Lecture 1.1 Binary Operations

$$
\S 2,3
$$

A group is a set together with a binary operation satisfying three axioms $T B C$
Def 2.1 A binary operation * on a set S is a function $*:(a \times S) \longrightarrow S$.
shot hand notation: $*(a, b)=: a * b \in S$.
Examples 1) $S=\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$..... and $*=+$ or X are binary operations in S
2) $S=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ and $*=+, x, 0$ are binary operations Auction composition $f \circ g(x)=f(g(x))$ on S
3) $S=\operatorname{Mat}_{n m}(\mathbb{R}) *=+$ is a binary operation

- if $n=m$ then $*=x$ is a binary operation
! if $S=\operatorname{Mat}(\mathbb{R})$ (matrices of any size) $*=+x, x$ are NOT binary

4) Non-example $S=\mathbb{N}$ and $*=\div$ not a biviery porte. $a * b:=a / b \in \mathbb{N}$ for $b \nless a$. or $b=0$.
Def 2.4 Let $*$ be a binary operation on S and $H \leq S$ H is closed under * if $a * b \in H \quad \forall a, b \in H$.
Ex 1) If $S=\mathbb{C}$ and $*=+$ then $H=\mathbb{N}, \mathbb{Q}, o \mathbb{R} \subseteq S$ are closed under *. $H^{\prime}=\{n \in \mathbb{N} \mid n$ odd $\} \leq \mathbb{C}$ is closed not under
5) $H=\{f: \mathbb{R} \rightarrow \mathbb{R}$ continuous $\} \subseteq\{f: \mathbb{R} \rightarrow \mathbb{R}\}=S$ is closed under $*=+, x, 0$ (composition)

Properties of binary operations
Def 2.ll A binary operation $*$ on S is commutative if

$$
a * b=b * a \quad \forall a, b \in S
$$

 Def 2.2 A binary operation $*$ in S is associative if

$$
a *(b * c)=(a * b) * c \quad \forall a, b, c \in S
$$

Ex 1) $a * b=a-b$ is not associative Try it out!
The 2,13 Let $f, g, h: S \rightarrow S$ be functions the then

$$
f \circ(g \circ h)=(f \circ g) \circ h \quad \text { ie finch }
$$

Proof $\forall x \in S \quad f \circ(g \circ h(x)=f(g(h(x)))=(f \circ g) \circ h(x)$

Keeping track of binary pprations Ex 2,14 Tables

1) $S=\mathbb{N} *=x$

Multiplication table

\mathbf{X}	1	2	3	4
1	1	2	3	4
2	2	4	6	8
3	3	6	9	12
4	4	8	12	16

3) "is * commutative?

4) $S=\{a, b, c, d, e\}$

* binary ofurtion
2.26 Table

$*$	a	b	c	d	e
a	a	b	c	b	d
b	b	c	a	e	c
c	c	a	b	b	a
d	b	e	b	e	d
e	d	b	a	d	c

* is commutative if the mult table is symmetric along the diagonal
\& 3 Isomorphisms of binary structures
A binary stricture is a pair $(S, *)$ with S a set and * a binary operation.

Def 3.7 An isomorphism of binary alg. structures $(S, *)$ and $\left(S^{\prime}, *^{\prime}\right)$ is a one "infective" function $\phi: S_{S} \rightarrow S_{S}^{\prime}$ such that

$$
\begin{aligned}
& S^{\prime \prime}=\{x, y, z\} *^{\prime \prime} \quad \text { Ex Find } \phi^{\prime}: S^{\prime} \rightarrow S^{\prime \prime} \text { which is an Bomephisn. }
\end{aligned}
$$

2) $(\mathbb{R},+)$ and $\left(\mathbb{R}^{+}, \cdot\right)$ are isomorphic $\exp : \mathbb{R} \rightarrow \mathbb{R}^{+} \quad\{x \in \mathbb{R} \mid x>0\} \quad$ exp io a bijection since its $x \rightarrow e^{x} \quad\{x \in \mathbb{R} \mid x>0\}$ inverse function is in (nat. log)

$$
\exp (x+y)=e^{x+y}=e^{x} \cdot e^{y}=\underset{y}{\exp (x) \cdot \exp (y)}
$$

3) $U=\{z \in \mathbb{C}| | z \mid=1\} \quad \mathbb{R}_{2 \pi}=\{x \in \mathbb{R} \mid 0 \leq x<2 \pi\}$
$|z \cdot w|=|z| \cdot|w|$ U is clad under melt.
$x+2 \pi y=\left\{\begin{array}{l}x+y \\ x+y\end{array}\right.$
if $x+y=2 \pi$
(U, \cdot) Exerisi Show $(U, \cdot) \cong\left(\mathbb{R}_{2 \pi},+_{2 \pi}\right)$
