
3.1.6
Show using unique factorization into primes that we can compute the lcm as follows. Once we have
factored the integers involved as a product of the pairwise distinct primes pi, ß = 1, . . . , k:

lcm(
k∏

i=1
pei

i ,

k∏
i=1

pfi

i ) =
k∏

i=1
phi

i , where hi = max(ei, fi)

Solution:

Both
∏k

i=1 p
ei
i and

∏k
i=1 p

fi

i ) divide
∏k

i=1 p
hi
i , since for each i, hi ≥ ei and hi ≥ fi. So we now

assume that c is a common multiple of
∏k

i=1 p
ei
i and

∏k
i=1 p

fi

i ). After possibly adding terms of the
form p0

j , we can assume that c =
∏k

i=1 p
gi

i . Since c is a multiple of
∏k

i=1 p
ei
i we must have gi ≥ ei

for all i. Similarily gi ≥ fi for all i. Therefore, gi ≥ hi for all i and c is a multiple of
∏k

i=1 p
hi
i .

Hence
∏k

i=1 p
hi
i is the least common multiple.

6.2.1
Show that if we assume that the positive integers m1, . . . ,mr satsify gcd(m1, . . . ,mr) = 1, and
m = m1, . . . ,mr, then the rings Zm and Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmr

are isomorphic.

Solution:

The map f : Zm → Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmr
defined by

f(x mod m) = (x mod m1, . . . , x mod mr)

is a ring homomorphism (for the same reason as in the proof of Theorem 6.2.1). To prove the desired
isomorphism, we will check that ker f = 0. The result then follows from the first ring isomorphism
theorem. Let a ∈ ker f . Then

m1|a,m2|a, · · · ,mr|a =⇒
lcm(m1, . . . ,mr)|a =⇒
m1m2 · · ·mr = m|a

where in the final transition we use exercise 3.1.7 and exercies 3.1.8. (Personally I suspect the
reference to exercise 3.1.6 should have been to exercise 3.1.8) From these exercises we see that

lcm(m1, . . . ,mr) = m1m2 · · ·mr

gcd(m1,m2, . . . ,mr) = m1m2 ·m2

6.2.2
Draw the analogous figures for Z35.

Solution:

Draw the Cayley graphs X(Z35, {±1}) and X(Z35, {5, 30, 7, 28}), where the latter graph is the same
as X(Z35, {±5,±7})
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2.3.11
Show that if m and n satisfy gcdm,n = 1, then Euler’s function satisfies φ(mn) = φ(m)φ(n).

Solution:

By the Chinese remainder theorem, the map f : Zmn → Zm⊕Zn sending x mod mn to (x mod m,x
mod n) is an isomorphism. Since φ(k) = |Zk|, we are done if we can show that the restriction of
f , g : Z∗

mn → Z∗
m ⊕ Z∗

n sending x mod mn to (x mod m,x mod n) is an isomorphism. Since the
map f preserves multiplication, it takes units to units, so g is well-defined. The map f must also
take non-units to non-units, so g must be surjective. Finally, since f is injective, so is its restriction
g. We conlclude that:

φ(mn) = |Z∗
mn| = |Z∗

m ⊕ Z∗
n| = |Z∗

m||Z∗
n| = φ(m)φ(n)

2.3.12
Use the preceding exercise (and exercise 2.3.3) to prove equation (2.4) for φ(pe1

1 p
e2
2 · · · per

r )

Solution:

Equation (2.4) is:

φ(pe1
1 p

e2
2 · · · per

r ) = φ(pe1
1 )φ(pe2

2 ) · · ·φ(per
r ) = (pe1

1 − p
e1−1
1 )(pe2

2 − p
e2−1
2 ) · (per

r − per−1
r )

The first equality follows from (2.3.11) and the second from (2.3.3)

6.3.6
a) Find all roots of f(x) = 3x2 + x+ 4 in Z7 by the process of substituting all elements of Z7.
b) Find all roots of the polynomial f(x) in part a) using the quadratic formula for Z7. Do your
answers agree? Should they?

Solution:

a)

f(0) = 3 · 02 + 0 + 4 = 4
f(1) = 3 · 12 + 1 + 4 = 1
f(2) = 3 · 22 + 2 + 4 = 4
f(3) = 3 · 32 + 3 + 4 = 6
f(4) = 3 · 42 + 4 + 4 = 0
f(5) = 3 · 52 + 5 + 4 = 0
f(6) = 3 · 62 + 6 + 4 = 6

so there are no roots of f in Z7
b) Since 2 is a unit in Z7 we can use the quadratic formula. This gives that the roots of f are:

r = −1±
√

1− 4 · 3 · 4
6 = −1±

√
2

6 = 1±
√

2 = 1± 3 = {4, 5}

since 32 = 2 in Z7.
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6.3.7
Suppose that D ∈ Z+ is not a square: that is, D 6= n2, for any n ∈ Z. Set Q[

√
D] = {x+y

√
D|x, y ∈

Q}. Show that Q[
√
D] is a field.

Solution:

Q is clearly a ring, so it suffices to prove that every non-zero element of Q has a multiplicative
inverse. We use the same conjugation trick you know from the complex numbers.

(x+ y
√
D)−1 = x− y

√
D

x2 − y2D

if this fraction is defined, since

(x+ y
√
D)x− y

√
D

x2 − y2D
= x2 − y2D

x2 − y2D
= 1.

The fraction is defined if x2 − y2D 6= 0. If x2 − y2D = 0, then ( x
y )2 = D. But this cannot happen

since D ∈ Z+ is not the square of an integer, and therefore cannot be the square of a rational
number.

6.3.10
Show that, for a prime p, the multiplicative group Z∗

p is cyclic.

Solution:

Let r be the maximal order of an element of Z∗
p. From the hint get that since Z∗

p is abelian, and if
x, y are elements if Z∗

p, there is an element of order lcm |x|, |y|. It then follows that xr = 1 for all
x ∈ Z∗

p. To see this, let x have maximal order r, and assume for contradiction that yr 6= 1. Then |y|
does not divide r, so lcm |x|, |y| must be strictly greater than r.

The polynomial xr − 1 over the field Zp therefore has p − 1 roots, which is only possible if
r ≥ p− 1. On the other hand, we know that r ≤ |Z∗

p| = p− 1, since the order of an element always
divides the order of the group. We therefore conclude that there is an element in Z∗

p of order p− 1,
so Z∗

p is cyclic.
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