Fundamental Theorem of Galois Let K be a finite normal extension of F with Galois group G(K/F) 1) There is an inclusion-reversing byjection 1: intermeduate) > intermeduate) = G(K/E) = G(K/E) [K:E] = |G(K/E)| and [E:F] = (G(K/F):G(K/E))2) Let $F \leq E \leq K$ then E is a normal extension Fif and only if G(K/E) is a normal slog-op of G(K/F)When $G(K/E) \leq G(K/F)$ is normal $G(E/F) \leq G(K/F)/G(K/E)$.

normal (=> normal E is normal over F (=) E is
a sputting field over F. (E is suparable since E ≤ K over F. T. 502
$\iff \forall G \in G(K/F) \text{ and } x \in E G(x) \in E$
$E = K_{G(K/E)}$. So $G(\alpha) \in E \iff \forall \gamma \in G(K/E)$
$\chi G(\alpha) = G(\alpha) \iff G^{-1} \chi G(\alpha) = \alpha \qquad \forall \chi \in E$ $\forall \chi \in G(K/E)$
$\iff 6^{-1}76 \in G(K/E) \forall 7 \in G(K/E) \text{ and } \forall 6 \in G(K/E)$
This is precisely the definition of G(K/E) being a
normal stograp of G(K/F).

Sippox	E (J	a	nonal	extros	F F.	Then
the	Map	<i>e</i> :	G(K/P)	- 6(E/F) 15 or	to
· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		6 1-		(theory since	ma t
(Sine E	= 10 No	rmal		an autom	(E) = E	ie)
The k	Ker (? := =	{	K P(6) =	il: E→E3 <	G(K/F	=)
By SNY	ectivity c	y 4	G(E/F	$) \cong G(k/F)$)/ G(K/E).

First an example: Cyclotomic Extension's (Section 55) Det 55.1 The splitting held of Xⁿ-1 over F is the nth cyclotomic extrusion of F. The zeros of $X^n - 1$ over \mathbb{Q} are $1, \overline{\xi}, \overline{\xi}^2, \dots, \overline{\xi}^{n-1}$ where $\overline{\xi} = e^{2\pi i n} \in \mathbb{C}$. (or any primitive n^{n} nost of unity $\Rightarrow e^{2\pi i n}$, n) for g.d.(m,n) = 1. • The splitting field of X-1 is K = F(Z). • For $F = \mathbb{Q}$ inveduible polynomial of ξ over \mathbb{Q} . Is $\overline{\Phi}_n(x) = TT(x - \xi_i) = \# \xi \ k! i \leq k \leq n$ $\xi_i \ primitic \ n^{tr} \ root of milty = \xi \ k! i \leq k \leq n$

• $\chi \in G(K/\mathbb{Q})$ then $\chi(\xi)$ is a primitive not of inity $\Rightarrow \chi(\xi) = \xi^m$ where g(d(n,m) = 1. So if $\chi \in G(K_{\mathbb{Q}})$ $\gamma \gamma'(\varsigma) = \gamma(\zeta^{m'}) = \zeta^{m'm} = \gamma'(\zeta^{m}) = \gamma'\gamma(\varsigma).$ $G(k/Q) \cong G_{n} = Z_{n}^{\times "} = \{k \mid 1 \leq k \leq n \}$ > G(K/Q) is abelian

Soluing by r	ridicals
Can zeros d	2 fix) e O[x] be expressed in terms
of radial	2 (1)
· deg fix) = 2	quadratic formula 1600 AD $r = -\frac{b \pm \sqrt{b^2 - 4ac}}{2a}$
o deg fix) = 3	Cardono's formula 1545
· degfix)=4	Ferrari 15270
· degf(x) = 5	Insolvable by reducals in general. gie a
	Abel-Ruffini Theorem 1799/1824. post
· · · · · · · · · · · · · · · · · · ·	> Galois

Insolubility by radicals of the quintic Def 561 An extension K of F is an exturior by radicals of Z Q1, ..., Qr EK and A, ..., Nr >0 s.t. $K = F(\alpha_{1,...,}\alpha_{r})$ and $\alpha_{i}^{n} \in F$ and $\alpha_{i}^{n} \in F(\alpha_{1,...,}\alpha_{i-1})$ tor $\Rightarrow \alpha_i^{\circ}$ is the $n_i^{\circ} - n_i^{\circ}$ of some elt of $F(\alpha_{i,j}, \alpha_{i-1}) | \alpha_i^{\circ} | \alpha_i^{\circ}$ A plynomial fix) e Fix) is solvable by reduials if its splatting field is contained in an extension by F by radicels (F & E & K & F splitting held terthe by radicels) Eg. X - a E QIXI is solvable by radically • ax² + bx + c ∈ Q[x] is solvable by radicals • which and quarties over Q. are solvable by radicals

Thim (Galois) let charF=0 Then fix) & F(x) is solvable by radicals over F if and only if the splithy field E over F Low soluble Galais grop Recrel A grap G is solvable if a composition serves 0 = H A H A A A A H = G issuch that Hiri/Hi is abelian & osisn-1. A composition sures is a sequence of slograps as above with Hi normal in Hi+1 and Hi+1/Hi is simple for $\forall o \leq i \leq n-1$.

