n$ and $\limsup_n b_n/a_n$ are both bounded.

A particularly short proof was given in [3]. Obviously, the critical behaviour happens in dimension d = 2. For the p = d = 2 case, it was shown relatively recently in [2] via PDE approach that the limit itself exists (the lim sup matches the lim inf at $(2\pi)^{-1}$). This was based on heuristics given in [4]. Limits are known to exist for $d \ge 3$ when p < d/2.

The goal of this project is twofold:

- (i) To understand how the proofs of Theorem 1 are related to each other. This will introduce serve to introduce concepts such as empirical measures, Kantorovich duality, among others.
- (ii) Numerically to test whether $n^{p/d}c_{n,p,d}$ has a limit as $n \to \infty$ for $d \ge 3$, $p \ge d/2$, and explore analogous questions for d = 2, $p \ne 2$. It would be very interesting to be able numerically to see a *rate* of convergence, beyond the limit proven for d = p = 2, and to conjecture some lower order terms for $nc_{n,2,2}/\log(n) (2\pi)^{-1}$ (see also [2, Section 6]).

References

[1] M. Ajtai, J. Komlós, and G. Tusnády. On optimal matchings. Combinatorica, 4(4):259-264, 1984.

P.H.C. PANG

- [2] L. Ambrosio, F. Stra, and D. Trevisan. A PDE approach to a 2-dimensional matching problem. Probab. Theory Relat. Fields, 173:433–477, 2019.
- [3] S.G. Bobkov and M. Ledoux. A simple Fourier analytic proof of the AKT optimal matching theorem. Ann. Appl. Probab., 31(6):2567–2584, 2021.
- [4] S. Caracciolo, C. Lucibello, G. Parisi, and G. Sicuro. Scaling hypothesis for the Euclidean bipartite matching problem. *Phys. Rev. E*, 90:012118, 2014.
- [5] M. Talagrand. Upper and Lower Bounds for Stochastic Processes: Decomposition Theorems. Volume 60 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics. Springer, Cham, 2021. Second Edition.

(Peter H.C. Pang) Department of Mathematics, University of Oslo, NO-0316 Oslo, Norway

Email address: ptr@math.uio.no

2