Vector Spaces \$30
Ex IREXJ/12+17 is a simple extension of R.
Let $\alpha = \chi + \langle \chi^2 + I \rangle \in \mathbb{R}(\chi)/\langle \chi^2 + I \rangle$ deg(α, \mathbb{R}) = χ^2
By The 29,18 $\forall \beta \in \mathbb{R}(\alpha) = E$ is written uniquely as $\alpha + b \propto \alpha, b \in \mathbb{R}$
$\chi^2 + 1 = 0$ in E $\chi^2 = -1$ in E
$(a+b\alpha)(c+d\alpha)$ Try: (a+bi)(c+di) = (a-bd) + (bc+ad)
$= (ac - bd) + (bc + ad) \times - (uc - bd) + (bc + ad) \times - R(x) = \frac{R(x)}{(x^2 + 1)} $ in C Addition $(a+bx) + (c+dx) = R(x) = \frac{R(x)}{(x^2 + 1)} $ is isomorphic to C

We are used to divoring C as a vector space $/\mathbb{R}$ invariant (1,1)(1,2)(1,2¢,R We will generalise this for all simple extensions Good View Fix) as a "vector space" over F

Recall V element BC F(d) can be inquely written as $B = b_0 + b_1 \alpha + \dots + b_{n-1} \alpha^{n-1} \quad b_i \in F$ when $deg(\alpha, F) = n$. Book keeping keep track of coefficients by as n entries of a vector: $(b_0, b_{1,--,-}, b_{n-1}) \in F$ 17 F= R, R, C, ve know ve can add vector, multiply by scalars, => linear combrations, independence, bases,

Main Example of a v F a field, V =	ector space F ⁿ is a y	over F le Aar space of c	dimn
$\alpha = (b_0,, b_{n-1})$ $\beta = (c_0,, c_{n-1})$	$\alpha + \beta = ($ $\alpha \alpha = ($	bo+(o, ., bn-1+(abo, -, abn-1)	Cn-() "scalar multipli"
bi, ci E F a E F	$\alpha(d+\beta) = (d+\beta)$	D = 30.1 A vec	for space
$ = \mathbb{Z}_{2} \alpha \in (0,0,3) $	V = F $ V = 2^{3}$	V over F an abelian g wh an operation	15 No.p
(1,0,1) + (1,1,0) = (1,0,1) + (1,1,0) + ((1,0,1) + (1,1,0) + ((0, 1, 1) = (0, 0, 0)	scalar multipli satisfying 5 c See Def Z	20.1

Main Theorem for rector spaces a field extensions Thin 30.23 Let E = F and spoose all E is alg. /F If deg $(\alpha, F) = n$ then $F(\alpha)$ is an n-dim'l vector space over F with basis ?1, d, , dⁿ⁻¹} Also every elt B of F(x) is algebraic / F and $\deg(B, F) \leq \deg(d, F)$ Reall {Bir, Bn} = V is a basis for V over F if they span V and are linearly independent $\begin{array}{c} |f \quad \alpha_{1}\beta_{1}+\dots+\alpha_{n}\beta_{n}=0 \\ \implies \alpha_{1}^{*}=0 \quad \forall \quad i \end{array}$ $V = \{a_1 B_1 + \dots + a_n B_n \mid a_i \in F \}$

Roc	F(d) Ə J Fn Ə	bo+ b1d+ J (bo,,b	(n-1)	notibles scolar me behase as vectors!	, fa 17
Notre	$\gamma \mapsto$				
Second	xn-1 ms Statement	F: BEFI	el) conside	1, B,, B	
Fact fr space	must be	alg: n+1 linearly	vectors in dependent	n-dim'l (Thm 30	(e)

