Exam Problem 2019
a) Let K be the spitting fell of $x^{3}-2$ over \mathbb{Q}. Find $\left[K: \mathbb{Q} \mathbb{Q}_{6}\right]$ and the Galois $\frac{\operatorname{gop}}{\frac{G(k / Q)}{S_{3}^{1 / 2}}}$
b) Let k be th plotting held over Q of $f(x) \in \mathbb{Q}(x)$ whee $\begin{gathered}f(x) \text { inedible } \\ \text { deg }\end{gathered}(x)$. Let A_{3} denste the altorativy spore of S_{3}. Show $G(K, Q)=A_{3}$ if and only if $K=\mathbb{Q}(\alpha)$ for α an g ort of $f(x)$. (Recall that $A_{3} \leqslant S_{3}$ consisting of even permutations in partuluer $\left(S_{3}: A_{3}\right]=2$

If $K=\mathbb{Q}(\alpha)$ then $[K: \mathbb{Q}]=3=|G(K / \mathbb{Q})| \begin{aligned} & \text { sine } K \text { is a } \\ & \text { finite normal exterix }\end{aligned}$ α has 3 conjugates $\alpha_{1}=\alpha, \alpha_{2}, \alpha_{3}$ and any $G \in G(K / Q)$ gives a permutation of them $G(K / \infty) \leq S_{3}$ The only sologe of order 3 of S_{3} is $\quad A_{3}=\{$ id, $(1,2,3),(1,3,2)\}$.

If

$$
\begin{aligned}
G(K / \mathbb{Q})=A_{3} \quad 3 & =|G(K / \mathbb{Q})|=[K: \mathbb{Q}] \\
\mathbb{Q} \leq \mathbb{Q}(\alpha) \leq K & {[\mathbb{Q}(\alpha): \mathbb{Q}]=3 } \\
& \Rightarrow[K: \mathbb{Q}(\alpha)]=1 \Rightarrow K=\mathbb{Q}(\alpha) .
\end{aligned}
$$

c) Conclude all roots of $f(x)$ from part b) most be in \mathbb{R}.
We mat have af least one un $\alpha \in \mathbb{R}$.
If $k=Q(\alpha)=\left\{a_{0}+a_{1} \alpha+a_{2} \alpha^{2} \mid a_{i} \in \mathbb{Q}\right\}$
If K is pitting field $\ddot{\alpha}_{1}, \alpha_{2}, \alpha_{3} \in K$ but $K=Q(\alpha) \leq \mathbb{R}$ so al lots ore real.

Finite Fields Let $|F|=p^{r}$ and $[K: F]=n \quad p$ prime then $|K|=p^{r n}$
Recall F is perfect so K is separable monearer
$K=\left\{\alpha \mid \alpha\right.$ zen of $\left.x^{p^{r n}}-\times\right\} \leq \bar{F}$ So K is a splethny field. K is a fiume reamed extension of F
Recall $\sigma_{p}: K \rightarrow K \quad \sigma_{p^{r}}(\alpha)=\alpha p^{r} \quad$ fixes F so $\sigma_{p} r \in G(K / F)$.

Thu 53.7 Let k be a finti exdusion of degree n of a finite field $F \quad|F|=p^{r}$. Then $G(K / F)=\left\langle G p^{r}\right\rangle$ p prime.

PRoof $|G(K / F)|=[K \cdot F]=n$
what is the order of Ger?
Suppose $6_{p r}^{i}=6_{p} \cdot \ldots \cdot 6_{p r}=i d \Rightarrow \forall \alpha \in K$
$6_{p r}^{i}(\alpha)=\alpha \Leftrightarrow \alpha^{p^{i}}=\alpha \Leftrightarrow \alpha$ is a zeno of $x^{p^{i}}-x$
This poly has at moot $p^{r i}$ distinct zens but $|K|=p^{r n}$ so

$$
n \leqslant\left|\operatorname{ord}\left(\sigma_{p^{r}}\right)\right|=\left|\left\langle G_{p^{r}}\right\rangle\right| \leq|G(K / F)|=n
$$

$\Rightarrow\left\langle\sigma_{p r}\right\rangle=G(K / F)$. Hence the Galois gone is cyclic

Excuple $\left.\quad F=\mathbb{Z}_{p} \quad K=G F\left(p^{12}\right) \quad \mid K: F\right]=12 \quad n=12$

$$
G(K / F)=\left\langle\sigma_{p}\right\rangle \cong\left\langle\mathbb{Z}_{12},+\right\rangle
$$

distinct abyos ore $\langle 1 d\rangle,\left\langle\sigma_{p}^{2}\right\rangle,\left\langle\sigma_{p}^{3}\right\rangle,\left\langle\sigma_{p}^{4}\right\rangle$, $\left\langle\sigma_{p}{ }^{6}\right\rangle,\left\langle\sigma_{p}\right\rangle$

Galois Theorem (restated)
Let k be a finite normal extension of F with Galois group $G(K / F)$

1) There is an inulsion-reversing bijection (text points $1,2,3,5$)

$$
\lambda:\left\{\begin{array}{l}
\text { intermediate } \\
\text { fells } F K K
\end{array}\right\} \longrightarrow\left\{\begin{array}{c}
\text { sbguaps } \\
G(K / F)
\end{array}\right\}, \quad \lambda(E)=G(K / E)
$$

satisfying $[K: E]=|G(K / E)|$ and $[E: F]=(G(K / F): G(K / E))$.
2) Let $F \leqslant E \leqslant K$ then E is a normal extension of F if and only if $G(K / E)$ is a normal sobgap of $G\left(K_{F}\right)$
When $G(K / E) \leqslant G(K / F)$ then $G(E / F) \cong G(K / F) / G(K / E)$ (text is normal

