7.5.1

Fill in the details in the last example.

Solution:

The splitting field of $x^2 + x + 2$ over \mathbb{F}_3 . Since $f(x) = x^2 + x + 2$ has no roots, in \mathbb{F}_3 , it is irreducible by Proposition 5.5.1. We will now check that *f* is primitive. Let θ be a root of $f(x)$. The powers of *θ* are:

> *θ* $\mathbf 1$ *θ* 1 *θ θ* $-\theta + 1$ *θ* $-\theta - 1$ θ^4 -1 *θ* ⁵ −*θ θ* 6 θ − 1 *θ* 7 θ + 1 *θ* 1

which is eight elements, so *f* is primitive.

We can factor $x^2 + x + 2$ as $x^2 + x + 2 = (x - \theta)(x - \theta^j)$. To find *j*, we solve the equations: $\theta \theta^j = 2 = -1, -\theta x - \theta^j x = x$. From the table above and the first equation, we see that the only option is $j = 3$, which also solves the second equation.

7.5.2

Find the splitting field of *E* of the polynomial $f(x) = x^3 + x + 1$ over \mathbb{F}_2 . What is the degree $[E:\mathbb{F}_2]$?

Solution:

It is easy to check that f is irreducible since it has no roots in \mathbb{F}_2 . Therfore, the splitting field is $\mathbb{F}_2[x]/(f(x))$. The resulting field is \mathbb{F}_2 , so the degree of $[E: F]$ is 3.

7.5.4

Show that the formal derivative has the following familiar properties of deriviatives, for any $f, g \in F[x]$.

- a) $(f+g)' = f' + g'$
- b) $(fg)' = f'g + fg'$
- c) $(f(x)^n)' = n(f(x)^{n-1})f'(x)$

Solution:

a) It suffices to check this for $f = ax^m$ and $g = bx^n$. In this case:

$$
(f+g)' = amx^{m-1} + bnx^{n-1} = f' + g'.
$$

b) After applying a) repeatedly, it will suffice to check for $f = ax^m$ and $g = bx^n$. In this case:

$$
(fg') = ab(m+n)x^{m+n-1} = abmx^{mn-1} + abnx^{mn-1} = f'g + fg'
$$

.

c) We use item b) and induction. The base case $f(x)^{1}$ is clear. Assume $(f(x)^{n-1})' = (n 1(f(x)^{n-2})f'(x)$. Then

$$
(f(x)^{n})'(f(x)f(x)^{n-1})' = f'(x)f(x)^{n-1} + f(x)(n-1)(f(x)^{n-2})f'(x) = n(f(x)^{n-1})f'(x)
$$

7.5.7

Show that

- a) the polynomial $f = x^4 + x + 1$ is irreducible in $\mathbb{F}_2[x]$
- b) the polynomial $f = x^4 + x + 1$ is primitive, that is, a root θ generates the multiplicative group \mathbb{F}_{16}

Solution:

- 1. Since *f* has an odd number of terms, and non-zero constant term, it has no linear factors. It remains to check that *f* is not a product of two irreducible degree 2 polynomials. The unique degree 2 irreducible polynomial over \mathbb{F}_2 is $x^2 + x + 1$, with square $(x^2 + x + 1)^2 = x^4 + x^2 + 1$. Since this is different from f , f must be irreducible.
- 2. Let $\theta \in \mathbb{F}_2[x]/(f)$ be the image of *x*. We compute powers of θ :

$$
\begin{array}{c|c|lr}\n\theta^0 & & 1 & \theta \\
\theta^1 & & \theta & \theta^2 \\
\theta^2 & & \theta^2 & \theta^3 \\
\theta^4 & & \theta+1 & \theta^5 & \theta^2+\theta \\
\theta^6 & & \theta^3+\theta^2 & \theta^3+\theta^2 \\
\theta^7 & & \theta^3+\theta+1 & \theta^3+\theta^2+\theta \\
\theta^9 & & \theta^2+1 & \theta^3+\theta^2+\theta \\
\theta^{10} & & \theta^2+\theta+1 & \theta^3+\theta^2+\theta+1 \\
\theta^{11} & & \theta^3+\theta^2+\theta+1 & \theta^3+\theta^2+1 \\
\theta^{12} & & \theta^3+\theta^2+1 & \theta^3+1 & 1 \\
\theta^{13} & & \theta^3+1 & & 1\n\end{array}
$$

7.5.8

Prove that if $m|n$, then the polynomial $(x^{p^m-1}-1)$ divides $(x^{p^n-1}-1)$ in $\mathbb{F}_p[x]$.

Solution:

We follow the hint. We first prove the following formula:

$$
\frac{x^{sk}-1}{x^s-1} = (x^s)^{k-1} + (x^s)^{k-2} + \dots + x^s + 1.
$$

The well-known formula for the sum of a geometric progression is:

$$
\sum_{i=0}^{k} z^{i} = \frac{z^{k-1} - 1}{z - 1} \tag{1}
$$

Let $km = n$. Replacing *z* with p^m in the formula above, we see that $p^n - 1$ divides $p^m - 1$, say $p^{n} - 1 = lp^{m} - 1.$

Now, replacing z with x^{p^m-1} and k with l in (1), we get that

$$
(x^{p^{n}-1} - 1) = (x^{p^{m}-1} - 1)(\sum_{i=0}^{l} (x^{p^{m}-1})^{i})
$$

7.5.10

Find all the generators of the multiplicative group of units of $\mathbb{F}_9 \simeq \mathbb{F}_3[i]$, where $i^2 + 1 = 0$.