																											•				• •	
	•		• •		• •		• •		• •		•	• •		•	• •		• •		• •	•		• •	•	• •						•	• •	
			• •		• •				• •						• •		• •					• •		• •			•	• •			• •	
															• •		• •							• •		•	•	• •		•	• •	
																											•	• •			• •	
																											•	• •			• • •	
	•																• •		• •												• •	
	•																• •		• •												• •	
															• •		• •							• •		•	•	• •		•	• •	
	•																• •		• •												• •	
	•																• •		• •												• •	
			• •		• •												• •										•				• •	
															• •		• •							• •			•	• •		•	• •	
			• •		• •				• •						• •		• •							• •			•	• •			• •	
	•		• •		• •		• •		• •		•	• •		•	• •		• •		• •			• •	•	• •			•	• •	•	•	• •	
		• •	• •		• •		• •		• •						• •		• •		• •				•	• •			• •	• •		•	• •	
	•		• •		• •		• •		• •		•	• •		•	• •		• •			•			•	• •	•		•	• •	•	•	• •	
	•		• •		• •		• •		• •		•	• •		•	• •		• •			•			•	• •	•		•	• •	•	•	• •	
	•		• •		• •		• •		• •		•	• •		•	• •		• •			•			•	• •	•		•	• •	•	•	• •	
	•		• •		• •		• •		• •		•	• •		•	• •		• •			•			•	• •	•		•	• •	•	•	• •	
	•		• •		• •	•	• •		• •		•	• •	•	•	• •		• •		• •	•		• •	•	• •	•		• •	• •		•	• •	
	•	• •	• •		• •				•		•	• •		•	• •		• •	•	• •	•			•	• •		•	•	• •		•	• •	
	•	• •	• •		• •				•		•	• •		•	• •		• •	•	• •	•			•	• •		•	•	• •		•	• •	
	•	• •	• •		• •				•		•	• •		•	• •		• •	•	• •	•			•	• •		•	•	• •		•	• •	
	•		• •		• •		• •		• •		•			•			• •		• •				•		•		•	• •		•	• •	
	•	• •	• •		• •				•		•	• •		•	• •		• •	•	• •	•			•	• •		•	•	• •		•	• •	
	•	• •	• •		• •				•		•	• •		•	• •		• •	•	• •	•			•	• •		•	•	• •		•	• •	
	•	• •	• •		• •				•		•	• •		•	• •		• •	•	• •	•			•	• •		•	•	• •		•	• •	
	•	• •	• •		• •				•		•	• •		•	• •		• •	•	• •	•			•	• •		•	•	• •		•	• •	
	•	• •	• •		• •				•		•	• •		•	• •		• •	•	• •	•			•	• •		•	•	• •		•	• •	
	•	• •	• •		• •				•		•	• •		•	• •		• •	•	• •	•			•	• •		•	•	• •		•	• •	
•	•	• •	• •		•	1	• •		•		•	• •			•		•		•	•		•	•	•			•	• •		•	• •	
•	•	• •	•		•	1	• •		•		•	• •			•		•		•	•		•	•	•			•	• •		•	• •	
•	•	•	•		•		• •		•		•	• •		•	• •		•		•	•		•	•	• •	•		•	• •		•	• •	

Exam Robler	~ 2020	· · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
$F = \mathbb{Z}_3$	$f(x) = x^3$	$+2x+1 \in F($	XJ
a) Explain W	hy K=FCX7/	$\langle \chi^{3} + 2 \times + 1 \rangle$	is a field
$< x^{3} + 2x + 17$	$=$ ξ f(x) \cdot ($\chi^3 + 2 \times + () $	$f(x) \in F(x]$
R/N IŜ	a held «	> N is m	ax ideal AR.
R comm rig w/ midy	When $R = F($ \Leftrightarrow $F(x)$	×) < fix)> is meducib	is maximal le
Claim Frx)	is irreducible	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

lf not	f(x) = 0)(x) h(x) u	ut dog g = 2	deg h = 1 $j(x), h(x) \in F(x]$
=> and	l fix)	must have	a zero in F	
Check:	f(o) = 1	$\neq 0$ $f(1) =$	+2+ = +	\mathcal{D}
Smice	fix) has	8 17 7 7 1 0 8 1 7 7 1 -	in F fo	<) is med.
Therefore	K	رتر هر	field.	
· · · · · · · · · · · · ·	· · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · ·	· · · · · · · · · · · · ·			
· · · · · · · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · · · · · · · ·		

b) $K = F(\alpha)$ where $\alpha = x + \langle x^2 + \partial x + 1 \rangle$
use a to write a basis of Kover F
Express x 6 and x 4 in this basis.
Front today's theorem F(x) is a vector
Space of drin 3 over F why basis
$\xi 1, d, d^2 $. $d^3 + a + 1 = 0$ in $T(d)$
$\alpha^4 = \alpha \cdot \alpha^3 = \alpha (\alpha + 2) = \alpha^2 + 2\alpha$
$\chi^{b} = \chi^{3} \cdot \chi^{3} = (\chi + 2)(\chi + 2) = \chi^{2} + 4\chi + 4 = \chi^{2} + 4\chi + 4$

c)	Find	Q	Monic	polynomial	of deg	3 gix)
ίn	F(x?	.	st. o	x ² is a zer	Ac or	$g(\mathbf{x})$
· · · · ·						
	· · · · · · · ·					
	· · · · · · · · ·		· · · · · · · · ·		· · · · · · · · · ·	
					· · · · · · · · · ·	· · · · · · · · · ·
· · · ·				· · · · · · · · · · · · · · · · ·	· · · · · · · · · · ·	
• • • •						

d) Show $f(1+\alpha) = 0$ and $f(2+\alpha) = 0$ K is splitting held of K over F. Conclude