3.1.6

Show using unique factorization into primes that we can compute the lcm as follows. Once we have factored the integers involved as a product of the pairwise distinct primes p_i , $\beta = 1, \ldots, k$:

$$
\operatorname{lcm}(\prod_{i=1}^{k} p_i^{e_i}, \prod_{i=1}^{k} p_i^{f_i}) = \prod_{i=1}^{k} p_i^{h_i}, \text{ where } h_i = \max(e_i, f_i)
$$

Solution:

Both $\prod_{i=1}^k p_i^{e_i}$ and $\prod_{i=1}^k p_i^{f_i}$ divide $\prod_{i=1}^k p_i^{h_i}$, since for each i, $h_i \ge e_i$ and $h_i \ge f_i$. So we now assume that *c* is a common multiple of $\prod_{i=1}^{k} p_i^{e_i}$ and $\prod_{i=1}^{k} p_i^{f_i}$. After possibly adding terms of the form p_j^0 , we can assume that $c = \prod_{i=1}^k p_i^{g_i}$. Since c is a multiple of $\prod_{i=1}^k p_i^{e_i}$ we must have $g_i \ge e_i$ for all *i*. Similarly $g_i \ge f_i$ for all *i*. Therefore, $g_i \ge h_i$ for all *i* and *c* is a multiple of $\prod_{i=1}^k p_i^{h_i}$. Hence $\prod_{i=1}^{k} p_i^{h_i}$ is the least common multiple.

6.2.1

Show that if we assume that the positive integers m_1, \ldots, m_r satsify $gcd(m_1, \ldots, m_r) = 1$, and $m = m_1, \ldots, m_r$, then the rings \mathbb{Z}_m and $\mathbb{Z}_{m1} \oplus \mathbb{Z}_{m_2} \oplus \cdots \oplus \mathbb{Z}_{m_r}$ are isomorphic.

Solution:

The map $f: Z_m \to \mathbb{Z}_{m_1} \oplus \mathbb{Z}_{m_2} \oplus \cdots \oplus \mathbb{Z}_{m_r}$ defined by

 $f(x \mod m) = (x \mod m_1, \ldots, x \mod m_r)$

is a ring homomorphism (for the same reason as in the proof of Theorem 6.2.1). To prove the desired isomorphism, we will check that ker $f = 0$. The result then follows from the first ring isomorphism theorem. Let $a \in \text{ker } f$. Then

$$
m_1|a, m_2|a, \cdots, m_r|a \implies
$$

$$
lcm(m_1, \ldots, m_r)|a \implies
$$

$$
m_1m_2\cdots m_r = m|a
$$

where in the final transition we use exercise 3.1.7 and exercies 3.1.8. (Personally I suspect the reference to exercise 3.1.6 should have been to exercise 3.1.8) From these exercises we see that

lcm
$$
(m_1, ..., m_r)
$$
 = $\frac{m_1 m_2 \cdots m_r}{\gcd(m_1, m_2, ..., m_r)}$ = $m_1 m_2 \cdot m_2$

6.2.2

Draw the analogous figures for \mathbb{Z}_{35} .

Solution:

Draw the Cayley graphs $X(\mathbb{Z}_{35}, \{\pm 1\})$ and $X(\mathbb{Z}_{35}, \{5, 30, 7, 28\})$, where the latter graph is the same as $X(\mathbb{Z}_{35}, \{\pm 5, \pm 7\})$

2.3.11

Show that if *m* and *n* satisfy gcd *m*, *n* = 1, then Euler's function satisfies $\phi(mn) = \phi(m)\phi(n)$.

Solution:

By the Chinese remainder theorem, the map $f: \mathbb{Z}_{mn} \to \mathbb{Z}_m \oplus \mathbb{Z}_n$ sending x mod mn to $(x \mod m, x)$ mod *n*) is an isomorphism. Since $\phi(k) = |\mathbb{Z}_k|$, we are done if we can show that the restriction of $f, g: \mathbb{Z}_{mn}^* \to \mathbb{Z}_m^* \oplus \mathbb{Z}_n^*$ sending *x* mod *mn* to $(x \mod m, x \mod n)$ is an isomorphism. Since the map *f* preserves multiplication, it takes units to units, so *g* is well-defined. The map *f* must also take non-units to non-units, so *g* must be surjective. Finally, since *f* is injective, so is its restriction *g*. We conlclude that:

$$
\phi(mn) = |\mathbb{Z}_{mn}^*| = |\mathbb{Z}_m^* \oplus \mathbb{Z}_n^*| = |\mathbb{Z}_m^*| |\mathbb{Z}_n^*| = \phi(m)\phi(n)
$$