Solution:

The multiplicative group of units is a cyclic group of order 8, so it has $\phi(8) = 4$ generators. One generator is $(1 + i)$. The quickest way to check this is to check that the order of $(1 + i)$ is 8 by computing $(1+i)^2 = 2i$, $(2i)^2 = i^2 = -1$, $(-1)^2 = 1$. From our knowledge of the cyclic group of order 8, we know that the other generators are: $(1+i)^3 = 1 - i$, $(1+i)^5 = -1 - i$, $(1+i)^7 = -1 + i$

7.5.13

Check that $x^8 - x = x(x-1)(x^3 + x + 1)(x^3 + x^2 + 1)$ over \mathbb{F}_2 by multiplying the polynomial out on the right.

Solution:

A straightforward compuation gives

$$
x(x-1)(x3 + x + 1)(x3 + x2 + 1) = x8 + 2x5 - 2x4 - x
$$

After remembering that we are working in \mathbb{F}_2 , we see that this is the same as $x^8 - x$.

7.5.14

Show that \mathbb{F}_{p^n} is the splitting field of some irreducible polynomial of degree *n* over \mathbb{F}_p .

Solution:

We know that $f = x^{p^n} - x$ factors over \mathbb{F}_p as the product of all the distinct monic irreducible polynomials of degree dividing *n*. (p.239) Take any irreducible degree *n* factor *g* of *f*. Then $\mathbb{F}_{p^n} \simeq \mathbb{F}[x]/g$. Since f splits over \mathbb{F}_{p^n} , g must also split over \mathbb{F}_{p^n} since it is a factor of f. On the other hand, there must be a some factor *g* of *f* that does not split over any field smaller than \mathbb{F}_{p^n} , since \mathbb{F}_{p^n} is the splitting field of *f*. This *g* must have degree *n*.

7.5.15

Factor the polynomial $x^9 - x$ completely into irreducible factors over \mathbb{F}_3 . Which factors are primitive?

Solution:

We use repeatedly that $(a^2 - 1) = (a + 1)(a - 1)$ over any field, and recall that we factored $(x^4 + 1)$ into irreducible factors last week to get:

$$
x^{9} - x = x(x^{8} - 1) = x(x^{4} - 1)(x^{4} + 1) = x(x^{2} - 1)(x^{2} + 1)(x^{2} + x - 1)(x^{2} - x - 1)
$$

= $x(x - 1)(x + 1)(x^{2} + 1)(x^{2} + x - 1)(x^{2} - x - 1)$

We separate these into primitive and non-primitive:

$$
\begin{array}{c|c}\n\text{primitive} & \text{non-primitive} \\
\hline\nx+1 & x \\
x^2+x-1 & x-1 \\
x^2-x-1 & x^2+1\n\end{array}
$$

 $x^2 + 1$ is not primitive, since the roots have order 4, not 8. The two other degree 2 polynomials are primitive. We checked one of them in 7.5.1 and checking the other is analogous.

Appendix

We prove the following statement, used in 7.5.14: The polynomial $f = x^{p^n} - x$ in $\mathbb{F}_p[x]$ is the product of all monic irreducible polyomials of degree dividing *n*.

Solution

We will make frequent use of the following lemma:

Lemma 0.1. *Let g be a monic irreducible polynomial with a root α. Then g is the unique monic minimal polynomial for α*

Proof. Let *h* be the monic minimal polynomial of *α*. By the division algorithm we can write $g = fh + r$ for polynomials f, r , with deg(r) \lt deg(h). We see that $r(\alpha)$ must be 0, so by minimality of $h, r = 0$. Thus h divides g . Since g is monic and irreducible, the only possibility is that $g = h$.

Let *g* be a monic irreducible polynomial dividing *f*, and let $deg(q) = m$. Let α be a root of *g* in its splitting field. Since *g* is irreducible, it must be the minimal polynomial for α , and since *g* has degree *m*, the field extension $\mathbb{F}_p(\alpha)$ has degree *m*, so $\mathbb{F}_p(\alpha) \simeq \mathbb{F}_{p^m}$. But also, $f(\alpha) = \alpha^{p^n} - \alpha = 0$ since *g* divides *f*, so α is an element of \mathbb{F}_{p^n} , the splitting field of *f*. Therefore $\mathbb{F}_{p^m} \simeq \mathbb{F}_p(\alpha) \subset \mathbb{F}_{p^n}$, so by proposition 7.5.1 *m* divides *n*.

Conversely, assume *g* is a monic irreducible polynomial of degree *m*, where *m* divides *n*. Let α be a root of g in its splitting field. Since g is irreducible, it must be the minimal polynomial of *α*. Then $[\mathbb{F}_p(\alpha) : \mathbb{F}_p] = m$, so $\mathbb{F}_p(\alpha) \simeq \mathbb{F}_{p^m} \subset \mathbb{F}_{p^n}$. So $\alpha \subset \mathbb{F}_{p^n}$, so by Lagrange's theorem $0 = \alpha^{p^n} - \alpha = f(\alpha)$. Since *g* is the minimal polynomial for α , *g* must divide *f*. (Use the same idea as in the proof of the lemma above)

Finally, since f has no repeated roots in its splitting field (Exercise 7.5.3) no factor can occur more than once.