6.3.12

Suppose that \mathbb{F}_p is the finite field with a prime number *p* of elements. Supposte that *A* and *B* are non-squares in \mathbb{F}_p . Show that $F_p[\sqrt{A}] \simeq F_p[\sqrt{B}]$.

Solution:

Since AS, B are non-squares, they are non-zero. From last week, we know that \mathbb{F}_p^* is cyclic, with generator *W*. *A* and *B* being non-squares is equivalent to $A = W^m$ and $B = W^n$, where m, n are odd integers. Therefore, $\frac{A}{B} = W^{m-n}$ is an even power of *W*, and therefore a square. So $A = C^2B$, where $C = W^{\frac{m-n}{2}}$. Equipped with this fact, we can prove the main statement. In $\mathbb{F}_p[\sqrt{B}]$, we have an element $C\sqrt{B}$ such that √

$$
(C\sqrt{B})^2 = C^2B = A
$$

so this element is a square root of *A*. Hence $\mathbb{F}_p[\sqrt{B}]$ contains a subfield isomorphic to $\mathbb{F}_p[\sqrt{B}]$ are root of A. Hence $\mathbb{F}_p[\sqrt{B}]$ contains a subfield isomorphic to $\mathbb{F}_p[\sqrt{A}]$. Since for any element in $\mathbb{F}_p[\sqrt{B}]$ we can write it as:

$$
x + y\sqrt{B} = x + yC^{-1}C\sqrt{B} = yC^{-1}\sqrt{A}
$$

the subfield of $\mathbb{F}_p[\sqrt{B}]$ in question is in fact the whole field $\mathbb{F}_p[\sqrt{B}]$ *B*]

6.3.13

Assume *p* is prime.

a) Show that there are $\frac{p-1}{2}$ irreducible polynomials of the form

$$
f(x) = x^2 - in\mathbb{Z}_p[x]
$$

b) Show that for every prime p , there exists a field with p^2 elements.

Solution:

We will assume that p is an odd prime, so the question makes sense. For the prime 2, there are 0 irreducible polynomials of this form, and not $\frac{1}{2}$, contradicting the statement of the exercise.

- a) The polynomial $f(x)$ is irreducible if and only if *b* is not a square. Since *b* is in the cyclic group \mathbb{F}_p^* , with generator *a*, *b* is not a square if and only if it is an odd power of *a*. To find the number of such powers, we count the number of odd integers less than or equal to the order of $a = p - 1$, which is an even number, to get that there are $\frac{p-1}{2}$ non-square *b*, and therefore equally many irreducible polynomials of the desired form.
- b) Since there is a polynomial $x^2 b$, which is irreducible, the quotient $\mathbb{F}_p[x]/(x^2 b) \simeq \mathbb{F}_p[\sqrt{2}]$ *b*] is a field with the desired number of elements.

Bonus question: Is there a field with 4 elements?

6.4.5

What is the field of fractions of \mathbb{Z}_5 ?

Solution:

The field of fractions is defined as the equivalence classes of pairs $\frac{a}{b}$ with $a \in Z_5$, $b \in Z_5^*$ and equivalence relation

$$
\frac{a}{b} \sim \frac{c}{d} \text{ iff } ad = bc
$$

We will prove that the field of fractions of \mathbb{Z}_5 is equal to \mathbb{Z}_5 by proving that each of the equivalence classes has a unique representative of the form $\frac{a}{1}$ for some *a*. Let $\frac{a}{b}$ be a fraction. Since \mathbb{Z}_5 is a field, we can find a multiplicative inverse $b^{-1} \in \mathbb{Z}_5$. We check that $\frac{a}{b} \simeq \frac{b^{-1}a}{1}$, where $b^{-1}a \in \mathbb{Z}_5$, so we have our representive. The representative is unique, since if $\frac{a}{1} \sim \frac{b}{1}$, the equivalence relation states that $a = b$. It follows from the rules for adding and multiplying fractions that $\frac{a}{1} + \frac{b}{1} = \frac{a+b}{1}$ and $\frac{a}{1} \frac{b}{1} = \frac{ab}{1}$, which completes the proof that the fraction field of \mathbb{Z}_5 is \mathbb{Z}_5 itself.

