Vector Spaves $\$ 30$
Ex $\mathbb{R}[x] /\left\langle x^{2}+1\right\rangle$ is a simpe extewsion of $\mathbb{R}$ Let $\alpha=x+\left\langle x^{2}+1\right\rangle \in \mathbb{R}[x] /\left\langle x^{2}+1\right\rangle \quad \operatorname{irr}(\alpha, \mathbb{R})=x^{2}+1$

By Thm $29,18 \quad \forall \quad \beta \in \mathbb{R}(\alpha)=E$ is untter uniquely ar $a+b \alpha \quad a, b \in \mathbb{R}$

$$
\begin{array}{lrl}
\alpha^{2}+1=0 \text { in } E & \alpha^{2} & =-1 \text { in } E \\
& & \text { Try: }(a+b i)(c+d i) \\
(a+b \alpha)(c+d \alpha) & & =(a c-b d)+(b c+a d) i \\
=(a c-b d)+(b c+a d) \alpha & & \mathbb{R}(\alpha) \cong \frac{\mathbb{R}(x)}{\text { ( } \left.x^{2}+1\right)} \text { in } \mathbb{C} \\
\text { Addition }(a+b \alpha)+(c+d \alpha) \\
=(a+c)+(b+d) \alpha & & \text { is isomoppic to } \mathbb{C}
\end{array}
$$

We are used to drawing $\mathbb{C}$ as a lector space $/ \mathbb{R}$


We will generalise this for all simple extensions Goal View $F(\alpha)$ as a "vector space" over $F$

Recall $\forall$ element $\beta \subset F(\alpha)$ can be uniquely critter as

$$
\beta=b_{0}+b_{1} \alpha+\ldots+b_{n-1} \alpha^{n-1} \quad b_{i} \in F
$$

when $\operatorname{deg}(\alpha, F)=n$.
Book keeping keep track of coeffuents $b_{i}$ as $n$ entries of a vector: $\left(b_{0}, b_{1}, \ldots, b_{n-1}\right) \in F^{n}$

If $F=\mathbb{R}, \mathbb{Q}, \mathbb{Q}$, we know be can add vectors, multiply by scalars, $\Rightarrow$ linear combinations, independence, bases.

Main Example of a vector space
$F$ a field, $V=F^{n}$ is a vector space of $\operatorname{dim} n$

$$
\begin{array}{ll}
\alpha=\left(b_{0}, \ldots, b_{n-1}\right) & \alpha+\beta=\left(b_{0}+c_{0}, \ldots, b_{n-1}+c_{n-1}\right) \\
\beta=\left(c_{0}, \ldots, c_{n-1}\right) & a \alpha=\left(a b_{0}, a b_{n-1}\right) \text { scalar } \\
b_{i}, c_{i} \in F & a(\alpha+\beta)=a \alpha+a \beta \\
a \in F & a
\end{array}
$$

Def 80.1. A vector space

$$
\begin{gathered}
E \times \quad F=\mathbb{Z}_{2} \quad \alpha \in V=F^{3} \\
M \mid=2^{3} \\
(0,0,0) \\
(1,0,1)+(1,1,0)=(0,1,1) \\
(1,0,1)+(1,1,0)+(0,1,1)=(0,0,0)
\end{gathered}
$$

deperdat
$V$ over $F$ is an abelan group with an operation of scalar multiplication satisfying 5 axioms See Def 30.1

Main Theorem for vector spaces a field extensions
The 30,23 Let $E \geq F$ and speos $\alpha \in E$ is alg. $F$ If $\operatorname{deg}(\alpha, F)=n$ then $F(\alpha)$ is an $n-\operatorname{dim}^{\prime} l$ vector space over $F$ wit basis $\left\{1, \alpha, \ldots, \alpha^{n-1}\right\}$ Also every elf $\beta$ of $F(\alpha)$ is algebbaic/F and $\operatorname{deg}(\beta, F) \leqslant \operatorname{deg}(\alpha, F)$
Recall $\left\{\beta_{1}, \ldots, \beta_{n}\right\} \leq V$ is a basis for $V$ over $F$ if they span $V$ and are linearly independent

$$
V=\left\{a_{1} \beta_{1}+\cdots+a_{n} \beta_{n} \mid a_{i} \in F\right\} \quad \Rightarrow a_{1} \beta_{1}+\cdots+a_{n} \beta_{n}=0
$$

Proof

$$
\begin{array}{cl}
F(\alpha) \ni b_{0}+b_{1} \alpha+\ldots+b_{n-1} \alpha^{n-1} & \begin{array}{l}
\text { addition }+ \\
\text { solar melt } \\
\text { behave as for }
\end{array} \\
F^{n} \geqslant\left(b_{0},, b_{n-1}\right) & \text { vectors! }
\end{array}
$$

Notice $\quad 1 \mapsto$

$$
\begin{gathered}
\alpha \mapsto \\
\vdots \\
\alpha^{n-1} \mapsto
\end{gathered}
$$

Second statement: $\beta \in F(\alpha)$ conoids $1, \beta, \ldots, \beta^{n}$
Fact from linear alg: $n+1$ vectors in $n$ - dim'l vector space must be linearly dependent (Thy 30.19)

Exam Problem 2020

$$
F=\mathbb{Z}_{20,1,2\}} \quad f(x)=x^{3}+2 x+1 \in F(x]
$$

a) Explain why $\left.K=F(x\rangle /<x^{3}+2 x+1\right\rangle$ is a field.

$$
\left\langle x^{3}+2 x+1\right\rangle=\left\{f(x) \cdot\left(x^{3}+2 x+1\right) \mid f(x) \in F(x)\right\}
$$

$R / N$ is a field $\Leftrightarrow N$ is max deal it $R$.
$R$ comm ring When $R=F(x)\langle f(x)\rangle$ is maximal $\Leftrightarrow f(x)$ is irreducible.
Claim: $f(x)$ is irreducible

If nt $f(x)=g(x) h(x)$ wt $\operatorname{deg} g=2 \operatorname{deg} h=1$ $g(x), h(x) \in F(x]$
$\Rightarrow$ and $f(x)$ must hae a zero in $F$
check: $f(0)=1 \neq 0 f(1)=1+2+1=1 \neq 0$

$$
f(2)=8+4+1=1 \neq 0
$$

since $f(x)$ has no ans in $F \quad f(x)$ is red.
Therese $k$ is a field.
b) $k=F(\alpha)$ where $\alpha=x+\left\langle x^{3}+2 x+1\right\rangle$ use $\alpha$ to unite a bans of $k$ over $F$ Express $\alpha^{6}$ and $\alpha^{4}$ in this basis.
From today's theorem $F(\alpha)$ is a vector space of dim 3 over $F$ unth basis $\left\{1, \alpha, \alpha^{2}\right\} \quad \alpha^{3}+2 \alpha+1=0$ in $F(\alpha)$

$$
\begin{aligned}
& \alpha^{4}=\alpha \cdot \alpha^{3}=\alpha(\alpha+2)-\alpha^{2}+2 \alpha \\
& \alpha^{6}=\alpha^{3} \cdot \alpha^{3}=(\alpha+2)(\alpha+2)=\alpha^{2}+4 \alpha+4=\alpha^{2}+\alpha+1
\end{aligned}
$$

c) Find a monic polynomal of $\operatorname{deg} 3 g(x)$ in $F[x]$ s.t. $\alpha^{2}$ is a zeno of $g(x)$.
d) Show $f(1+\alpha)=0$ and $f(2+\alpha)=0$ Conclucle $K$ is splitting held of $K$ over $F$.

