Answers to the exam problems in MAT2200 spring 2021

Problem 1a. Use the axioms for a group: the set is closed under matrix multiplication because $aa' \in \mathbb{Z}_6^*$ when $a, a' \in \mathbb{Z}_6^*$ and contains the identity matrix. Since

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a' & b' \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} aa' & ab' + b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

for $a' = a^{-1}$ in \mathbb{Z}_6^* and $b' = -a^{-1}b$, every element has an inverse in G. Associativity of multiplication in G holds because it holds in the ring $M_2(R)$ of 2×2 matrices over any ring R. Multiplication is not commutative, as for example

$$\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 2 \\ 0 & 1 \end{pmatrix} \neq \begin{pmatrix} 5 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

The order of the group is $2 \times 6 = 12$.

Problem 1b. An element of order three must satisfy $a^3 = 1$ in \mathbb{Z}_6^* , and since $\mathbb{Z}_6^* = \{1, 5\}$ we need a = 1. Since the k'th power of a matrix with a = 1 and b in entry (1, 2) has entry kb in that entry, we need $3b \equiv 0 \pmod{6}$, which gives the possibilities b = 2 and b = 4. In all we have 2 elements of order 3.

By Sylow's theorems applied to G of order p^2q with p = 2 and q = 3 give the possibilities $N_2 \equiv 1 \pmod{2}$ and N_2 divides the index 3 of any Sylow 2-subgroup and, similarly, $N_3 \equiv 1 \pmod{3}$ and N_3 divides the index 4 of any Sylow 3-subgroup. Thus N_2 is 1 or 3 and N_3 is 1 or 4. We can exclude $N_3 = 4$ since there are only two elements of order three, so $N_3 = 1$ and the Sylow 3-subgroup is normal by Sylow's second theorem.

Alternatively, the element with a = 1, b = 5 has order 6 in G so it generates a cyclic subgroup of index 2, which is necessarily normal.

Problem 2a. For G a cyclic group of order n and $1 \le d \le n$ a divisor, there is a unique subgroup H of G of order d. If x is a generator of H, all other generators have form x^k where gcd(k,d) = 1, thus there are $\phi(d)$ elements of order d in G (also proved during the course). We have that G partitions into the sets $G_d = \{x \mid x \in G, |x| = d\}$ for every divisor d of n, and this implies the claimed equality.

Problem 2b. Assume G is a finite group of order n such that for each divisor d of n there is at most one subgroup of G of order d. By Lagrange's theorem, the order |x| of an arbitrary x in G divides n, and we have that G partitions into the (disjoint) sets G_d as d varies over divisors of n, possibly with G_d empty. If some G_d is non-empty, then an element $x \in G_d$ generates a subgroup $\langle x \rangle$ of G of order d, and this is the only subgroup of order d by assumption. Then $G_d = \{y \in G \mid \langle y \rangle = \langle x \rangle\}$, thus G_d consists of all the elements in G that generate the cyclic group $\langle x \rangle$. A cyclic group of order d has $\phi(d)$ generators. It follows that the number of elements of G_d for d a divisor of n is at most $\phi(d)$. From $n = \sum_{d|n} |G_d| \leq \sum_{d|n} \phi(d) = n$ we get $|G_d| = \phi(d)$ for each divisor d of n, so G_n is non-empty and any of its elements generates G. **Problem 3a.** We see that $x^4 + 1 = (x^2 + 1)^2$ in $\mathbb{Z}_2[x]$, so it is not irreducible and its principal ideal $\langle x^4 + 1 \rangle$ is not prime (it does not contain the factor $x^2 + 1$, a polynomial of lower degree than 4, by the division algorithm).

Problem 3b. To show $f(x) = x^4 + x^3 + 1$ is irreducible in $\mathbb{Z}_2[x]$ we first note that there are no zeros in \mathbb{Z}_2 , as f(0) = 1 = f(1). Then we see that a factorisation $(x^2 + ax + b)(x^2 + cx + d)$ forces b = d = 1 and leads to 1 = a + c = 0, an absurdity. The ideal $\langle f(x) \rangle$ is maximal in $\mathbb{F}_2[x]$, hence the quotient ring $\mathbb{F}_2[x]/\langle f(x) \rangle$ is a field extension of \mathbb{F}_2 of degree 4, the degree of f(x). Thus there exists θ in the quotient field which is a zero of f(x). Since $\mathbb{F}_2[x]/\langle f(x) \rangle$ is a field with basis $\{1, \theta, \theta^2, \theta^3\}$ over \mathbb{F}_2 , it has 16 elements. But \mathbb{F}_{2^4} is the unique field with 2^4 elements, up to isomorphism, so we can identify $\mathbb{F}_2[x]/\langle f(x) \rangle$ and \mathbb{F}_{2^4} .