6.4.6

Show that the field of fractions of an integral domain *D* is unique up to (unique) isomorphism.

Solution:

Assume $F: D \to D'$ is an isomorphism of integral domains, with fractions field K, K' respectively. Then $G: K \to K'$ defined by $G(\frac{a}{b}) = \frac{F(a)}{F(b)}$ is an isomorphism. Checking that *G* is a field homomorphism is straightforward:

$$
G(\frac{a}{b} + \frac{c}{d}) = G(\frac{ad + bc}{bd}) = \frac{F(ad + bc)}{F(bd)} = \frac{F(a)}{F(b)} + \frac{F(c)}{F(d)}
$$

$$
G(\frac{a}{b}\frac{c}{d}) = G(\frac{ac}{bd}) = \frac{F(ab)}{F(cd)} = \frac{F(a)}{F(b)}\frac{F(c)}{F(d)}
$$

G is surjective, since for any $\frac{a'}{b'}$ $\frac{a'}{b'} \in K'$, there exists $a \in D, b \in D^*$ such that $F(a) = a', F(b) = b'$, and therefore $G(\frac{a}{b}) = \frac{a'}{b'}$ $\frac{a'}{b'}$. Finally *G* is injective since $G(\frac{a}{b} = 0)$, then $F(a) = 0$, so since *F* is an isomorphism, $F(a) = 0$.

(We can recover F from G by restricting G to the subring of elements of the form $\frac{a}{1}$, which is isomorphic to *D*. Hence, for any two fields of fractions for a single integral domain *D*, there is a unique isomorphisms of the fields of fractions that restricts to the identity isomorphism of the subring of elements of the form $\frac{a}{1}$)

6.4.11

Consider the integral domain $\mathbb{Z}[\sqrt{5}]$. What is the field of fractions for $\mathbb{Z}[\sqrt{5}]$ 5]?

Solution:

The field $\mathbb{Q}[\sqrt{5}]$ is clearly a subfield of the field of fractions of $\mathbb{Z}[\sqrt{5}]$ arly a subfield of the field of fractions of $\mathbb{Z}[\sqrt{5}]$. We will show that the field of fractions is in fact $\mathbb{Q}[\sqrt{5}]$ We have the following equivalence of fractions:

$$
\frac{a+b\sqrt{5}}{c+d\sqrt{5}} = \frac{(a+b\sqrt{5})(c-d\sqrt{5})}{(c+d\sqrt{5})(cd\sqrt{5})} = \frac{ac-5bd+(bd-ad)\sqrt{5}}{c^2-5d^2}
$$

where the rightmost fraction is always defined since 5 is not a square, hence $c^2 - 5d^2$ is never zero. On the other hand, the rightmost fraction can be rewritten as

$$
\frac{ac - 5bd}{c^2 - 5d^2} + \frac{bd - ad}{c^2 - 5d^2}\sqrt{5}
$$

which is an element of $\mathbb{Q}[\sqrt{2}]$ 5].

7.4.5

Is $x^4 + 1$ irreducible over \mathbb{F}_3 ?

Solution:

There are three elements of \mathbb{F}_3 , namely $\{-1, 0, 1\}$. We check that no fourth power is equal to -1. So the polynomial has no degree 1 factors. There are three monic irreducible polynomials of degree 2 in $\mathbb{F}_3[x]$, $x^2 + 1$, $x^2 + x - 1$ and $x^2 - x - 1$. We can compute that:

$$
(x2 + x - 1)(x2 - x - 1) = x4 - 3x2 + 1 = x4 + 1
$$

so the polynomial is not irreducible.

7.4.6

Is $x^4 + 1$ irreducible over \mathbb{F}_5 ?

