
6.4.8
If p is a prime, let Z(p) denote the subset of Q consisting of fractions mn , withm,n ∈ Z, gcd(m,n) = 1,
such that p does not divide n. Show that Z(p) is a subring of Q. Then show that the non-zero ideals
of Z(p) have the form (pn), n = 1, 2, 3, . . . .

Solution:
For the first part, use the two-step subring test. We first show that Z(p) is closed under subtraction.
Let a

b ,
c
d ∈ Z(p), we must check that a

b −
c
d is in Z(p).

a

b
− c

d
= ad− bd

bd

This fraction is in Z(p), if p does not divide bd. But this must be the case since p does not divide
either b or d, and p is prime. We must no show that Z(p) is closed under products. With notation
as above we have:

a

b

c

d
= ac

bd
which lies in Z(p) by the same argument as above.

To prove the second statement, we first note that the fraction m
n ∈ Z(p) with gcd(m,n) = 1 has

an inverse in Z(p) if and only if p does not divide m. Therefore, any proper ideal (ideal not equal to
the entire ring) is contained in (p), the ideal generated by p. It is straightforward to check that also
(pn) is an ideal for any n = 1, 2, 3, . . . , and that (pn) = (pm) if and only if m = n. If a does not
divide p, the ideal (apn) = (pn), since 1

a ∈ Z(p), so 1
aap

n = pn ∈ (pn).
To complete the solution of the problem, we must show that any ideal in Z(p) is principal. Let

I ⊂ Z(p) be an ideal. It is straightforward to check that I ∩ Z is an ideal of Z, and that the ideal
of Z(p) generated by I ∩ Z ⊂ Z(p) is equal to I. So any ideal in Z(p) is generated by an ideal of Z.
Since all ideal of Z are principal, so are the ideals of Z(p).

7.5.16
Show that for any finite extension E of a finite field there is an element θ ∈ E such that E = F (θ).
We call such an extension simple.

Solution:
By theorem 7.5.4 we know there is a generator θ of the multiplicative group of units of E. For this
θ, we must clearly have E ⊆ F (θ), and the opposite inclusion F (θ) ⊂ E is clear since F ⊂ E and
θ ∈ E.

7.5.17
Show that no finite field is algebraically closed. In fact, show that for every finite field F and every
positive integer n, there is an irreducible polynomial over F of degree n.

Solution:
The first statement has the following simple proof. Consider the polynomial∏

α∈F
(x− α) + 1
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This polynomial has no roots in F , so F cannot be algebraically closed.
To prove the stronger statement in the exercise, let p be the characteristic of F . Then F ' Fpm

for some m. Consider the degree n field extension Fpm ⊂ F(pm)n . By exercise 7.5.16, this is a simple
extension, generated by say θ. Then the minimal polynomial of θ over F is an irreducible polynomial
of degree n.

7.6.2
Consider the smallest field E containing F5 and roots of x2 − 2 = 0 and x2 − 3 = 0. What is the
degree of E over F5 A primitive polynomial of degree 2 over F5 is f(x) = x2 + x+ 2. Let θ be a
root of f(x). What powers of θ represent

√
2 and

√
3 respectively.

Solution:
We consider F5[x]/(x2 + x+ 2). This field has degree 2 over F5. Since E cannot be F5, this field is
the smallest possibility. We must now check that it contains the necessary elements. Computing low
powers of θ gives:

θ0 1
θ1 θ
θ2 −θ − 2
θ3 −θ + 2
θ4 3θ + 2
θ5 −θ − 1
θ6 2

From which we can read off that θ3 is a root of x2 − 2. Furthermore, we know that in F5, 2−1 = 3,
so (θ6)−1 = 3. Since the polynomial is primitive θ24 = 1, so θ18 = (θ6)−1. Therefore θ18 = 3, which
implies that θ9 is a square root of 3. We can check that θ12 = −1, so the other square roots of 2
and 3 are θ15 and θ21 respectively.

7.6.3
Show that x4 + x2 + 2x+ 2 is a primitive irreducible polynomial over F5. What is the degree of the
extension of F5 generated by any root of this polynomial.

Solution:
Let θ be a root of f = x4 + x2 + 2x+ 2. The field F5(θ) is a subfield of F (θ). The polynomial is
primitive if and only if the root generates the multiplicative group F∗54 , so we must check that θ has
order 54 − 1 = 624. With a computer algebra system it is easy to check this. The degree of the
extension is 4, since f is the minimal polynomial of θ, and f has degree 4.

7.6.4
Use the preceding exercise to find the intermediate fields between F54 and F5.
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Solution:
The Galois group G(F54 ,F5) is the cyclic group with four elements. Intermediate fields correspond to
subgroups. There is a single non-trivial subgroup of the cyclic group Z4, namely the one generated
by 2. Thus, there is a single intermediate field F52 .

