7.5.1

Fill in the details in the last example.

Solution:

The splitting field of $x^2 + x + 2$ over \mathbb{F}_3 . Since $f(x) = x^2 + x + 2$ has no roots, in \mathbb{F}_3 , it is irreducible by Proposition 5.5.1. We will now check that f is primitive. Let θ be a root of f(x). The powers of θ are:

> θ^0 1 θ^1 θ θ^2 $-\theta + 1$ θ^3 $-\theta - 1$ θ^4 -1 θ^5 $-\theta$ θ^6 $\theta - 1$ θ^7 $\theta + 1$ θ^8 1

which is eight elements, so f is primitive.

We can factor $x^2 + x + 2$ as $x^2 + x + 2 = (x - \theta)(x - \theta^j)$. To find j, we solve the equations: $\theta \theta^j = 2 = -1, -\theta x - \theta^j x = x$. From the table above and the first equation, we see that the only option is j = 3, which also solves the second equation.

7.5.2

Find the splitting field of E of the polynomial $f(x) = x^3 + x + 1$ over \mathbb{F}_2 . What is the degree $[E:\mathbb{F}_2]$?

Solution:

It is easy to check that f is irreducible since it has no roots in \mathbb{F}_2 . Therfore, the splitting field is $\mathbb{F}_2[x]/(f(x))$. The resulting field is \mathbb{F}_{2^3} , so the degree of [E:F] is 3.

7.5.4

Show that the formal derivative has the following familiar properties of derivatives, for any $f, g \in F[x]$.

- a) (f+g)' = f' + g'
- b) (fg)' = f'g + fg'
- c) $(f(x)^n)' = n(f(x)^{n-1})f'(x)$

Solution:

a) It suffices to check this for $f = ax^m$ and $g = bx^n$. In this case:

$$(f+g)' = amx^{m-1} + bnx^{n-1} = f' + g'$$

b) After applying a) repeatedly, it will suffice to check for $f = ax^m$ and $g = bx^n$. In this case:

$$(fg') = ab(m+n)x^{m+n-1} = abmx^{mn-1} + abnx^{mn-1} = f'g + fg'$$

c) We use item b) and induction. The base case $f(x)^1$ is clear. Assume $(f(x)^{n-1})' = (n-1)(f(x)^{n-2})f'(x)$. Then

$$(f(x)^{n})'(f(x)f(x)^{n-1})' = f'(x)f(x)^{n-1} + f(x)(n-1)(f(x)^{n-2})f'(x) = n(f(x)^{n-1})f'(x)$$

7.5.7

Show that

- a) the polynomial $f = x^4 + x + 1$ is irreducible in $\mathbb{F}_2[x]$
- b) the polynomial $f=x^4+x+1$ is primitive, that is, a root θ generates the multiplicative group \mathbb{F}_{16}

Solution:

- 1. Since f has an odd number of terms, and non-zero constant term, it has no linear factors. It remains to check that f is not a product of two irreducible degree 2 polynomials. The unique degree 2 irreducible polynomial over \mathbb{F}_2 is $x^2 + x + 1$, with square $(x^2 + x + 1)^2 = x^4 + x^2 + 1$. Since this is different from f, f must be irreducible.
- 2. Let $\theta \in \mathbb{F}_2[x]/(f)$ be the image of x. We compute powers of θ :

7.5.8

Prove that if m|n, then the polynomial $(x^{p^m-1}-1)$ divides $(x^{p^n-1}-1)$ in $\mathbb{F}_p[x]$.

Solution:

We follow the hint. We first prove the following formula:

$$\frac{x^{sk} - 1}{x^s - 1} = (x^s)^{k-1} + (x^s)^{k-2} + \dots + x^s + 1.$$

The well-known formula for the sum of a geometric progression is:

$$\sum_{i=0}^{k} z^{i} = \frac{z^{k-1} - 1}{z - 1} \tag{1}$$

Let km = n. Replacing z with p^m in the formula above, we see that $p^n - 1$ divides $p^m - 1$, say $p^n - 1 = lp^m - 1$.

Now, replacing z with x^{p^m-1} and k with l in (1), we get that

$$(x^{p^{n}-1}-1) = (x^{p^{m}-1}-1)\left(\sum_{i=0}^{l} (x^{p^{m}-1})^{i}\right)$$

7.5.10

Find all the generators of the multiplicative group of units of $\mathbb{F}_9 \simeq \mathbb{F}_3[i]$, where $i^2 + 1 = 0$.