Example.	lf G is	abelian	G 15 8	solvable	Note There's no
• 55	is not s	stuable; As is sw	0 < A5 ·	< S5- abelian!	subge $A_5 < H < S_5$ Since $(S_6:A_5) = 2$ $(S_6:H)(H:A_5)$ So eather $(S_6:H) = (H:A_5) = 1$
• Sn,	An not	solvable	for n	~~5	⇒ S ^c =H ∝ H=NS.
• 1f 0=	$N_{o} = N_{i} = N$	12 - AN	h = G is	s a subr	ismal
Seres VNi+ (ANi hot necessary to	with N_{i+1}/N_i is s	N'i soluable mple	Len	G is Solu Exercise	. 56.6
· Quotrent	r & solu	ble grozo	r are	soluble 6	enve 35.29

Lemma 56.3 Let charF=0, aEF, and K be the
splotting field of Xn-a arer F. Then
G(K/P) is solvable.
Prof Case 1 Suppose F contains a primetre voot of mity \$
Then zeros of X^n -a are β , $\beta\beta$, \dots $\beta^{n-1}\beta$ and $K = F(\beta)$, $G_1(K/F) \cong G_n$ is multipliable and 1S abelian hence solvable.
$\begin{array}{llllllllllllllllllllllllllllllllllll$

F' is splitting held of X''-1 over $F \Rightarrow F'$ is a normal extin of F => G(K/F) is a normal Sbypop & G(K/F) Conside O&G(K/F) & G(K/F) Then $G(K/F)/G(K/F') \cong G(F/F') \Rightarrow abelian$ $\Rightarrow G(K/F)/G(K/F') Solvable$ G(K/F)/G(K/F') Solvable $\Rightarrow G(K/F) & Solvable by Exercise 56.6 [].$ ExampleExample K is splitting field of X3-2 over Q. $Q(352) Q(3,32) Q(3,32) \qquad \langle (1,2,3) \rangle$ $F' = \mathbb{Q}(\frac{2}{3})$ <(1,2)) <(1,3) <(2,3) >

Thm 56.4 Let F be a field if chor 0 and appore FEEEKEF where E is a normal exterin and K is an extension by solials. Then G(E/F) is a solvable group Rost let K = F(x,,-,x,) and form Lit, as the splitting field of $X^{n'_{i+1}} - \alpha'_{i+1}$ over Li. Let $L = L_F$. By Lemma 56.3 G(L_1/F) is solvable. Sppose Li ir solvable then O A G(Li(F) A G(Li+I(F))) with $G(Li+I(F)/G(Li(F))) \xrightarrow{\mu} G(Li+I)$ $\Rightarrow G(Li+I(F)) IS shade \Rightarrow$

Hence	6(L/F)	is 801	nable. 1	رهولا										
· · · · · · · · ·	$G(L/_F)/G(L/_E) \approx G(F/_E)$													
and	quotients of	Solucible	grapt	are	soluable									
· · · · · · · ·	Exercise 32	> d q	· · · · · · · · · ·	· · · · · ·	· · · · · · · · · · · · ·									
· · · · · · · ·	· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · ·	· · · · · ·		· · · · ·								
· · · · · · · · ·														
· · · · · · · ·			· · · · · · · · · ·	· · · · · ·	· · · · · · · · · · ·	· · · · ·								
· · · · · · · ·				· · · · · ·										
· · · · · · · ·	· · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · ·		· · · · · · · · · · · ·	· · · · ·								

Corollary A quintiz polynomial of degree 5 are a field F with charF=0 is not solvable by radicals if $G(K/F) \stackrel{\sim}{=} S_5$ where K is the splitting field Such polynomials exist. R see test book using symmetric polynomials and transverdental #'s over D yir-s ys ER transverdental $f_{(x)} = TT(x-y_i) \in Q(s_1, ..., s_5)[x]$ Then down $G(K(F) \subseteq S_5$

Our Q Sprace fix) E Q(X) is a mediate degree 5 Polynomial with 3 real zeros and 2 complex conjugated zeros. ie. $f(x) = 2x^{5} - 5x^{4} + 5$ (Show this wing calculus and) Gisenstein's untenon p=5. Claim $G(K/F) \stackrel{\scriptscriptstyle{\wedge}}{=} S_5$ where K is group of the splitting held. permitations G(K/F) < S5 = permutations Exercise 56.8 enough to show G(K/F) contains a transposition and a 5-unle To shaw

· · ·	•	A	-	- - -	a		₹ } 	، مرد ا		۔ ح		•	Ľ	S	•	• •	(. (, 2)) ,	· · ·	•	· · ·		•	· · ·		· ·	•	· · ·	•	•	· · ·	•	· · ·	•	•
· · ·	•		n	· ·	C ۲	< <i>a</i>		~e'	e	•	· ·	e A		· ·	د م	 		5		4	, U		•		S	•		(, . (, .	2,		ι ι 5,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1	í Í) 	· ·	•	•
· ·	•	· · ·	•	· · ·	•	· · ·	•	•	· ·	•	· · ·	•	•	· · ·	•	• •		•	· · ·	•	•	· · ·	•	5 1	- 1			کر 2	~	•	· · ·	•	•	· · ·	•	· ·	•	•
· ·	•	· ·	•	· ·	•	· ·	•	•	• •	•	• •	•	•	· ·	•	• •	• •	•	· ·	•	•	· ·	• (• •	' 1 1 1 1 1		•	۲ ۲	V	/ 1 - 1	•	· ·	•	•	• •	•	•••	•	•
· ·	•	· · ·	•	· ·	•	· ·	•	•	· ·	•	· · ·	•	•	· · ·	•	• •	· ·	•	· ·	•	•	· ·	•	· ·				•	· ·	•	· · ·	•	•	· ·	•	• •	•	•
· ·	•	· · ·	•	· · ·	•	· · ·	•	•	· ·		· · ·	•	•	· · ·	•		· ·	•	· · ·		•	· ·	•	· · ·		•	· · ·		· ·		· · ·	•		· · ·			•	•
• •	•	· ·	•	• •	•	• •	•	•	· ·	•	• •	•	•	• •	•		· ·	•	· · ·	•	•	· ·	•	· ·	• •	•	· ·	•		•	• •	•	•	• •	•	• •	•	•