Proof Claim: $\lambda^{-1}:\left\{\begin{array}{c}\text { shoguns of } \\ 6\left(K_{/ F}\right)\end{array}\right\} \rightarrow\left\{\begin{array}{l}\text { intermediate } \\ \text { gelds } F \leqslant K\end{array}\right\} \quad \lambda^{-1}(H)=K_{H}$ Recall $K_{H}=\{\alpha \in K \mid \sigma(\alpha)=\alpha \quad \forall G \in H \leq G(K / F)\}$ "fixed held $\begin{gathered}\text { of } H^{\prime \prime}\end{gathered}$
First show $\lambda^{-1} \lambda=$ id ie. wat to show $\lambda^{-1} \lambda(E)=K_{G(K / E)}=E$ We have $E \leq K_{G(K / E) \text {. Now suppose } ~}^{\text {We }} \boldsymbol{K} \quad \alpha \notin E$ then $\Psi_{\alpha, \alpha}$) conjugation is extends to $\tau: K \rightarrow K$ fixing E so $\quad \tau \neq G(K / E) \quad \tau(\alpha)=\alpha^{2} \neq \alpha \quad \alpha \notin K_{G(K / E)} \Rightarrow K_{G(K / E)} \leq E$ Hence $E=K_{G}(k / \epsilon)$ so $\lambda^{-1} \lambda=i d$ and λ is ingectie

Second show $\lambda \lambda^{-1}=i d$ ie $\quad \lambda \lambda^{-1}(H)=G\left(K / K_{H}\right)=H$ We have $H \leqslant G\left(K / K_{H}\right)$. Sppose $H<G\left(K / K_{H}\right)$
By primitive elf theorem $\exists \alpha \in K$ st $K=K_{H}(\alpha)$
So $\left|G\left(K / K_{H}\right)\right|=\left[K: K_{H}\right]=\operatorname{deg} \operatorname{ir}\left(\alpha, K_{H}\right)$.
Define $f(x)=\prod_{i=1}^{|H|}\left(x-\sigma_{i}(\alpha)\right) \quad \begin{gathered}H=\left\{\sigma_{1}, \ldots, \sigma_{1+1}\right\} \\ \sigma_{i}: k \rightarrow K\end{gathered}$

- $f(\alpha)=0$ since same $6_{i}=$ id

$$
\begin{array}{ll}
f(\alpha)=0 & f(x) \in K_{H}[x] \quad f(x)=\sum_{j=0}^{1 H \mid} a_{j} x^{j} \quad \begin{array}{l}
a_{|H|}=1 \\
a_{|H|-1}=-\sum_{i=1}^{|H|} \sigma_{i}(\alpha) \\
a_{|H|-2}=\sum_{i \neq j} \sigma_{i}(\alpha) \sigma_{j}(\alpha)
\end{array}, ~
\end{array}
$$

claim: $\sigma \in H$ then $\sigma\left(a_{k}\right)=a_{K} \Rightarrow a_{K} \in K_{H}$

$$
\begin{aligned}
& \text { eg } 6\left(a_{|H|-1}\right)=6\left(-\sum_{i=1}^{|H|} \sigma_{i}(\alpha)\right)=-\left(\sum_{i=1}^{|H|} 66_{i}(\alpha)\right)=-\sum_{i=1}^{|H|} 6_{i}(\alpha) \\
& H=\left\{\sigma_{1}, \ldots, \sigma_{|H|}\right\} \quad 6 \in H \\
& A=\left\{6 \sigma_{1}, 66_{2}, \ldots, 6 \sigma_{|H|}\right\} \subseteq\left\{\sigma_{1}, \ldots, \sigma_{|H|}\right\}=H
\end{aligned}
$$

suppose $66 i=66 j$ then $\sigma^{-1} \in H$ and so

$$
6^{-1} 66 i=6^{-1} 66 j \Rightarrow 6_{j}=6 j
$$

So the set A is in fort all of H.
with these two claims we see

$$
\left|G\left(K / K_{H}\right)\right|=\left[K: K_{H}\right]=\left[K_{H}(\alpha): K\right]=\operatorname{deg} \operatorname{ir}\left(\alpha, K_{H}\right) \leq \operatorname{deg} f=|H|
$$

$\Rightarrow H=G\left(K / K_{H}\right)$ this pores λ is sorjective This proves y is a bijection.

Index $=\frac{\text { order }}{\text { septum field }}$ sine K is separable and $F \quad K$ is also sppattingheld over E.
moreover, $[K: E]=\{K: E\}=|G(K / E)|$

$$
[E: F]=\frac{[K: F]}{[K: E]}=\frac{|G(K / F)|}{|G(K / E)|}=:(G(K / F): G(K / E))
$$

1 inclusion reversing $E_{1} \leq E_{2} \quad \lambda\left(E_{i}\right)=G\left(k / E_{i}\right)$ $6 \in G\left(k / E_{2}\right) 6$ fixes E_{2} hence fixes E_{1} so $6 \in G\left(K / E_{1}\right)$
Ceruse shoo analogos statement for y^{-1}.
This completes poof of staternect 1).
normal \Leftrightarrow normal E is normal our F ff E is a spitting field over F.

Next time

Aside to recall even pemctations.
$6=S_{n}$ then $6=\tau_{i, j} \tau_{i 2 j} \ldots \tau_{i_{i j k}}$ from soon? $\begin{aligned} & \text { tritons }\end{aligned}$
but expesson is not unique bat the parity of $\#$ a transpositions multiplying to 6 is constant.
Sin 6 is even if the k above is even eg. $(1,2,3)^{\text {is }}=(1,2)(2,3)$ itemise $(1,2,3)$ is ere $A_{n}=\{$ ever permutation $\} \leqslant S_{n} \leqslant S_{n}$ sbogop

