
Answers to the exam problems in MAT2200 spring 2021

Problem 1a. Use the axioms for a group: the set is closed under matrix multiplication
because aa′ ∈ Z∗6 when a, a′ ∈ Z∗6 and contains the identity matrix. Since(

a b
0 1

)(
a′ b′

0 1

)
=

(
aa′ ab′ + b
0 1

)
=

(
1 0
0 1

)
for a′ = a−1 in Z∗6 and b′ = −a−1b, every element has an inverse in G. Associativity of
multiplication in G holds because it holds in the ring M2(R) of 2 × 2 matrices over any ring
R. Multiplication is not commutative, as for example(

1 2
0 1

)(
5 0
0 1

)
=

(
5 2
0 1

)
6=
(

5 0
0 1

)(
1 2
0 1

)
The order of the group is 2× 6 = 12.

Problem 1b. An element of order three must satisfy a3 = 1 in Z∗6, and since Z∗6 = {1, 5}
we need a = 1. Since the k’th power of a matrix with a = 1 and b in entry (1, 2) has entry kb
in that entry, we need 3b ≡ 0 (mod 6), which gives the possibilities b = 2 and b = 4. In all we
have 2 elements of order 3.

By Sylow’s theorems applied to G of order p2q with p = 2 and q = 3 give the possibilities
N2 ≡ 1(mod 2) and N2 divides the index 3 of any Sylow 2-subgroup and, similarly, N3 ≡
1(mod 3) and N3 divides the index 4 of any Sylow 3-subgroup. Thus N2 is 1 or 3 and N3 is 1
or 4. We can exclude N3 = 4 since there are only two elements of order three, so N3 = 1 and
the Sylow 3-subgroup is normal by Sylow’s second theorem.

Alternatively, the element with a = 1, b = 5 has order 6 in G so it generates a cyclic
subgroup of index 2, which is necessarily normal.

Problem 2a. For G a cyclic group of order n and 1 ≤ d ≤ n a divisor, there is a unique
subgroup H of G of order d. If x is a generator of H, all other generators have form xk where
gcd(k, d) = 1, thus there are φ(d) elements of order d in G (also proved during the course).
We have that G partitions into the sets Gd = {x | x ∈ G, |x| = d} for every divisor d of n, and
this implies the claimed equality.

Problem 2b. Assume G is a finite group of order n such that for each divisor d of n there is
at most one subgroup of G of order d. By Lagrange’s theorem, the order |x| of an arbitrary x in
G divides n, and we have that G partitions into the (disjoint) sets Gd as d varies over divisors
of n, possibly with Gd empty. If some Gd is non-empty, then an element x ∈ Gd generates
a subgroup 〈x〉 of G of order d, and this is the only subgroup of order d by assumption.
Then Gd = {y ∈ G | 〈y〉 = 〈x〉}, thus Gd consists of all the elements in G that generate the
cyclic group 〈x〉. A cyclic group of order d has φ(d) generators. It follows that the number of
elements of Gd for d a divisor of n is at most φ(d). From n =

∑
d|n |Gd| ≤

∑
d|n φ(d) = n we

get |Gd| = φ(d) for each divisor d of n, so Gn is non-empty and any of its elements generates
G.
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Problem 3a. We see that x4 + 1 = (x2 + 1)2 in Z2[x], so it is not irreducible and its
principal ideal 〈x4 + 1〉 is not prime (it does not contain the factor x2 + 1, a polynomial of
lower degree than 4, by the division algorithm).

