Answers to the exam problems in MAT2200 spring 2021

Problem 1la. Use the axioms for a group: the set is closed under matrix multiplication
because aa’ € Z§ when a,a’ € Z and contains the identity matrix. Since

a b\ (d b\ [(ad al+0b\ (1 0
0 1 0 1) \O0 1 ~\0 1

for o/ = a7' in Zf and V¥ = —a~'b, every element has an inverse in G. Associativity of
multiplication in G holds because it holds in the ring Ms(R) of 2 X 2 matrices over any ring
R. Multiplication is not commutative, as for example

EHED-GDE0)

The order of the group is 2 x 6 = 12.

Problem 1b. An element of order three must satisfy a®> = 1 in Z, and since Z} = {1,5}
we need a = 1. Since the k’th power of a matrix with a = 1 and b in entry (1,2) has entry kb
in that entry, we need 3b = 0 (mod 6), which gives the possibilities b = 2 and b = 4. In all we
have 2 elements of order 3.

By Sylow’s theorems applied to G of order p?q with p = 2 and ¢ = 3 give the possibilities
Ny = 1(mod 2) and N, divides the index 3 of any Sylow 2-subgroup and, similarly, N3 =
1(mod 3) and N3 divides the index 4 of any Sylow 3-subgroup. Thus N, is 1 or 3 and N3 is 1
or 4. We can exclude N3 = 4 since there are only two elements of order three, so N3 = 1 and
the Sylow 3-subgroup is normal by Sylow’s second theorem.

Alternatively, the element with @ = 1, b = 5 has order 6 in G so it generates a cyclic
subgroup of index 2, which is necessarily normal.

Problem 2a. For G a cyclic group of order n and 1 < d < n a divisor, there is a unique
subgroup H of G of order d. If x is a generator of H, all other generators have form x* where
ged(k,d) = 1, thus there are ¢(d) elements of order d in G (also proved during the course).
We have that G partitions into the sets G4 = {x | x € G, |z| = d} for every divisor d of n, and
this implies the claimed equality.

Problem 2b. Assume G is a finite group of order n such that for each divisor d of n there is
at most one subgroup of G of order d. By Lagrange’s theorem, the order |z| of an arbitrary = in
G divides n, and we have that G partitions into the (disjoint) sets G4 as d varies over divisors
of n, possibly with G4 empty. If some G, is non-empty, then an element x € G, generates
a subgroup (z) of G of order d, and this is the only subgroup of order d by assumption.
Then Gy ={y € G | (y) = (x)}, thus G, consists of all the elements in G that generate the
cyclic group (x). A cyclic group of order d has ¢(d) generators. It follows that the number of
elements of G for d a divisor of n is at most ¢(d). From n =3, |Ga4| < 32, ¢(d) =n we

get |Gy = ¢(d) for each divisor d of n, so G,, is non-empty and any of its elements generates
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Problem 3a. We see that * + 1 = (22 4+ 1)? in Zy[z], so it is not irreducible and its
principal ideal (z* + 1) is not prime (it does not contain the factor z? 4+ 1, a polynomial of
lower degree than 4, by the division algorithm).

Problem 3b. To show f(z) = z* + 2+ 1 is irreducible in Zy[x] we first note that there are
no zeros in Zy, as f(0) = 1 = f(1). Then we see that a factorisation (22 + ax + b)(2*+ cz + d)
forces b = d = 1 and leads to 1 = a + ¢ = 0, an absurdity. The ideal (f(z)) is maximal in
Fy[z], hence the quotient ring Fo[z]/(f(x)) is a field extension of Fy of degree 4, the degree of
f(z). Thus there exists 6 in the quotient field which is a zero of f(z). Since Fo[z]|/{f(x)) is
a field with basis {1,6,6% 63} over Fy, it has 16 elements. But Fy: is the unique field with 24
elements, up to isomorphism, so we can identify Fy[z|/(f(x)) and Fa.

To see that the polynomial is primitive, we compute powers 6/ and see that the lowest
such that 6/ = 1 is j = 15. This is the order of the cyclic group F,, so f(z) is a primitive
polynomial. We can use the feedback shift register, or note that neither of % and 6° equals
1, with 3,5 the possible orders of subgroups of F;, (by Lagrange’s theorem or the structure of
subgroups of cyclic groups).

Problem 3c. Since z* + x + 1 is irreducible in Fy[z], a similar argument to the one in part
3b gives that the quotient field Fy[x]/(z* + 2 4 1) is isomorphic to Fai. Since a composition

of isomorphisms of fields is again an isomorphism of fields, we get that the two quotient fields
in the problem are isomorphic.

Problem 3d. Since f(z) = z*+23+1 is irreducible of degree 4, it divides z' —z. Then Fy4
is a splitting field of f(x) over Fy. Alternatively, since Fa1 contains a zero 6 of the irreducible
polynomial f(x) over Fs, it must contain all zeros of f(x). We find them as 05(6) = 6%, 52(0) =

6* and o3(0) = 6. Thus a splitting of f(z) in Fau is f(z) = (x — 0)(x — 0%)(x — 0*)(x — 69).
Problem 4a. We have +1/2 and ++/5 are the zeros of f(x) in C. The required splitting

field is K = Q(v/2,+/5), which is seen to be separable over @ since each of v/2 and /5 is
separable over Q. To compute the degree use the intermediate formula on

Q c Q(v2) c Q(V2,V5).
The leftmost extension is of degree 2, since z2 — 2 is the minimal polynomial of v/2 over Q.
The rightmost extension cannot have degree 1 because otherwise 8 = v/2 + /5 is in Q(ﬂ),

however, (8 — \/5)2 = 5 leads to 8 being a zero of 2% — 1422 +9, which is monic and irreducible
over Q. Thus

2=[Q(v2):Q = [Q(v2): QA)Q(B) : Q] = [Q(V2) : Q(B)] - 4,
which is absurd. So [Q(v/2) : Q(B)] > 1 and since it is at most 2 because /5 is a zero of
2?2 — 5 € Q(v/2)[z] this degree must be 2. In all, [K : Q] = 4.
Problem 4b. By part 4a, K is a finite normal extension of Q. The Galois group Gal(K/Q)
has order 4. As in lecture 30, we find three elements of order 2 in Gal(K/Q): these are

the conjugation automorphisms o = ¢ 5 _ 5, 1 = 5 5 and 7 = ¢ 5_ 55 _ 5 Thus
Gal(K/Q) is isomorphic to the Klein group V.
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To determine the fixed fields corresponding to the three proper non-trivial subgroups of
Gal(K/Q), we first obtain that {1,v/2,v/5,4/10} is a basis for K over Q by the proof of the
degree formula for intermediate field extensions, so

K = {a0+a1\/§+a2\/5+a3v10 | g, ...,03 € Q}
We compute the fixed field Ey for the subgroup H of Gal(K/Q) generated by n: it is deter-

mined by

ag + a1\/§ + ag\/g + ag\/m = ag + a1\/§ — ag\/g - ag\/ﬁ,
thus requires as = az = 0 by linear independence of the basis. Thus the required subfield of
K is {ag + a1v2 | ag, a1 € Q}, which is isomorphic to Q(y/2). Similar computations (details
required at exam) show that the subgroup generated by o has fixed field Q(+/5) and the
subgroup generated by o o7 has fixed field Q(1/10).



