
3.6.11
Is Z4 ⊕ Z8 isomorphic to Z32?

Solution
No, the groups have the same number of elements, but Z32 has an element of order 32, but Z4 ⊕ Z8
has no such element. In fact, the element (a, b) ∈ Z4 ⊕ Z8 has order lcm(|a|, |a|), which it is at most
8.

3.6.14
Consider the groups Z60 and Z30 ⊕ Z2. How many elements of orders 2, 3, 4, 5 does each group have.

Solution
For Z60, order of an element [a] is lcm(a,60)

a = 60
gcd(a,60) . For Z30 ⊕ Z2 we use the same formula,

combined with the fact that |(a, b)| = lcm(|a|, |b|).

Elements of order: Z60 Z30 ⊕ Z2
2 1 3
3 2 2
4 2 0
5 4 4

4.5.11

Show that D3 is isomorphic to the affine group Aff(3) of matrices
[
a b
0 1

]
with a, b ∈ Z3 and a 6= 0.

The group operation is matrix multiplication.

Solution
Let D3 be the group generated by R,F with relations R3 = F 2 = I and RF = FR2. Also note that
Aff(3) has exactly 6 elements, the same number as D3. We define the matrices:

M =
[
1 1
0 1

]
, N =

[
−1 0
0 1

]
.

A straightforward computation shows that M,N satisfy the same relations as R,F . Furthermore,
the same computations show that M,N generate a group of 6 elements, which must therefore be all
of Aff(3). Therefore, we define a map F : Aff(3)→ D3 by M 7→ R and N 7→ F . It is well defined
since M,N satisfy the same relations as R,F . Since the image of F contains generators of D3 F
must be surjective. Since the domain and target of F have the same (finite) number of elements, F
must then also be injective, so it is a bijection.

4.5.13

Consider the affine group Aff(4) of matrices
[
a b
0 1

]
with b ∈ Z4 and a ∈ Z∗

4, with group operation

given by matrix multiplication. Which of the groups of order 8 is Aff(4) isomorphic to?
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Solution
The groups of order 8 are:

1. Z8

2. Z2 ⊕ Z4

3. Z2 ⊕ Z2 ⊕ Z2

4. D4

5. Q

The group Aff(4) is non-abelian since[
−1 0
0 1

] [
1 1
0 1

]
=

[
−1 −1
0 1

]
6=

[
−1 1
0 1

]
=

[
1 1
0 1

] [
−1 0
0 1

]

which leaves D4 and Q as the remaining possibilities. It is easy to see that
[
1 1
0 1

]
generates an

order 4 subgroup, and that [
−1 0
0 1

] [
1 1
0 1

] [
−1 0
0 1

]−1
=

[
1 0
0 1

]
characterizing Aff(4) as the group D4 by Case 1 on p.147. For an explicit isomorphism, one can take[

−1 0
0 1

]
7→ F

[
1 1
0 1

]
7→ R

5.4.11
Find all maximal ideals in Z18.

Solution
One way of solving this is following the idea from Example 2 on the previous page. Here is a different
approach, based on the Chinese Remainder Theorem. By the CRT we know that Z18 is isomorphic
to Z2 ⊕ Z9. From exercise 5.4.21 we know that the ideals in Z2 ⊕ Z9 are of the form I1 ⊕ I2, where
I1 ⊂ Z2 and I2 ⊂ Z9 are ideals. Assume I1 and I2 are proper ideals in their respective rings, then
I1 ⊕ I2 ⊂ I1 ⊕ Z9 and I1 ⊕ I2 ⊂ Z2 ⊕ I2, which are all proper ideals. So the maximal ideals of
Z2 ⊕ Z9 must be of the form I1 ⊕ Z9 and Z2 ⊕ I2 for maximal ideals I1 ⊂ Z2 and I2 ⊂ Z9. Z2 is a
field, so its only maximal ideal is (0). In Z9, the only non-units are multiples of 3, which form the
unique maximal ideal. Therefore, Z2 ⊕ Z9 has two maximal ideals (0)⊕ Z9 and Z2 ⊕ (3), which are
generated by (0, 1) and (1, 3) respectively. Taking the inverse image by the CRT isomorphism shows
that the two maximal ideals of Z18 are generated by (10) and (3)

