
6.3.12
Suppose that Fp is the finite field with a prime number p of elements. Supposte that A and B are
non-squares in Fp. Show that Fp[

√
A] ' Fp[

√
B].

Solution:

Since AS, B are non-squares, they are non-zero. From last week, we know that F∗p is cyclic, with
generator W . A and B being non-squares is equivalent to A = W m and B = W n, where m, n are
odd integers. Therefore, A

B = W m−n is an even power of W , and therefore a square. So A = C2B,
where C = W

m−n
2 . Equipped with this fact, we can prove the main statement. In Fp[

√
B], we have

an element C
√

B such that
(C
√

B)2 = C2B = A

so this element is a square root of A. Hence Fp[
√

B] contains a subfield isomorphic to Fp[
√

A]. Since
for any element in Fp[

√
B] we can write it as:

x + y
√

B = x + yC−1C
√

B = yC−1
√

A

the subfield of Fp[
√

B] in question is in fact the whole field Fp[
√

B]

6.3.13
Assume p is prime.

a) Show that there are p−1
2 irreducible polynomials of the form

f(x) = x2 − inZp[x]

b) Show that for every prime p, there exists a field with p2 elements.

Solution:

We will assume that p is an odd prime, so the question makes sense. For the prime 2, there are 0
irreducible polynomials of this form, and not 1

2 , contradicting the statement of the exercise.

a) The polynomial f(x) is irreducible if and only if b is not a square. Since b is in the cyclic
group F∗p, with generator a, b is not a square if and only if it is an odd power of a. To find the
number of such powers, we count the number of odd integers less than or equal to the order of
a = p − 1, which is an even number, to get that there are p−1

2 non-square b, and therefore
equally many irreducible polynomials of the desired form.

b) Since there is a polynomial x2 − b, which is irreducible, the quotient Fp[x]/(x2 − b) ' Fp[
√

b]
is a field with the desired number of elements.

Bonus question: Is there a field with 4 elements?

6.4.5
What is the field of fractions of Z5?
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Solution:

The field of fractions is defined as the equivalence classes of pairs a
b with a ∈ Z5, b ∈ Z∗5 and

equivalence relation
a

b
∼ c

d
iff ad = bc

We will prove that the field of fractions of Z5 is equal to Z5 by proving that each of the equivalence
classes has a unique representative of the form a

1 for some a. Let a
b be a fraction. Since Z5 is a field,

we can find a multiplicative inverse b−1 ∈ Z5. We check that a
b '

b−1a
1 , where b−1a ∈ Z5, so we

have our representive. The representative is unique, since if a
1 ∼

b
1 , the equivalence relation states

that a = b. It follows from the rules for adding and multiplying fractions that a
1 + b

1 = a+b
1 and

a
1

b
1 = ab

1 , which completes the proof that the fraction field of Z5 is Z5 itself.

6.4.6
Show that the field of fractions of an integral domain D is unique up to (unique) isomorphism.

Solution:

Assume F : D → D′ is an isomorphism of integral domains, with fractions field K, K ′ respec-
tively. Then G : K → K ′ defined by G(a

b ) = F (a)
F (b) is an isomorphism. Checking that G is a field

homomorphism is straightforward:

G(a

b
+ c

d
) = G(ad + bc

bd
) = F (ad + bc)

F (bd) = F (a)
F (b) + F (c)

F (d)

G(a

b

c

d
) = G(ac

bd
) = F (ab)

F (cd) = F (a)
F (b)

F (c)
F (d)

G is surjective, since for any a′

b′ ∈ K ′, there exists a ∈ D, b ∈ D∗ such that F (a) = a′, F (b) = b′,
and therefore G(a

b ) = a′

b′ . Finally G is injective since G(a
b = 0), then F (a) = 0, so since F is an

isomorphism, F (a) = 0.
(We can recover F from G by restricting G to the subring of elements of the form a

1 , which
is isomorphic to D. Hence, for any two fields of fractions for a single integral domain D, there is
a unique isomorphisms of the fields of fractions that restricts to the identity isomorphism of the
subring of elements of the form a

1 )

6.4.11
Consider the integral domain Z[

√
5]. What is the field of fractions for Z[

√
5]?

