Lecture 2 Groups $\& 4$ Fraleigh
Recall A binary structure $(S, *)$ is a set S with binary operation $*: S \times S \rightarrow S \quad *(a, b)=: a * b$.
Def 4.1 A group $(G, *)$ is a binary structure such that
GII: * is associative

$$
\forall a, b, c \in G \quad(a * b) * c=a *(b * c)
$$

(G2): Identity element

$$
\exists e \in G \text { s.t. } \quad \forall a \in G \quad e * a=a * e=a
$$

G3) Inverse elements say " a ' is the inverse of a in G '. $\forall a \in G \quad \exists a^{\prime} \in G$ st. $\quad a * a^{\prime}=a^{\prime} * a=e$.

Examples I) $G=\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are groups under $*=+$
GI + is
$\underline{G 2} e=0$
$G 3 \quad a \in G \quad a^{\prime}=-a$

$$
a+(-a)=(-a)+a=0
$$

2) $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ with $*=\cdot \begin{aligned} & 61 \cdot \text { is associative NJT A GeaR } \\ & G 2 e=1 \text { is identity }\end{aligned}$ G3 bt $O \in Q, R, C$ has no iniexa X

 $\left\{x^{\prime \prime} \in Q 1 x>0\right\}$
3) $U=\{z \in \mathbb{C}| | z \mid=1\} \subseteq \mathbb{C} *=0$ is a (sib) group of \mathbb{C}
Ques Does Mat (\mathbb{R}) (nan matrices) with $*=$. form a gap?

Anoves $\left(M_{n} t_{n}(\mathbb{R}), 0\right)$ is a binary structure
G1 - is associative (recall from lin alg).
GQ $e=\left(\begin{array}{ll}1 & 0 \\ 0 & \ddots\end{array}\right) \quad n \times n$ identity matrix satisfies $e \cdot A=A \cdot e=A$ $\forall A \in \operatorname{Mat}_{n}(\mathbb{R})$

G3 if $A \in \operatorname{Mat}_{n}(\mathbb{R})$ has $\operatorname{det}(A)=0$ then A has his multiplicative inverse! Hence $\left(\operatorname{Mat}_{n}(\mathbb{R}), \cdot\right) \times$ is not a gap
Example The general linear grap of size n with in tries $G L_{n}(\mathbb{R})=\left\{A \in \operatorname{Mat}_{n}(\mathbb{R}) \mid \operatorname{det} A \neq 0\right\}$ with $*=0$ is a group.

Elementary Properties of Groups \& $\$$

$$
(G, *)
$$

Def 4.3 A group ${ }^{\wedge}$ is abelian if its binary operation is commutative. note on Abel.

$$
\forall a, b \in G \quad a * b=b * a
$$

Example i) $(G,+)$ with $G=\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, or \mathbb{C} is abelian
2) (G, \cdot) wi $G=\mathbb{Q}^{x}, \mathbb{R}^{x}$ or \mathbb{C}^{x} is abelian
3) $G L_{n}(\mathbb{R})$ is not abehan
$n=2$ If $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \quad B=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right) \quad A B \notin B A$

Proofs from the axioms
The 4.15 Left and right cancellation laws hold in a goop:
$\forall a, b, c \in G$

$$
\begin{aligned}
& a * b=a * c \Rightarrow b=c \\
& b * a=c * a \Rightarrow b=c
\end{aligned}
$$

left can.
right can

1. If $g p$ is not cabliun left + right really natter!

Proof By G3 $\exists a^{\prime} \in G$ s.t. $a^{\prime} * a=e$.
Suppose
then

$$
\text { by } G 1
$$

by G3
by G2

$$
\begin{aligned}
a * b & =a * c \\
a^{\prime} *(a * b) & =a^{\prime} *(a * c) \\
\left(a^{\prime} * a\right) * b & =\left(a^{\prime} * a\right) * c \\
e * b & =e * c \\
b & =c
\end{aligned}
$$

The 4.16 (Soling equations in gaps)
let $(G, *)$ be a gap and $a, b \in G$. Then $a * x=b$ and $\quad y * a=b$ have unique solutions for x and y, respectively. ("lineorisis")
Proof Consider $a * x=b$, let $a^{\prime} \in G$ be inverse of $a[G]$ Then $\quad a^{\prime} *(a * x)=a^{\prime} * b$
$\frac{G I}{G 3} \Rightarrow\left(a^{\prime} * a\right) * x=a^{\prime} * b$
See text for
Gl

$$
e * x=a, * b
$$

GQ \Rightarrow
$x=a^{\prime} * b \in G$
a slightly
different post
Therefore, $x=a^{\prime} * b$ is the unique solution

The 4,17 let $(G, *)$ be a group

1) The idatity elemat of G is unique
2) Every $a \in G$ has a unique inverse element

Proof 1) Suppose $\exists e, e^{\prime} \in G$ both satisfying $G 2$ Then $e * e^{\prime}=e$ and $a * e=e$

$$
e *\left(e * e^{\prime}\right)=e * e \stackrel{e * e^{\prime}=e}{\Rightarrow} e^{\prime}=e .
$$

2) Suppose $\exists a^{\prime}, a^{\prime \prime} \in G$ satisfy $G 3$ for a. Then $a * a^{\prime}=e=a * a^{\prime \prime} \quad$ apply conveloation from Thin $4.15 \Rightarrow a^{\prime}=a^{\prime \prime}$ Hence inverses are calque \square.

Corollany $4,18 \oplus$ Let $(G, *)$ be a grop. $\forall a, b \in G$

$$
\begin{aligned}
& \quad(a * b)^{\prime}=b^{\prime} * a^{\prime} \\
& \text { inverse of }(a * b)
\end{aligned}
$$

Recall for invertible matries: $(A B)^{-1}=B^{-1} A^{-1}$
Proof Exeruise remember to check tus sides of the inverse (havever this is nst nessary sel p. 43)
$\frac{\text { Chapter } 3}{\text { Cxemses }}$
$\frac{\text { Chaper } 4}{\text { Eeruses }}$