5.4.19
Suppose that R,S, T, V are rings such that R ' T, S ' V . Show that R⊕ S ' T ⊕ V .
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Solution
Let f : R→ T and g : S → V be isomorphisms. Consider h : R⊕ S → T ⊕ V defined by h((a, b)) =
(f(a), g(b)). We wish to show that h is an isomorphism. It straightforward to check that it is a ring
homomorphism, so we must check that it is a bijection. For injectivity, assume that h((a, b)) = (0, 0).
Then, from the definition of h we see that f(a) = 0 and g(b) = 0. Since f and g are isomorphisms
and therefore injective we must have a = 0 and b = 0, so (a, b) = (0, 0). To check surjectivity let
(t, v) ∈ T ⊕ V , since f, g are surjective pick r ∈ R, s ∈ S such that f(r) = t and g(s) = v, then
h((r, s)) = (t, v), so h is surjective.

5.4.21
See previous weeks solutions

6.2.11
Suppose you have some beads in a jar and you know that when you take them out three at a time
you have two left, but when you take them out five at a time you have four left, and finally when
you take them out seven at a time you have six left. How many beads are in the jar?

Solution
The CRT gives an isomorphism Z105 → Z3 ⊕ Z5 ⊕ Z7 given by [a]Z105 7→ ([a]Z3 , [a]Z5 , [a]Z7) and we
wish to find the inverse image of (2, 4, 6) under this isomorphism. The simplest way of doing this is
to note that the inverse of (2, 4, 6) is (1, 1, 1), and the inverse image of (1, 1, 1) is 1. It follows that
the inverse image of (2, 4, 6) is the inverse of 1, which is 104. We can conclude that the smallest
possible number of beads in the jar is 104.

6.2.12
Suppose that F is a field and f, g ∈ F [x] with gcd(f, g) = 1. Show that F [x]/(fg) ' F [x]/(f) ⊕
F [x]/(g).

Solution
This is the analogue of the CRT for polynomial rings. To solve the exercise we follow a similar idea
to the proof of the CRT. Let T : F [x] → F [x]/(f) ⊕ F [x]/(g) be defined by h 7→ (h( mod f), h(
mod g)), and we wish to study the kernel and image of T . Assume p ∈ kerT . Then p = af = bg for
some a, b ∈ F [x]. Since gcd(f, g) = 1, g must divide a, so p divides fg. This means that p ∈ (fg).
Thus kerT ⊆ (fg). Since the reverse inclusion clearly holds we must have equality.

To prove surjectivity, we know that since gcd(f, g) = 1, there exists a, b ∈ F [x] such that
af + bg = 1. From this it follows that T (af) = (0, [af ]) = (0, [af + bg]) = (0, [1]) and similarily
T (bg) = (1, 0). Together with T (x) = ([x], [x]), these three elements generate F [x]/(f)⊕ F [x]/(g),
so T is surjective. We can now conclude using the first ring isomorphism theorem.

Exam 2017 Problem 4
a) Let F be a field and assume that f(x) ∈ F [x] is an irreducible polynomial of degree n. Let K

be a splitting field for f(x). Explain why n ≤ [K : F ] ≤ n!. If N is odd and there exists and
there exists δ ∈ K with δ2 ∈ F but δ 6∈ F , show that 2n ≤ [K : F ].
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b) Assume now that f is an irreducible degree 3 polyonmial in Q[x] and let K be a splitting field
for f . Let α1, α2, α3 be the roots of f in K. Let S3 be the permutation group on these roots
and let G the Galois group. Define δ = (α2 − α1)(α3 − α1)(α3 − α2) ∈ K and set D = δ2.
Show that if σ ∈ G then σ(D) = D. Explain why this implies that D ∈ Q. Prove that D is
not a square in Q, then [K : Q] = 6 and G ' S.

c) Let τ be a transposition in S. Prove that D is a square in Q then τ 6∈ G (Hint: What does τ
do to δ?) Use this to show that D is a square in Q then [K : Q] = 3 and G ' Z3.

