
7.5.1
Fill in the details in the last example.

Solution:
The splitting field of x2 + x+ 2 over F3. Since f(x) = x2 + x+ 2 has no roots, in F3, it is irreducible
by Proposition 5.5.1. We will now check that f is primitive. Let θ be a root of f(x). The powers of
θ are:

θ0 1
θ1 θ
θ2 −θ + 1
θ3 −θ − 1
θ4 −1
θ5 −θ
θ6 θ − 1
θ7 θ + 1
θ8 1

which is eight elements, so f is primitive.
We can factor x2 + x + 2 as x2 + x + 2 = (x − θ)(x − θj). To find j, we solve the equations:

θθj = 2 = −1, −θx− θjx = x. From the table above and the first equation, we see that the only
option is j = 3, which also solves the second equation.

7.5.2
Find the splitting field of E of the polynomial f(x) = x3 + x + 1 over F2. What is the degree
[E : F2]?

Solution:
It is easy to check that f is irreducible since it has no roots in F2. Therfore, the splitting field is
F2[x]/(f(x)). The resulting field is F23 , so the degree of [E : F ] is 3.

7.5.4
Show that the formal derivative has the following familiar properties of deriviatives, for any
f, g ∈ F [x].

a) (f + g)′ = f ′ + g′

b) (fg)′ = f ′g + fg′

c) (f(x)n)′ = n(f(x)n−1)f ′(x)

Solution:
a) It suffices to check this for f = axm and g = bxn. In this case:

(f + g)′ = amxm−1 + bnxn−1 = f ′ + g′.
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b) After applying a) repeatedly, it will suffice to check for f = axm and g = bxn. In this case:

(fg′) = ab(m+ n)xm+n−1 = abmxmn−1 + abnxmn−1 = f ′g + fg′.

c) We use item b) and induction. The base case f(x)1 is clear. Assume (f(x)n−1)′ = (n −
1)(f(x)n−2)f ′(x). Then

(f(x)n)′(f(x)f(x)n−1)′ = f ′(x)f(x)n−1 + f(x)(n− 1)(f(x)n−2)f ′(x) = n(f(x)n−1)f ′(x)

7.5.7
Show that

a) the polynomial f = x4 + x+ 1 is irreducible in F2[x]

b) the polynomial f = x4 + x+ 1 is primitive, that is, a root θ generates the multiplicative group
F16

Solution:
1. Since f has an odd number of terms, and non-zero constant term, it has no linear factors. It

remains to check that f is not a product of two irreducible degree 2 polynomials. The unique
degree 2 irreducible polynomial over F2 is x2 + x+ 1, with square (x2 + x+ 1)2 = x4 + x2 + 1.
Since this is different from f , f must be irreducible.

2. Let θ ∈ F2[x]/(f) be the image of x. We compute powers of θ:

θ0 1
θ1 θ
θ2 θ2

θ3 θ3

θ4 θ + 1
θ5 θ2 + θ
θ6 θ3 + θ2

θ7 θ3 + θ + 1
θ8 θ2 + 1
θ9 θ3 + θ
θ10 θ2 + θ + 1
θ11 θ3 + θ2 + θ
θ12 θ3 + θ2 + θ + 1
θ13 θ3 + θ2 + 1
θ14 θ3 + 1
θ15 1

7.5.8
Prove that if m|n, then the polynomial (xpm−1 − 1) divides (xpn−1 − 1) in Fp[x].
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Solution:
We follow the hint. We first prove the following formula:

xsk − 1
xs − 1 = (xs)k−1 + (xs)k−2 + · · ·+ xs + 1.

The well-known formula for the sum of a geometric progression is:

k∑
i=0

zi = zk−1 − 1
z − 1 (1)

Let km = n. Replacing z with pm in the formula above, we see that pn − 1 divides pm − 1, say
pn − 1 = lpm − 1.

