Recall: A deg n polynomial $f(x)$ in $F[x]$ has at most n Cdistinct) roots. (F is a field) Corollary: If F is a finite field, then $\left(F^{x}, \cdot\right)$ is cyclic.

$$
\begin{aligned}
& \left(\mathbb{Z}_{12}^{x}, \cdot\right)=(\{1,5,7,11\}, \cdot) \\
& \varphi(12)=\left|\mathbb{Z}_{12}^{x}\right|=4
\end{aligned}
$$

Claim: $x^{2} \equiv 1(\bmod 12), \forall x \in \mathbb{Z}_{12}^{x}$.
Proof: (1) By direct calculation
(2) $a \equiv(\operatorname{Cood} 12)$
$\Leftrightarrow a \equiv 1(\operatorname{God} 3) \&(\bmod 4)$
By Euler the, $x^{2} \equiv 1(\bmod 3)$

$$
x^{2} \equiv 1(\bmod 4)
$$

Corollary: (1) $x^{2}-1=0$ has 4 soly in \mathbb{Z}_{12}
(2) $\left(\mathbb{Z}_{12}^{y} \cdot\right)$ is not cyclic.

$$
\cong\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}, t\right)
$$

Fact: $\left(\mathbb{Z}_{n}^{x}, \cdot\right)$ is cyclic $\Leftrightarrow n=1,2,4, p^{k}, 2 \cdot p^{k} \quad p$ odd p prime

Irreducible polynomial over F.
Def: A polynomial $f(x) \in F(x)$ is irreducible over F if $f(x)$ cants be factorized as $g(x) h(x)$ for $\operatorname{deg} g, \operatorname{deg} h<\operatorname{deg} f$.
Example: : $x^{2}+1$ is irred over \mathbb{R} but ie is noe irred over \mathbb{C} $b / c \quad x^{2}+1=(x-i)(x+i)$

- $x^{2}-2$ is irred aver \& but is is not irred over \mathbb{R} or \mathbb{C} b/c $x^{2}-2=(x-\sqrt{2})(x+\sqrt{2})$.
- A polynomial is irred over \mathbb{C} \Leftrightarrow the polynomial has deg ≤ 1 b / c if a polynomial fay \mathbb{C} has $\operatorname{deg} \geq 2$, then by TFPA, $f(x)$ has a root a, so by factor the, $f(x)=(x-a) g(x)$ for some deg $g<\operatorname{deg} f$.

Prop! A deg 2 or 3 polgnanial fa: is irred $/ E \Rightarrow$ il has no real $L E$.
Proof: If $f(x)=g(x) h(x)$, then $\theta<\operatorname{deg} g, \operatorname{deg} h<\operatorname{deg} f=20,3$ $\operatorname{deg} g t \operatorname{deg} h=\operatorname{deg} f=2$ or 3

So either $\operatorname{deg} g=1$ or $\operatorname{deg} h=1$, ie, $g=a x+b$ (or $h=a x+b$). So $\frac{-b}{a}$ is a rood of $f(x)$.
Conversely, if α is a root of $f(x)$, then $f(x)=(x-\alpha) g(x)$.
Non-example:

$$
\left(x^{2}+4 x+5\right)\left(x^{2}+2 x+3\right)
$$

is noe ired over \mathbb{R}, but it has no real roots.
Irreducible poly over \mathbb{Q}
Thm (Gauss lemma): Let $f(x)$ be a polynomial with integer coefficients clear denominators if necessary: $\frac{1}{2} x^{2}+\frac{1}{3} x+1=\frac{1}{6}\left(3 x^{2}+2 x+6\right)$

Then $f(x)=g(x) h(x)$ for some $g(x), h(x) \in \mathbb{Q}[x]$ implies $f(x)=\tilde{g}(x) \tilde{h}(x)$ for some $\tilde{g}, \tilde{h} \in \mathbb{Z}[x]$ and $\operatorname{deg} \tilde{g}=\operatorname{deg} g, \operatorname{deg} \tilde{h}=\operatorname{deg} h$.
Idea: $f(x)=\ldots+3$
$\left.g(x)=\ldots .+\frac{1}{10} x+\frac{1}{2}\right\} \stackrel{f(x)}{=}$
$h(x)=\ldots+5 x+6\}_{t\left(\frac{3}{5}+\frac{5}{2}\right) x+3}^{=}$
$T h m$ (Eisenstein criterion):
Lee $f(x) \in \mathbb{Z}[x]=a_{n} x^{n}+\ldots+a_{0}$
If there exists a prime P sit.
(1) $p \nmid a_{n} ;$
(2) $p \mid a_{i}$, for $i=0, \ldots, n-1$;
(3) $p^{2} \nmid a_{0}$,
then $f(x)$ is irred over $\mathbb{Z}($ also $\mathbb{Q})$

