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(Complete bipartite) matching problems ask about the best way to pair up two
collections of objects of the same cardinality, i.e., in such a way that a cost function
is minimised. Matching problems have been given much attention in computer science
and statistical physics. For this project, we look at two sets each of n random points
taking values in a box [0, 1]d of d dimensions.

Since the original paper of Ajtai–Komlós–Tusnády [1], there have been several proofs
(see [5, Section 4.5]) of the matching upper and lower bounds as given by (variations
on) the following theorem:

Theorem 1. Let X1, . . . , Xn and Y1, . . . , Yn be independently uniformly distributed
on [0, 1]d. Define the transportation cost

cn,p,d := E min
π∈Sn

1

n

n∑
i=1

∣∣Xi − Yπ(i)
∣∣p ,

where Sn is the permutation group on on {1, . . . , n}, and the absolute value denotes
the d-Euclidean distance. The following asymptotics hold:

cn,p,d ∼


n−p/2 d = 1

(log(n))
p/2

n−p/2 d = 2

n−p/d d ≥ 3

.

Here, an ∼ bn means that lim supn an/bn and lim supn bn/an are both bounded.
A particularly short proof was given in [3]. Obviously, the critical behaviour happens

in dimension d = 2. For the p = d = 2 case, it was shown relatively recently in [2] via

PDE approach that the limit itself exists (the lim sup matches the lim inf at (2π)
−1).

This was based on heuristics given in [4]. Limits are known to exist for d ≥ 3 when
p < d/2.

The goal of this project is twofold:

(i) To understand how the proofs of Theorem 1 are related to each other. This will
introduce serve to introduce concepts such as empirical measures, Kantorovich
duality, among others.

(ii) Numerically to test whether np/dcn,p,d has a limit as n → ∞ for d ≥ 3,
p ≥ d/2, and explore analogous questions for d = 2, p 6= 2. It would be
very interesting to be able numerically to see a rate of convergence, beyond
the limit proven for d = p = 2, and to conjecture some lower order terms for
ncn,2,2/ log(n)− (2π)

−1 (see also [2, Section 6]).
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