Now, replacing z with xpm−1 and k with l in (1), we get that

(xpn−1 − 1) = (xpm−1 − 1)(
l∑

i=0
(xpm−1)i)

7.5.10
Find all the generators of the multiplicative group of units of F9 ' F3[i], where i2 + 1 = 0.

Solution:
The multiplicative group of units is a cyclic group of order 8, so it has φ(8) = 4 generators. One
generator is (1 + i). The quickest way to check this is to check that the order of (1 + i) is 8 by
computing (1 + i)2 = 2i, (2i)2 = i2 = −1, (−1)2 = 1. From our knowledge of the cyclic group of
order 8, we know that the other generators are: (1 + i)3 = 1− i, (1 + i)5 = −1− i, (1 + i)7 = −1 + i

7.5.13
Check that x8 − x = x(x− 1)(x3 + x+ 1)(x3 + x2 + 1) over F2 by multiplying the polynomial out
on the right.

Solution:
A straightforward compuation gives

x(x− 1)(x3 + x+ 1)(x3 + x2 + 1) = x8 + 2x5 − 2x4 − x

After remembering that we are working in F2, we see that this is the same as x8 − x.

7.5.14
Show that Fpn is the splitting field of some irreducible polynomial of degree n over Fp.
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Solution:
We know that f = xpn − x factors over Fp as the product of all the distinct monic irreducible
polynomials of degree dividing n. (p.239) Take any irreducible degree n factor g of f . Then
Fpn ' F[x]/g. Since f splits over Fpn , g must also split over Fpn since it is a factor of f . On the
other hand, there must be a some factor g of f that does not split over any field smaller than Fpn ,
since Fpn is the splitting field of f . This g must have degree n.

7.5.15
Factor the polynomial x9−x completely into irreducible factors over F3. Which factors are primitive?

Solution:
We use repeatedly that (a2 − 1) = (a+ 1)(a− 1) over any field, and recall that we factored (x4 + 1)
into irreducible factors last week to get:

x9 − x = x(x8 − 1) = x(x4 − 1)(x4 + 1) = x(x2 − 1)(x2 + 1)(x2 + x− 1)(x2 − x− 1)
= x(x− 1)(x+ 1)(x2 + 1)(x2 + x− 1)(x2 − x− 1)

We separate these into primitive and non-primitive:

primitive non-primitive
x+ 1 x

x2 + x− 1 x− 1
x2 − x− 1 x2 + 1

x2 + 1 is not primitive, since the roots have order 4, not 8. The two other degree 2 polynomials are
primitive. We checked one of them in 7.5.1 and checking the other is analogous.

Appendix
We prove the following statement, used in 7.5.14: The polynomial f = xpn−x in Fp[x] is the product
of all monic irreducible polyomials of degree dividing n.

Solution
We will make frequent use of the following lemma:

Lemma 0.1. Let g be a monic irreducible polynomial with a root α. Then g is the unique monic
minimal polynomial for α

Proof. Let h be the monic minimal polynomial of α. By the division algorithm we can write
g = fh+ r for polynomials f, r, with deg(r) < deg(h). We see that r(α) must be 0, so by minimality
of h, r = 0. Thus h divides g. Since g is monic and irreducible, the only possibility is that g = h.

Let g be a monic irreducible polynomial dividing f , and let deg(g) = m. Let α be a root of g in
its splitting field. Since g is irreducible, it must be the minimal polynomial for α, and since g has
degree m, the field extension Fp(α) has degree m, so Fp(α) ' Fpm . But also, f(α) = αpn − α = 0
since g divides f , so α is an element of Fpn , the splitting field of f . Therefore Fpm ' Fp(α) ⊂ Fpn ,
so by proposition 7.5.1 m divides n.
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Conversely, assume g is a monic irreducible polynomial of degree m, where m divides n. Let
α be a root of g in its splitting field. Since g is irreducible, it must be the minimal polynomial
of α. Then [Fp(α) : Fp] = m, so Fp(α) ' Fpm ⊂ Fpn . So α ⊂ Fpn , so by Lagrange’s theorem
0 = αpn − α = f(α). Since g is the minimal polynomial for α, g must divide f . (Use the same idea
as in the proof of the lemma above)

Finally, since f has no repeated roots in its splitting field (Exercise 7.5.3) no factor can occur
more than once.
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