Quick example! $x^{2}-2$ is irred. b / c Eisenstein criterion with $P=2$.
Proof: Suppose $f(x)$ is reducible,
So $f(x)=\left(b_{r} x^{r}+\ldots+b_{0}\right) \cdot\left(c_{s} x^{s}+\ldots+c_{0}\right)$
Since $a_{n}=b_{r} c_{s}$, $p \nmid b r$ and $p \nmid c_{s}$.
Since $a_{0}=b_{0} c_{0}, p$ divides exactly one of b_{0} and co. Say $P \nmid b_{0}, p \mid C_{0}$.
So there exists a smallest $m(\leq s<n)$ sic. $p \nmid c_{m}$ bur $p \mid c_{i}$ for $i=0, \ldots m-1$.
not di noe nodi dinsible by P $\underbrace{\text { divisible by } P}_{\text {not div by } p}$.

A contradiction.
Example: $25 x^{5}-9 x^{4}-3 x^{2}-12$ is irred over $Z \mathrm{~b} / \mathrm{c}$ of the Eisenstein criterion of $p=3$
Corollary: Lee p be a prime. Then $x^{p-1}+x^{p-2}+\ldots+1$ is irred.
Proof: $x^{p-1}+x^{p-2}+\ldots,+1=\frac{x^{p}-1}{x-1}$.
Observation: $f(x)$ is irred of $f(x+1)$ is irred.
Proof: If $f(x+1)=g(x) h(x)$, then $f(x)=g(x-1) h(x-1) b$ Use the observation on $x^{p-1} t+. t 1$.

$$
(x+1)^{p-1}+\ldots+1=\frac{(x+1)^{p}-1}{(x+1)-1}
$$

$$
\begin{gathered}
=\frac{(x+1)^{p}-1}{x} \\
=\frac{\binom{p}{p} x^{p}+\binom{p}{p-1} x^{p-1}+\ldots+\binom{p}{1} x+1-1}{x} \\
=\binom{p}{p} x^{p-1}+\binom{p}{p-1} x^{p-2}+\cdots+\binom{p}{1} .
\end{gathered}
$$

Apply Einsenstein criteriom with p.
(1) $\binom{p}{p}=1$ is noe dicisible by p
(3) $\binom{p}{6}=p$ is noe divisible by p^{2}.
(2) Need to check $\left(\frac{p}{i}\right)$ is disisible by P for $i=1,2 \ldots, P-1$.

$$
\binom{p}{i}=\frac{p!}{i!(p-i)!} \leftarrow \text { nol divsible by } p \square
$$

Non-example: $x^{5}+\ldots+1 \quad 5=6-1$

$$
=\left(x^{3}+1\right)\left(x^{2}+x+1\right)
$$

In face, $x^{n-1}+\ldots+1$ is irred $\Leftrightarrow n$ is a prime

Uniqueness of factorization
Thm: Lee $f(x) \in F[x]$.
Suppose $f(x)=p_{1}(x) \ldots \cdot P_{r}(x)$

$$
=q_{1}(x) \ldots \cdot q_{s}(x)
$$

are two factorizations with p_{i}, q_{i} are all irreducible.
Then $r=S$, and we can rearrange q_{i} 's sit. $p_{i}(x)$ and $q_{i}(x)$ are the same up to a non-zero scalar multiple.

$$
\begin{aligned}
x^{2}-1 & =(x-1)(x+1) \\
& =\left(\frac{1}{2} x+\frac{1}{2}\right)(2 x-2)
\end{aligned}
$$

Non-example: $R=\mathbb{Z}[\sqrt{-5}]$

$$
=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\} .
$$

$$
\begin{aligned}
& \text { ex. }(a+b \sqrt{-5})(c+d \sqrt{-5}) \\
& =(a c-5 b d)+(a d+b c) \sqrt{-5} \\
& 6=2 \times 3 \\
& =(1+\sqrt{-5})(1-\sqrt{-5}) \\
& x^{n}+y^{n}=z^{n} \text { has no non-zero } \\
& \text { soling for } n \geq 3
\end{aligned}
$$

Pick $\xi^{n}=1$.

$$
\begin{aligned}
& (x+y)(x+\xi y)\left(x+\xi^{2} y\right) \cdots\left(x+\xi^{n-1} y\right) \\
& =z^{n}
\end{aligned}
$$

is a factorization in

$$
\begin{aligned}
\mathbb{Z}[\xi]= & \left\{a_{0}+a_{1} \xi+a_{2} \xi^{2}+\ldots+a_{n-1} \xi^{n-1}\right\} \\
& a_{0,}, a_{n-1} \in \mathbb{Z}
\end{aligned}
$$

