Recall: \mathbb{Z} is an integral domain, so it has cancellation law.

$$
\begin{aligned}
& a b=a c \Rightarrow b=c . \\
& a \neq 0
\end{aligned} \Rightarrow b
$$

Bul \mathbb{Z} is not field.
Still, we have \mathbb{Q}
Goal: For any integral domain D, construct a field K s.z

$$
D \subseteq K . \quad \begin{array}{rlr}
2 x & =2 y & 2 \in \mathbb{Z} \\
\left(\frac{1}{2}\right) 2 x & =\left(\frac{1}{2}\right) 2 y & 2 \in \mathbb{Q}, \\
x & =y & \\
\frac{1}{2} \in \mathbb{Q}
\end{array}
$$

Construct $(K, t, \cdot 0,1)$ and identify D inside K

$$
\begin{aligned}
& =\left\{\frac{n}{m}: n, m \in \mathbb{C}, m \neq 0\right\} \\
= & \left\{\left\{\frac{0}{1}, \frac{0}{2}, \frac{0}{3}, \ldots\right\}, \ldots\right. \\
& \left\{\frac{1}{l}, \frac{2}{2}, \frac{-3}{-3}, \ldots\right\}, \\
& \left\{\frac{1}{2}, \frac{2}{4},-\frac{3}{-6}, \frac{3}{6}, \ldots\right\}, \\
& -\cdots\} \\
\frac{a}{b}= & \frac{c}{d} \Leftrightarrow a d=b c \\
\widetilde{\widetilde{K}}= & \{(a, b): a, b \in D, b \neq 0\} .
\end{aligned}
$$

Define \sim on \widetilde{K} by

$$
(a, b) \sim(c, d) \Leftrightarrow a d=b c .
$$

$$
k=\tilde{k} / \sim
$$

Check \sim is an equivalence relation.
Reflexive $(x \sim x)$:

$$
(a, b) \sim(a, b) \quad b / c \quad a b=b a
$$

Symmetric $(x \sim y \Rightarrow y \sim x)$:

$$
\begin{aligned}
(a, b) \sim(c, d) & \Rightarrow a d=b c \\
& \Rightarrow c b=d a \\
& \Rightarrow(c, d) \sim(a, b)
\end{aligned}
$$

Transitive $(x \sim y, y \sim z \Rightarrow x \sim z)$:

$$
\begin{aligned}
& (a, b) \sim(c, d) \Rightarrow a d=b c \\
& (c, d) \sim(e, f) \Rightarrow c f=d e \\
& a d f=\underline{b c f}=b d e \\
& \Rightarrow a f=b e \Rightarrow(a, b) \sim(e, f) .
\end{aligned}
$$

$$
\begin{aligned}
& {[(a, b)]+_{k}[(c, d)] } \\
= & {\left[\left(a d t_{D} b c, b d\right)\right] } \\
& {[(a, b)] \cdot[(c, d)] } \\
= & {[(a c, b d)] . }
\end{aligned}
$$

