Factorization of Polynomials

Recap: A polynomial is a "formal" expression involving "scalar" from R and indeterminate x. We compare, add, multiply them by a set of rules. Hence can't say plug x=2 into 3x²-1" or "solve $x^2-3xt1=0$ " Main motivation for evaluation homomorphism $eV_d: F[x] \rightarrow E \quad (F' \leq E')$ eva (aotaixt--tanx") = $a_0 + a_1 d + \dots + a_n d^n$ $\mathbb{K}[x]/\ker(ev_i) \cong \operatorname{im}(ev_i) = \mathbb{C}$ Reverse engineer this process: "Guess" what should be ker (ev;)=I Guess $I = \{(x^2+1)p(x): p(x) \in \mathbb{R}[n]\}$

Define Cas RDI/I

Define $\sqrt{2}$ using $\mathbb{Q}[x]/\{(x^2-2)p(x)\}$, etc n2-2 G I $(\chi^2-2)+I=I$ $(\chi+I)^2 = 2+I$ The mapping perspecive is essential. F[x] polynomial ring over field F $\chi^{2}-1=(\chi-1)(\chi t_{1})$ etc Application: Solve equations Division algorithm Thm: Let f(x), g(x) & F[n] deg 9 20. Then there exist 9,(x), r(x) & F[x] s.t. f(x) = q(x)g(x) + r(x)and deg r<deg g or r=0.

Example:
$$f(x) = x^3$$
, $g(x) = x-1$
 $\chi^3 = (x^2 + \chi + 1)(\chi - 1) + 1$
 $g(x)$
 $f(x) = \chi^4 - 3\chi^3 + 2\chi^2 + 4\chi - 1$
 $g(x) = \chi^2 - 2\chi + 3$
 $\chi^2 - 2\chi + 3 = \chi^4 - 3\chi^3 + 2\chi^2 + 4\chi - 1$
 $\chi^4 - 3\chi^3 + 2\chi^2 + 4\chi - 1$
 $\chi^4 - 2\chi^3 + 3\chi^2$
 $- \chi^3 - \chi^2 + 4\chi$
 $- \chi^3 + 2\chi^2 - 3\chi$
 $- 3\chi^2 + 7\chi - 1$
 $- 3\chi^2 + 6\chi - 9$
 $\chi + 8$
 $g(x) = \chi^2 - \chi - 3$, $r(x) = \chi + 8$

Why long division always work? (1) We can always proceed as long as what's left is of deg ? deg g: we are working in a field, so $f(x) = ax^n + \dots = (n \ge m)$ g(x)= bx t--- $\Rightarrow \frac{a}{b} x^{n-m} g(x) = ax^{n} + \dots$ Non-example: f(x)=x, g(x)=2 in Z[x]. (2) The long division always stops: Every step, the degree of what's left decreases by at lease 1, so in at most deg f many steps, the division stops.

Uniqueness of q(x), r(x)? F(x)= 2(x). 3(x)+1,(x) = 92(x):9(x)+1/2(x) => $g(x)(q_1(x)-q_2(x))=f_2(x)-f_1(x)$ deg g either o deg < deg g. either o ar & only feasible one deg Z deg g => 2, (x) -92(x) =0 \Rightarrow $\Gamma_2(x) = \Gamma_i(x)$ We used the assumption that rija field $(ax^n + \dots)(bx^n + \dots)$ = (abountmet ...)

Prop! It act is a root of fix) EF[x], then x-a is a factor of fex). There exists hox)GF[x] SL f(x)= (x-a) h(x). froof: Apply long division to far, g(x)=x-a and ger f(x) = (x-a)q(x) + r(x).Since degr<deg(g) or r=0, r(x) is constant. Now fai = (a-a)q(a) +r(a) So r(x) = r(a) = 0

Corollary: A degree n polynomia in F[x] can have at mose n roots in F. Proof! Lee fa) be of degn Let ai,..., ad be the roots of fax. distinct By factor thm, $f(x) = (x-a_1) g_1(x)$ Now 0= f(a2)=(a2-a1)9, (a2) => az is a root of gi(x) b/c F is an integral domain

 $f(x) = (x-a_1)(x-a_2)g_2(x)$ = $(x-a_1)(x-a_2)(x-a_3)g_3(x)$ = ...

Because the degrees of $f(x), g_1(x), g_2(x)$ are Strictly decreasing by 1 Everytime, so at worse dego f(x) = (x-a1) - (x-a1) gn(x) Now anti (if any) care be a root of fear, Non-example: (The one we did in class was incorrect will do again tour)

Corollary: Let F be a finite field (e.g. \mathbb{Z}_p). Then (F^X, \cdot) is cyclic.

Ziz is a finite steld (Ziz.) is a group of size 16. Proof: Suppose (FX.) Labelian = ZnxZnx.xZnx Let m= lcm(n,..,nd). Then YgeFX 9= (91, --, 92) 9 = (91, --, 9d)

Desire multiplicative

Desire multiplicative

Desire multiplicative

Desire multiplicative

Desire multiplicative

as we are think of $= \rangle \mathcal{G}^{\mathsf{m}} = \left(\left(\mathcal{G}^{\mathsf{n}_{1}} \right)^{\mathsf{m}_{1}} \right) \left(\mathcal{G}^{\mathsf{n}_{1}} \right)^{\mathsf{m}_{1}} \right).$ = (e, --, e) Identity in Fx \(\mathbb{Z}_{n_1} \times \cdot \mathbb{Z}_{n_k}

=> gm=1 for every geFX $=72^{m}-1=0$ has [FX] many solvy in F. => | cm(n,, nd)=M = | FX |= n, n2 -- nd =) Ni,-, nd are relatively prime => Znx Znx x Znd = Zn...nd => (Fx.)= Zn, nd is cyclic. Example: In (Zzx.), 2,4,3,1 is cyclic = Z4 11 11 11 11 2' 2² 2³ 2⁴ in Z₅