To see that the polynomial is primitive, we compute powers θ^j and see that the lowest such that $\theta^j = 1$ is j = 15. This is the order of the cyclic group $\mathbb{F}_{2^4}^*$, so f(x) is a primitive polynomial. We can use the feedback shift register, or note that neither of θ^3 and θ^5 equals 1, with 3, 5 the possible orders of subgroups of $\mathbb{F}_{2^4}^*$ (by Lagrange's theorem or the structure of subgroups of cyclic groups).

Problem 3c. Since $x^4 + x + 1$ is irreducible in $\mathbb{F}_2[x]$, a similar argument to the one in part 3b gives that the quotient field $\mathbb{F}_2[x]/\langle x^4 + x + 1 \rangle$ is isomorphic to \mathbb{F}_{2^4} . Since a composition of isomorphisms of fields is again an isomorphism of fields, we get that the two quotient fields in the problem are isomorphic.

Problem 3d. Since $f(x) = x^4 + x^3 + 1$ is irreducible of degree 4, it divides $x^{16} - x$. Then \mathbb{F}_{16} is a splitting field of f(x) over \mathbb{F}_2 . Alternatively, since \mathbb{F}_{2^4} contains a zero θ of the irreducible polynomial f(x) over \mathbb{F}_2 , it must contain all zeros of f(x). We find them as $\sigma_2(\theta) = \theta^2$, $\sigma_2^2(\theta) = \theta^4$ and $\sigma_2^3(\theta) = \theta^8$. Thus a splitting of f(x) in \mathbb{F}_{2^4} is $f(x) = (x - \theta)(x - \theta^2)(x - \theta^4)(x - \theta^8)$.

Problem 4a. We have $\pm\sqrt{2}$ and $\pm\sqrt{5}$ are the zeros of f(x) in \mathbb{C} . The required splitting field is $K = \mathbb{Q}(\sqrt{2}, \sqrt{5})$, which is seen to be separable over Q since each of $\sqrt{2}$ and $\sqrt{5}$ is separable over \mathbb{Q} . To compute the degree use the intermediate formula on

$$\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt{2},\sqrt{5}).$$

The leftmost extension is of degree 2, since $x^2 - 2$ is the minimal polynomial of $\sqrt{2}$ over \mathbb{Q} . The rightmost extension cannot have degree 1 because otherwise $\beta = \sqrt{2} + \sqrt{5}$ is in $\mathbb{Q}(\sqrt{2})$; however, $(\beta - \sqrt{2})^2 = 5$ leads to β being a zero of $x^4 - 14x^2 + 9$, which is monic and irreducible over \mathbb{Q} . Thus

$$2 = [\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{2}) : \mathbb{Q}(\beta)][\mathbb{Q}(\beta) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{2}) : \mathbb{Q}(\beta)] \cdot 4,$$

which is absurd. So $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}(\beta)] > 1$ and since it is at most 2 because $\sqrt{5}$ is a zero of $x^2 - 5 \in \mathbb{Q}(\sqrt{2})[x]$ this degree must be 2. In all, $[K : \mathbb{Q}] = 4$.

Problem 4b. By part 4a, K is a finite normal extension of \mathbb{Q} . The Galois group $Gal(K/\mathbb{Q})$ has order 4. As in lecture 30, we find three elements of order 2 in $Gal(K/\mathbb{Q})$: these are the conjugation automorphisms $\sigma = \psi_{\sqrt{2},-\sqrt{2}}$, $\eta = \psi_{\sqrt{5},-\sqrt{5}}$ and $\tau = \psi_{\sqrt{2},-\sqrt{2}}\psi_{\sqrt{5},-\sqrt{5}}$. Thus $Gal(K/\mathbb{Q})$ is isomorphic to the Klein group V.

To determine the fixed fields corresponding to the three proper non-trivial subgroups of $Gal(K/\mathbb{Q})$, we first obtain that $\{1, \sqrt{2}, \sqrt{5}, \sqrt{10}\}$ is a basis for K over \mathbb{Q} by the proof of the degree formula for intermediate field extensions, so

$$K = \{a_0 + a_1\sqrt{2} + a_2\sqrt{5} + a_3\sqrt{10} \mid a_0, \dots, a_3 \in \mathbb{Q}\}.$$

We compute the fixed field E_H for the subgroup H of $Gal(K/\mathbb{Q})$ generated by η : it is determined by

$$a_0 + a_1\sqrt{2} + a_2\sqrt{5} + a_3\sqrt{10} = a_0 + a_1\sqrt{2} - a_2\sqrt{5} - a_3\sqrt{10},$$

thus requires $a_2 = a_3 = 0$ by linear independence of the basis. Thus the required subfield of K is $\{a_0 + a_1\sqrt{2} \mid a_0, a_1 \in \mathbb{Q}\}$, which is isomorphic to $\mathbb{Q}(\sqrt{2})$. Similar computations (details required at exam) show that the subgroup generated by σ has fixed field $\mathbb{Q}(\sqrt{5})$ and the subgroup generated by $\sigma \circ \eta$ has fixed field $\mathbb{Q}(\sqrt{10})$.