Solution:

The field Q[
√

5] is clearly a subfield of the field of fractions of Z[
√

5]. We will show that the field of
fractions is in fact Q[

√
5] We have the following equivalence of fractions:

a + b
√

5
c + d

√
5

= (a + b
√

5)(c− d
√

5)
(c + d

√
5)(cd

√
5)

= ac− 5bd + (bd− ad)
√

5
c2 − 5d2
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where the rightmost fraction is always defined since 5 is not a square, hence c2 − 5d2 is never zero.
On the other hand, the rightmost fraction can be rewritten as

ac− 5bd

c2 − 5d2 + bd− ad

c2 − 5d2

√
5

which is an element of Q[
√

5].

7.4.5
Is x4 + 1 irreducible over F3?

Solution:

There are three elements of F3, namely {−1, 0, 1}. We check that no fourth power is equal to -1. So
the polynomial has no degree 1 factors. There are three monic irreducible polynomials of degree 2
in F3[x], x2 + 1, x2 + x− 1 and x2 − x− 1. We can compute that:

(x2 + x− 1)(x2 − x− 1) = x4 − 3x2 + 1 = x4 + 1

so the polynomial is not irreducible.

7.4.6
Is x4 + 1 irreducible over F5?

Solution:

If i is a square root of −1, we have in general:

(x2 + i)(x2 − i) = x4 + 1

In Z5, 2 is a square root of −1, so:

x4 + 1 = (x2 + 2)(x2 − 2)

7.4.7
Show that if K is an extension field of F and there is a transcendental element a ∈ K over F , then
K is an infinite-dimensional vector space over F . In fact, show that F (a) is isomorphic to the field
of fractions of the polynomial ring F [x]. This is a case in which F (a) 6= F [a].

Solution:

Consider the homomorphism f : F [x]→ K defined by x 7→ a. The image of f is F [a]. Furthermore
f must be injective, since otherwise any element in the kernel of would prove that a is algebraic. So
F [a] is isomorphic to F [x], and therefore F (a) is isomorphic to F (x). To prove the main statement
of the exercise, consider the elements 1, a, a2, a3, · · · ∈ K. These are all distinct, since F (a) is
isomorphic to F (x), and must be linearly independent over F , since otherwise a non-trivial linear
dependence would prove that a is algebraic.
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7.4.8
Suppose F is a finite field of characteristic p. Show that every element of F is algebraic over Fp.

Solution:

First note that F contains a subfield isomorphic to Fp, namely the one generated by 1. Now consider
the group F ∗ of units in F . Since F is finite, let k be the order of F ∗. Then for any x ∈ F ∗, xk = 1.
Thus, xk − 1 = 0 for all x ∈ F ∗, proving that all elements of F are algebraic. (Since 0 is obviously
algebraic.)

7.4.11
Represent the field Q(e 2πi

3 ) as a quotient of of Q[x]/(f(x)). Note that ω = e
2πi

3 satisfies ω3 = 1, but
ωn 6= 1 for 0 < n < 3. Thus ω is called a primitive third root of unity.

Solution:

The polynomial x3 − 1 has a single root over Q, specifically 1 is a root. We have the polynomial
divison x3 − 1 : (x− 1) = x2 + x + 1, and this polynomial is irreducible over Q. Also e

2πi
3 is a root

of x2 + x + 1, since it is a root of x3 − 1. Since it has degree 2, x2 + x + 1 must therefore be the
minimal polynomial of e

2πi
3 So Q(e 2πi

3 ) ' Q[x]/(x2 + x + 1) (Proposition 7.4.2).

7.4.12
Do the analog of the preceding exercise but with Q replaced with F2.

Solution:

Again x2 + x + 1 is a minimal polynomial for a primitive third root of unity. Since 12 + 1 + 1 6= 0
and 02 + 0 + 1 6= 0, the polynomial is irreducible. To see that it is a minimal polynomial for a third
root of unity, let ω be a root of x2 + x + 1. If a2 or a is equal to 1, then a2 + a + 1 is equal to either
a or a2. (Remember we work in characteristic 2), contradicting that a is a root of x2 + x + 1. We
now compute a3. Since a2 = −a− 1 = a + 1, we have

a3 = a(a + 1) = a2 + a = a2 + a− 0 = a2 + a− (a2 + a + 1) = −1 = 1

Thus, x2 + x + 1 is a minimal polynomial for ω a primitive root of unity, and we get

F2(ω) ' Q[x]/(x2 + x + 1)
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