Solution:

If *i* is a square root of -1 , we have in general:

$$
(x^2 + i)(x^2 - i) = x^4 + 1
$$

In \mathbb{Z}_5 , 2 is a square root of -1 , so:

$$
x^4 + 1 = (x^2 + 2)(x^2 - 2)
$$

7.4.7

Show that if *K* is an extension field of *F* and there is a transcendental element $a \in K$ over *F*, then *K* is an infinite-dimensional vector space over *F*. In fact, show that $F(a)$ is isomorphic to the field of fractions of the polynomial ring $F[x]$. This is a case in which $F(a) \neq F[a]$.

Solution:

Consider the homomorphism $f: F[x] \to K$ defined by $x \mapsto a$. The image of f is $F[a]$. Furthermore *f* must be injective, since otherwise any element in the kernel of would prove that *a* is algebraic. So $F[a]$ is isomorphic to $F[x]$, and therefore $F(a)$ is isomorphic to $F(x)$. To prove the main statement of the exercise, consider the elements $1, a, a^2, a^3, \dots \in K$. These are all distinct, since $F(a)$ is isomorphic to $F(x)$, and must be linearly independent over F , since otherwise a non-trivial linear dependence would prove that *a* is algebraic.

7.4.8

Suppose *F* is a finite field of characteristic *p*. Show that every element of *F* is algebraic over \mathbb{F}_p .

Solution:

First note that *F* contains a subfield isomorphic to \mathbb{F}_p , namely the one generated by 1. Now consider the group F^* of units in F. Since F is finite, let k be the order of F^* . Then for any $x \in F^*$, $x^k = 1$. Thus, $x^k - 1 = 0$ for all $x \in F^*$, proving that all elements of *F* are algebraic. (Since 0 is obviously algebraic.)

7.4.11

Represent the field $\mathbb{Q}(e^{\frac{2\pi i}{3}})$ as a quotient of of $\mathbb{Q}[x]/(f(x))$. Note that $\omega = e^{\frac{2\pi i}{3}}$ satisfies $\omega^3 = 1$, but $\omega^n \neq 1$ for $0 < n < 3$. Thus ω is called a *primitive third root of unity*.

Solution:

The polynomial $x^3 - 1$ has a single root over \mathbb{Q} , specifically 1 is a root. We have the polynomial divison $x^3 - 1$: $(x - 1) = x^2 + x + 1$, and this polynomial is irreducible over Q. Also $e^{\frac{2\pi i}{3}}$ is a root of $x^2 + x + 1$, since it is a root of $x^3 - 1$. Since it has degree 2, $x^2 + x + 1$ must therefore be the minimal polynomial of $e^{\frac{2\pi i}{3}}$ So $\mathbb{Q}(e^{\frac{2\pi i}{3}}) \simeq \mathbb{Q}[x]/(x^2 + x + 1)$ (Proposition 7.4.2).

7.4.12

Do the analog of the preceding exercise but with \mathbb{Q} replaced with \mathbb{F}_2 .

Solution:

Again $x^2 + x + 1$ is a minimal polynomial for a primitive third root of unity. Since $1^2 + 1 + 1 \neq 0$ and $0^2 + 0 + 1 \neq 0$, the polynomial is irreducible. To see that it is a minimal polynomial for a third root of unity, let ω be a root of $x^2 + x + 1$. If a^2 or *a* is equal to 1, then $a^2 + a + 1$ is equal to either *a* or a^2 . (Remember we work in characteristic 2), contradicting that *a* is a root of $x^2 + x + 1$. We now compute a^3 . Since $a^2 = -a - 1 = a + 1$, we have

$$
a3 = a(a + 1) = a2 + a = a2 + a - 0 = a2 + a - (a2 + a + 1) = -1 = 1
$$

Thus, $x^2 + x + 1$ is a minimal polynomial for ω a primitive root of unity, and we get

$$
F_2(\omega) \simeq \mathbb{Q}[x]/(x^2 + x + 1)
$$