7.6.5
Suppose that F is a finite field and f(x) ∈ F [x] with n = deg f . Define the reciprocal polynomial
f∗(x) = xnf( 1

x ). Intuitively, f∗ is the polynomial with reversed coefficients. Prove the following
two facts, assuming f(x) is non-constant and a0an 6= 0.

a) The polynomial f is irreducible over F if and only if f∗ is.

b) If F = Fq, a finite field, the polynomial f is primitive if and only if f∗ is primitive.

Solution:
a) First note that (f∗)∗ = f , so it will suffice to show that if f is reducible, so is f∗. Then note

that if f(x) = g(x)h(x), we have f( 1
x ) = g( 1

x )h( 1
x ), so f∗ = g∗h∗.

b) If θ is a root of f , then θ−1 is a root of f∗. So if θ generates F(θ)∗, so does θ−1.

First note that (f∗)∗ = f , so to

Exam 2017: Problem 1
Let F be a field and consider the set of matrices:

U(F ) =


1 0 0
a 1 0
b c 1


a) Show that U(F ) is a group under matrix multiplication. Is is abelian?

b) The group U(F ) has a subgroup

H =


1 0 0
a 1 0
b a 1


Show that H is abelian and normal. If F ' Z2 which group is H?

c) Set U = U(Z2). Let Z ⊂ Z2 × Z2 × Z2 be the set X = {(1, y, z)|u, z ∈ Z2}. Show that U acts
on X and that the action induces an injective group homomorphism U → S4 where S4 is the
permutation group of sets with 4 elements. Which subgroup of S4 is it?
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Solution:
a) We use the one-step subgroup test. Let A,B ∈ U(F ), with:

A =

1 0 0
a 1 0
b c 1

 , B =

1 0 0
d 1 0
e f 1

 .
Then

AB−1 =

1 0 0
a 1 0
b c 1

  1 0 0
−d 1 0

−e+ df −f 1

 =

 1 0 0
a− d 1 0

−af + b+ df − e c− f 1


which lies in U(F ), so U(F ) is a subgroup of the group of 3× 3 matrices.

b) Let A,B ∈ H, with

A =

1 0 0
a 1 0
b a 1

 , B =

1 0 0
d 1 0
e d 1

 .
Then the product is

AB =

1 0 0
a 1 0
b a 1

 1 0 0
d 1 0
e d 1

 =

 1 0 0
a+ d 1 0

ad+ b+ e a+ d 1

 = BA

Where the final equality follows since addition and multiplication are commutative.
To see if H is normal, we check that it is preserved by conjugation.1 0 0

a 1 0
b c 1

 1 0 0
d 1 0
e d 1

  1 0 0
−a 1 0

ac− b −c 1

 =

1 0 0
d 1 0
e d 1


Since each element of the subgroup is preserved, the subgroup itself is preserved. If F = Z2,
there are 4 elements in H, so there are two possiblities for which group it is. We have1 0 0

1 1 0
0 1 1

−1

=

1 0 0
1 1 0
1 1 1


so H has an element of order larger than 2. So H cannot be Z2 × Z2, so it must be Z4.

c) The action of U on X is defined by regular matrix multiplication.1 0 0
a 1 0
b c 1

 1
x
y

 =

 1
a+ x

b+ cx+ y


Since it is a group action on a set with four elements, it gives a group homomorphims to the
permutation group S4. To see that this map is injective, assume that1 0 0

a 1 0
b c 1

 1
x
y

 =

1
x
y


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for all x, y ∈ Z2. By comparing the second coordinate, we see that a must be zero. Setting
x = 0 and comparing the third coordinate gives that likewise b must be zero. Then finally,
setting x = 1 and comparing third coordinates we find that c must be zero, hence the matrix
was the identity matrix.
To find the image subgroup, one first checks that the eight elements of U are generated by the
two matrices

R =

1 0 0
1 1 0
0 1 1

 , F =

1 0 0
0 1 0
0 1 1


Subject to the relation RF = FR3, F 2 = I,R4 = I. This shows that U is isomorphic to D4,
and therefore the image subgroup must be D4 ⊂ S4.

Exam 2017: Problem 3
Let ω be the complex number ω = e

2πi
12 . Let f(x) = x6 + 1 ∈ Q[x]. Note that if α is a root for f

then so is α2k+1 for any integer k and that −α = α7.

a) Show that f(x) = g(x)h(x) where h(x) has degree 2 and g(x) has degree 4. Hint: i is a root
of f .

b) Show that Q(ω) is the splitting field for f(x)

Solution:
a) Since f has only real coefficients, we know that −i is another root of f . Therefore h(x) = x+1

divides f , so we can write f(x) = g(x)h(x) for some degree 4 polynomial g.

b) Following the hint we find that ω, ω3, ω5, ω7, ω9, , ω11 are roots of f . From the definition of ω
we see that they are all distinct. Thus, f has six roots in Q(ω) and since the degree of f is six,
Q(ω) must be its splitting field.
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