Solution:

The multiplicative group of units is a cyclic group of order 8, so it has $\phi(8) = 4$ generators. One generator is (1 + i). The quickest way to check this is to check that the order of (1 + i) is 8 by computing $(1 + i)^2 = 2i$, $(2i)^2 = i^2 = -1$, $(-1)^2 = 1$. From our knowledge of the cyclic group of order 8, we know that the other generators are: $(1 + i)^3 = 1 - i$, $(1 + i)^5 = -1 - i$, $(1 + i)^7 = -1 + i$

7.5.13

Check that $x^8 - x = x(x-1)(x^3 + x + 1)(x^3 + x^2 + 1)$ over \mathbb{F}_2 by multiplying the polynomial out on the right.

Solution:

A straightforward compution gives

$$x(x-1)(x^{3}+x+1)(x^{3}+x^{2}+1) = x^{8}+2x^{5}-2x^{4}-x$$

After remembering that we are working in \mathbb{F}_2 , we see that this is the same as $x^8 - x$.

7.5.14

Show that \mathbb{F}_{p^n} is the splitting field of some irreducible polynomial of degree *n* over \mathbb{F}_p .

Solution:

We know that $f = x^{p^n} - x$ factors over \mathbb{F}_p as the product of all the distinct monic irreducible polynomials of degree dividing n. (p.239) Take any irreducible degree n factor g of f. Then $\mathbb{F}_{p^n} \simeq \mathbb{F}[x]/g$. Since f splits over \mathbb{F}_{p^n} , g must also split over \mathbb{F}_{p^n} since it is a factor of f. On the other hand, there must be a some factor g of f that does not split over any field smaller than \mathbb{F}_{p^n} , since \mathbb{F}_{p^n} is the splitting field of f. This g must have degree n.

7.5.15

Factor the polynomial $x^9 - x$ completely into irreducible factors over \mathbb{F}_3 . Which factors are primitive?

Solution:

We use repeatedly that $(a^2 - 1) = (a + 1)(a - 1)$ over any field, and recall that we factored $(x^4 + 1)$ into irreducible factors last week to get:

$$x^{9} - x = x(x^{8} - 1) = x(x^{4} - 1)(x^{4} + 1) = x(x^{2} - 1)(x^{2} + 1)(x^{2} + x - 1)(x^{2} - x - 1)$$
$$= x(x - 1)(x + 1)(x^{2} + 1)(x^{2} + x - 1)(x^{2} - x - 1)$$

We separate these into primitive and non-primitive:

primitivenon-primitive
$$x+1$$
 x x^2+x-1 $x-1$ x^2-x-1 x^2+1

 $x^2 + 1$ is not primitive, since the roots have order 4, not 8. The two other degree 2 polynomials are primitive. We checked one of them in 7.5.1 and checking the other is analogous.

Appendix

We prove the following statement, used in 7.5.14: The polynomial $f = x^{p^n} - x$ in $\mathbb{F}_p[x]$ is the product of all monic irreducible polynomials of degree dividing n.

Solution

We will make frequent use of the following lemma:

Lemma 0.1. Let g be a monic irreducible polynomial with a root α . Then g is the unique monic minimal polynomial for α

Proof. Let h be the monic minimal polynomial of α . By the division algorithm we can write g = fh + r for polynomials f, r, with $\deg(r) < \deg(h)$. We see that $r(\alpha)$ must be 0, so by minimality of h, r = 0. Thus h divides g. Since g is monic and irreducible, the only possibility is that g = h. \Box

Let g be a monic irreducible polynomial dividing f, and let $\deg(g) = m$. Let α be a root of g in its splitting field. Since g is irreducible, it must be the minimal polynomial for α , and since g has degree m, the field extension $\mathbb{F}_p(\alpha)$ has degree m, so $\mathbb{F}_p(\alpha) \simeq \mathbb{F}_{p^m}$. But also, $f(\alpha) = \alpha^{p^n} - \alpha = 0$ since g divides f, so α is an element of \mathbb{F}_{p^n} , the splitting field of f. Therefore $\mathbb{F}_{p^m} \simeq \mathbb{F}_p(\alpha) \subset \mathbb{F}_{p^n}$, so by proposition 7.5.1 m divides n. Conversely, assume g is a monic irreducible polynomial of degree m, where m divides n. Let α be a root of g in its splitting field. Since g is irreducible, it must be the minimal polynomial of α . Then $[\mathbb{F}_p(\alpha) : \mathbb{F}_p] = m$, so $\mathbb{F}_p(\alpha) \simeq \mathbb{F}_{p^m} \subset \mathbb{F}_{p^n}$. So $\alpha \subset \mathbb{F}_{p^n}$, so by Lagrange's theorem $0 = \alpha^{p^n} - \alpha = f(\alpha)$. Since g is the minimal polynomial for α , g must divide f. (Use the same idea as in the proof of the lemma above)

Finally, since f has no repeated roots in its splitting field (Exercise 7.5.3) no factor can occur more than once.