2.3.12

Use the preceding exercise (and exercise 2.3.3) to prove equation (2.4) for $\phi(p_1^{e_1}p_2^{e_2}\cdots p_r^{e_r})$

Solution:

Equation (2.4) is:

$$
\phi(p_1^{e_1}p_2^{e_2}\cdots p_r^{e_r})=\phi(p_1^{e_1})\phi(p_2^{e_2})\cdots \phi(p_r^{e_r})=(p_1^{e_1}-p_1^{e_1-1})(p_2^{e_2}-p_2^{e_2-1})\cdot (p_r^{e_r}-p_r^{e_r-1})
$$

The first equality follows from (2.3.11) and the second from (2.3.3)

6.3.6

a) Find all roots of $f(x) = 3x^2 + x + 4$ in \mathbb{Z}_7 by the process of substituting all elements of \mathbb{Z}_7 . b) Find all roots of the polynomial $f(x)$ in part a) using the quadratic formula for \mathbb{Z}_7 . Do your answers agree? Should they?

Solution:

a)

so there are no roots of f in \mathbb{Z}_7

b) Since 2 is a unit in \mathbb{Z}_7 we can use the quadratic formula. This gives that the roots of f are:

$$
r = \frac{-1 \pm \sqrt{1 - 4 \cdot 3 \cdot 4}}{6} = \frac{-1 \pm \sqrt{2}}{6} = 1 \pm \sqrt{2} = 1 \pm 3 = \{4, 5\}
$$

since $3^2 = 2$ in \mathbb{Z}_7 .

6.3.7

Suppose that $D \in \mathbb{Z}_+$ is not a square: that is, $D \neq n^2$, for any $n \in \mathbb{Z}$. Set $\mathbb{Q}[\sqrt{n}]$ *D*] = {*x*+*y* √ \mathbb{Z}_+ is not a square: that is, $D \neq n^2$, for any $n \in \mathbb{Z}$. Set $\mathbb{Q}[\sqrt{D}] = \{x + y\sqrt{D}|x, y \in \mathbb{Z}\}$ Q}. Show that $\mathbb{Q}[\sqrt{D}]$ is a field.

Solution:

 $\mathbb Q$ is clearly a ring, so it suffices to prove that every non-zero element of $\mathbb Q$ has a multiplicative inverse. We use the same conjugation trick you know from the complex numbers.

$$
(x + y\sqrt{D})^{-1} = \frac{x - y\sqrt{D}}{x^2 - y^2D}
$$

if this fraction is defined, since

$$
(x + y\sqrt{D})\frac{x - y\sqrt{D}}{x^2 - y^2D} = \frac{x^2 - y^2D}{x^2 - y^2D} = 1.
$$

The fraction is defined if $x^2 - y^2D \neq 0$. If $x^2 - y^2D = 0$, then $(\frac{x}{y})^2 = D$. But this cannot happen since $D \in \mathbb{Z}_+$ is not the square of an integer, and therefore cannot be the square of a rational number.

6.3.10

Show that, for a prime p , the multiplicative group \mathbb{Z}_p^* is cyclic.

Solution:

Let r be the maximal order of an element of \mathbb{Z}_p^* . From the hint get that since \mathbb{Z}_p^* is abelian, and if *x*, *y* are elements if \mathbb{Z}_p^* , there is an element of order lcm $|x|, |y|$. It then follows that $x^r = 1$ for all $x \in \mathbb{Z}_p^*$. To see this, let *x* have maximal order *r*, and assume for contradiction that $y^r \neq 1$. Then |*y*| does not divide *r*, so lcm $|x|, |y|$ must be strictly greater than *r*.

The polynomial $x^r - 1$ over the field \mathbb{Z}_p therefore has $p - 1$ roots, which is only possible if $r \geq p-1$. On the other hand, we know that $r \leq |\mathbb{Z}_p^*| = p-1$, since the order of an element always divides the order of the group. We therefore conclude that there is an element in \mathbb{Z}_p^* of order $p-1$, so \mathbb{Z}_p^* is cyclic.