Problem 3b. To show f(x) = x4 +x3 + 1 is irreducible in Z2[x] we first note that there are
no zeros in Z2, as f(0) = 1 = f(1). Then we see that a factorisation (x2 + ax+ b)(x2 + cx+ d)
forces b = d = 1 and leads to 1 = a + c = 0, an absurdity. The ideal 〈f(x)〉 is maximal in
F2[x], hence the quotient ring F2[x]/〈f(x)〉 is a field extension of F2 of degree 4, the degree of
f(x). Thus there exists θ in the quotient field which is a zero of f(x). Since F2[x]/〈f(x)〉 is
a field with basis {1, θ, θ2, θ3} over F2, it has 16 elements. But F24 is the unique field with 24

elements, up to isomorphism, so we can identify F2[x]/〈f(x)〉 and F24 .
To see that the polynomial is primitive, we compute powers θj and see that the lowest

such that θj = 1 is j = 15. This is the order of the cyclic group F∗24 , so f(x) is a primitive
polynomial. We can use the feedback shift register, or note that neither of θ3 and θ5 equals
1, with 3, 5 the possible orders of subgroups of F∗24 (by Lagrange’s theorem or the structure of
subgroups of cyclic groups).

Problem 3c. Since x4 + x+ 1 is irreducible in F2[x], a similar argument to the one in part
3b gives that the quotient field F2[x]/〈x4 + x + 1〉 is isomorphic to F24 . Since a composition
of isomorphisms of fields is again an isomorphism of fields, we get that the two quotient fields
in the problem are isomorphic.

Problem 3d. Since f(x) = x4+x3+1 is irreducible of degree 4, it divides x16−x. Then F16

is a splitting field of f(x) over F2. Alternatively, since F24 contains a zero θ of the irreducible
polynomial f(x) over F2, it must contain all zeros of f(x). We find them as σ2(θ) = θ2, σ2

2(θ) =
θ4 and σ3

2(θ) = θ8. Thus a splitting of f(x) in F24 is f(x) = (x− θ)(x− θ2)(x− θ4)(x− θ8).

Problem 4a. We have ±
√

2 and ±
√

5 are the zeros of f(x) in C. The required splitting
field is K = Q(

√
2,
√

5), which is seen to be separable over Q since each of
√

2 and
√

5 is
separable over Q. To compute the degree use the intermediate formula on

Q ⊂ Q(
√

2) ⊂ Q(
√

2,
√

5).

The leftmost extension is of degree 2, since x2 − 2 is the minimal polynomial of
√

2 over Q.
The rightmost extension cannot have degree 1 because otherwise β =

√
2 +
√

5 is in Q(
√

2);
however, (β−

√
2)2 = 5 leads to β being a zero of x4−14x2 +9, which is monic and irreducible

over Q. Thus

2 = [Q(
√

2) : Q] = [Q(
√

2) : Q(β)][Q(β) : Q] = [Q(
√

2) : Q(β)] · 4,
which is absurd. So [Q(

√
2) : Q(β)] > 1 and since it is at most 2 because

√
5 is a zero of

x2 − 5 ∈ Q(
√

2)[x] this degree must be 2. In all, [K : Q] = 4.

Problem 4b. By part 4a, K is a finite normal extension of Q. The Galois group Gal(K/Q)
has order 4. As in lecture 30, we find three elements of order 2 in Gal(K/Q): these are
the conjugation automorphisms σ = ψ√2,−

√
2, η = ψ√5,−

√
5 and τ = ψ√2,−

√
2ψ
√
5,−
√
5. Thus

Gal(K/Q) is isomorphic to the Klein group V .
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To determine the fixed fields corresponding to the three proper non-trivial subgroups of
Gal(K/Q), we first obtain that {1,

√
2,
√

5,
√

10} is a basis for K over Q by the proof of the
degree formula for intermediate field extensions, so

K = {a0 + a1
√

2 + a2
√

5 + a3
√

10 | a0, . . . , a3 ∈ Q}.
We compute the fixed field EH for the subgroup H of Gal(K/Q) generated by η: it is deter-
mined by

a0 + a1
√

2 + a2
√

5 + a3
√

10 = a0 + a1
√

2− a2
√

5− a3
√

10,

thus requires a2 = a3 = 0 by linear independence of the basis. Thus the required subfield of
K is {a0 + a1

√
2 | a0, a1 ∈ Q}, which is isomorphic to Q(

√
2). Similar computations (details

required at exam) show that the subgroup generated by σ has fixed field Q(
√

5) and the
subgroup generated by σ ◦ η has fixed field Q(

√
10).