Solution
a) We prove this by induction. If f has degree 1 the result is obvious. Let α be a root of f .

Since f is irreducible, it is the minimal polynomial of α, so the extension F (α) has degree
n. Since F (α) is a subfield of K, K must be an extension of degree at least n. In F (α) f
has at least one root, so it factors as f = (x− α)h, where h has degree n− 1. By induction,
the splitting field K of h over F (α) has degree at most (n − 1)!. Therefore the extension
[F (α) : F ][K : F (α)]] has degree at most n(n− 1)! = n!.
To see the second statement, let g be the minimal polynomial of δ, which will have degree 2,
since δ2 ∈ F . Observe also that since K is a field extension of F (α) n must divide [F : K].
So it suffices to check that g does not split over F (α). But if g splits in F (α), then F (δ) is a
subfield of F (α), so [F (δ) : F ][F (α) : F (δ)] = [F (α) : F ]. But the left hand side is even, and
the right hand side is odd, a contradiction.

b) We know that σ ∈ G permutes the roots αi. But D = δ2 is invariant under these permutations.
Therefore, D is in the fixed field of all σ ∈ G, which only holds for D ∈ Q. If D is not a square
in Q then [K : Q] we get 2 · 3 ≤ [K : Q] ≤ 3! by the previous part, proving that [K : Q] = 6.
Thus, G is an order 6 subgroup of S, hence G ' S.

c) Any transposition of the αi will switch the sign of δ, but keep D fixed. If D is a square in Q,
then the square root must be δ ∈ Q. But then the transposition acts non-trivially on δ ∈ Q,
proving that τ 6∈ G. So if D is a square in Q, G contains no transpositions. But since G is a
subgroup of S3, the only subgroup with no transpositions is Z3.

Exam 2006 Problem 1
a) Explain why the automorphism group of the additive group Zn is isomorphic to the multi-

plicative group Z∗
n of units of the ring Zn.

b) Show that if p 6= 2 is prime then Z∗
p has only one element of order 2. Conclude that a 7→ −a is

the only automorphism of order 2 of the additive group Zp.

c) Let P be a prime, p 6= 2, and K a group of order 2p. What can you say about the number of
Sylow 2-subgroup and p-subgroup of K using Sylow’s theorems

Solution
1. Zn is a cyclic group, so an group homomorphism is determined by the value on the generator

1. For the homomorphism to be surjective, the image must be a generator of Zn, so an
automorphism of Zn maps 1 to an element of Z∗

n, which determines the automorphism
completely. It is also straightforward to check that if automorphisms F,G of Zn maps 1 to
a ∈ Z∗

n and b ∈ Z∗
n respectively, the composition F ◦G maps 1 to ab.
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2. We know that if p is prime Z∗
p is a cyclic group. If p is odd, the cyclic group Z∗

p has even
order. A cyclic group of even order has a single element of order 2. Therefore, there is a single
automorphism of Zp which has order 2. The map a 7→ −a has order 2, so it must be the
unique one.

3. Let n2 and np be the number of Sylow 2- and p-subgroups respectively. By the third Sylow
theorem, n2 divides p and n2 ∼= 1 mod 2, which gives two possibilities n2 = 1 or n2 = p since
p is a prime. On the other hand, np divides 2, so np = 1 or np = 2. Also np

∼= 1 mod p, but
this is cannot happen if np = 2. Therefore we must have np = 1.

Additional exercise
Describe the value of the Frobenius σ3 on every element of the field F9 from the example in section
6.3. Find the fixed field of σ3.

Solution:
We recall that σ3(x) = x3. We think of the field F9 as F3[x]/(x2 + 1) We can set up the follow table:

x σ(x)
0 0
1 1
2 2
x 2x
2x x
x+ 1 2x+ 1
x+ 2 2x+ 2
2x+ 1 x+ 1
2x+ 2 x+ 2
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