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1 Background Review: ODE in R?

Consider the Ordinary Differential Equation (ODE)

d
X0 =0t X(1), X(0)=Xo¢€ RY, (1.1)
where b is the coefficient b : [0, 00) x R? — R

The classical existence theory for (1.1) asserts that a locally Lipschitz condition on b(¢, -) implies the existence and
uniqueness of a local-in-time solution. Additional conditions such as linear growth can ensure the existence of such a
solution for all time, i.e., a globally existing solution.

2 Target 1: ODE in Hilbert Space H

To extend the previous theory to infinite-dimensional spaces, we consider

d
where H is a separable Hilbert space, encompassing the finite-dimensional space case R?. Similar results will be
derived in this case, with emphasis on the distinctions that arise.

3 Target 2: Application to Certain PDEs

With the theory developed in Target 1, we can handle certain partial differential equations (PDEs). For instance,
consider the following SPDE:
Ou= (I —02)" (u? +u?2), u(0)=uo € H®, (3.1

where H*® is the Sobolev space with index s and I is the identity mapping. We will explain how this can be covered by
the theory in Target 1 and how to verify the conditions outlined in Target 1.

4 Possible Target 3: Solving Fluid-type Equations

Finally, contingent upon the student’s progress and feedback, there exists the potential to delve deeper in this
direction. The groundwork laid in Target 1 serves as the initial stride towards tackling real-world physical partial
differential equations (PDEs), exemplified by the Burgers’ equation

up = —uty, u(0)=wuy € H". 4.1

However, direct application of Target 1 to solve (4.1) is unfeasible due to the non-invariance of uu, in H®, rendering
(4.1) incapable of being regarded as an ordinary differential equation (ODE) in H®. In this phase, we will elucidate
how to amalgamate the principles from Target 1 with the mollifying method to effectively address (4.1).

5 Summary and necessary background

This project is designed to be an engaging and accessible journey for those intrigued by analysis and differential
equations. It serves as a significant conduit, transitioning learners from the realms of calculus and elementary analysis
to the more complex territories of functional analysis and the study of infinite-dimensional spaces. Upon completion,
students are expected to be more familiar with some advanced mathematical concepts/techniques, including but not
limited to, ODEs in Hilbert spaces, mollifier and Sobolev spaces.

It is highly recommend that potential students should have a solid understanding of the existence theory of ODEs
and a foundational knowledge of Hilbert spaces. More specific, the student should have taken MAT2400 and/or
MAT3400. It is better that the students have taken MAT3360 and/or MAT4301.
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Figure 1: A brief summary of Target 1 and Target 2.
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