Fundamatal Theorem of Galois
Let k be a finite normal extension of F with Galois group $G(k / F)$

1) The is an mulsion-reversing bijection

$$
\begin{aligned}
\lambda: & \left\{\begin{array}{c}
\text { intermediate } \\
\text { feeds } F K
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { sbyoups of } \\
G(K / F
\end{array}\right\}, \lambda(E)=G(K / E) \\
& {[K: E]=|G(K / E)| \text { and }[E: F]=(G(K / F): G(K / E)) }
\end{aligned}
$$

2) Let $F \leqslant E \leq K$ then E is a normal extension of F if and only if $G(K / E)$ is a normal sobgap of $G\left(K_{/}\right)$ When $G(K / E) \leqslant G(K / F)$ is normal $G(E / F) \cong G(K / F) / G(K / E)$.
normal \Leftrightarrow normal E is normal ouer $F \Leftrightarrow \in$ is a solting field orer $F(E$ is sparable smie $E \leq K$ oure F spe $)$ Thm 50,3
$\Longleftrightarrow \quad \forall 6 \in G(K / F)$ and $\alpha \in E \quad \sigma(\alpha) \in E$

$$
\begin{aligned}
& E=K_{G(K / E)} \text {. So } \sigma(\alpha) \in E \Leftrightarrow \forall \tau \in G(K / E) \\
& \tau \sigma(\alpha)=\sigma(\alpha) \Leftrightarrow \sigma^{-1} \tau \sigma(\alpha)=\alpha \quad \begin{array}{l}
\forall \alpha \in \epsilon \\
\forall \tau \in G(K / E) \\
\forall G \in G(K)
\end{array} \\
& \sigma \in G(K / F) \\
& \Leftrightarrow 6^{-1} \tau 6 \in G(K / E) \quad \forall \tau \in G(K / \epsilon) \text { and } \forall 6 \in G(K / F)
\end{aligned}
$$

This is precizely the definition of $G(K / E)$ being a normal slbgrop of $G(k / F)$.

Suppox E is a nomal axtusoi of F. Then the map $\varphi=G(K / F) \rightarrow G(E / F)$ is onto

$$
\left.6 \longmapsto 6\right|_{E} \longmapsto\left(\begin{array}{ccc}
\text { By } & \text { iso exthy } \\
\text { thesee } \\
\text { since } & + \\
\text { nomal }
\end{array}\right)
$$

(Sinie E is normal $\left.\sigma\right|_{E}$ is an automophiom ie,

$$
\left.G\right|_{E}(E)=E
$$

The $\operatorname{ker} \varphi:=\left\{\sigma^{\prime} K \rightarrow K \mid \varphi(6)=i d: E \rightarrow E\right\} \leqslant G(K / F)$

$$
=G(K / E)
$$

By svjectivity of $\varphi \quad G(E / F) \cong G(K / F) / G(K / E)$

First an example: Cyclotomic Extensors (Section 55)
Def 55.1 The splitting field of $x^{n}-1$ over F is the $n^{\text {th }}$ cyclotomic extricia of F.

- The raves of $x^{n}-1$ over \mathbb{Q} are $1, \xi, \xi, \ldots, \xi^{n-1}$ where $\quad \xi=e^{2 \pi i / n} \in \mathbb{C}$ (or any primitive $n^{\text {tr }}$ not f unity $\Rightarrow e^{2 \pi i m} / n$) $\operatorname{gad}(m, n)=1$. $\operatorname{gd}(m, n)=1$.
- The spitting field of $x^{n}-1$ is $K=F(\xi)$.
- For $F=\mathbb{Q}$ irreducible polynomial of ξ der \mathbb{Q} is
- $\tau \in G(K / \mathbb{Q})$ then $\tau(\xi)$ is a primitive n^{H} root of unity $\Rightarrow \tau(\xi)=\xi^{m}$ wee $\operatorname{gcd}(n, m)=1$. So it $\tau^{\prime} \in G(k / Q$

$$
\begin{aligned}
& \tau \tau^{\prime}(\xi)=\tau\left(\xi^{m^{\prime}}\right)=\Sigma^{m^{\prime} m}=\tau^{\prime}\left(\xi^{m}\right)=\tau^{\prime} \tau(\xi) \\
& G(k / \mathbb{Q}) \cong G_{n}=\mathbb{Z}_{n}^{x \prime \prime}=\left\{k \left\lvert\, \begin{array}{l}
1 \leqslant k \leq n \\
g c d \\
(k, n)=1
\end{array}\right.\right\} \begin{array}{l}
\text { wite operation } \\
\text { meltipliahio }
\end{array}
\end{aligned}
$$

$\Rightarrow G(K / Q)$ is abehain

Solung by radicals
Can unos of $f(x) \in \mathbb{Q}[x]$ be expressed in tems of radicals?

- deg $f(x)=2$ quadratic fomila Brahmagupta $r 600 A D \quad \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
- deg $f(x)=3$ Cardano's fomila 1545
- deg $f(x)=4 \quad$ Ferrari 1540
- $\operatorname{deg} f(x)=5$ Insolvable by redicals in general! grie a Abel-Ruffini Therrem 1799/1824 diffee \Rightarrow Galois

Insoluablity by radicals of the quintic
Def 66.1 An extension K of F is an extusion by radicals if $\exists \alpha_{1}, \ldots, \alpha_{r} \in K$ and $n_{1}, \ldots, n_{r}>0$ s.t. $K=F\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ and $\alpha_{1}^{n_{1}} \in F$ and $\alpha_{i}^{n_{i}} \in F\left(\alpha_{1}, \ldots, \alpha_{i-1}\right),<i \leqslant r$. $\Rightarrow \alpha_{i}$ is the $n_{i}^{\text {th }}$ - root of some elt of $F\left(\alpha_{1}, \alpha_{i-1}\right) \mid \alpha_{\alpha_{i}}^{\alpha_{i} x_{i}^{n_{i}^{a}}-\alpha_{i}^{n}}$ A polynowial $f(x) \in F(x)$ is soluable by radicals if its spliting field is cortained in an axtension by F by radiuals $\left(F \leq \underset{\text { sputting tield }}{E} \leqslant K_{\text {enth }} \leq \bar{F}\right.$ by radiald $)$
Eg. $x^{n}-a \in \mathbb{Q}[x]$ is solvable by radicals

- $a x^{2}+b x+c \in \mathbb{Q}[x]$ is sowabe by radecals
- wbics and quartior ver \$. ae solvable las radicals

Thin (Galois) Let cher $F=0$ Then $f(x) \in F(x)$ is sowable by radicals over F if and only if the splittiy field E over F las solvable Galois goop

Recrel A group G is solvable if a composition senes $0=H_{0} \Delta H_{1} \ll H_{n-1}<H_{n}=G$ is such that H_{i+1} / H_{i} is abelian $\forall 0 \leqslant i \leqslant n-1$.

A composition sires is a sequence of sibgrops as above with H_{i} normal in H_{i+1} and H_{i+1} / H_{i} is simple for $\forall 0 \leq i \leq n-1$.

Exainple - If G is abelian G is solvable

- S_{5} is not soluable: $0<A_{5}<S_{5}$.
A_{5} is simple not abclion !
- S_{n}, A_{n} not solvable for $n \geqslant 5 \quad \begin{gathered}(s,+1) \times(H \cdot A)=1 \\ \Rightarrow S-H \sim H-A s\end{gathered}$
- If $0=N_{0} \Delta N_{1} \Delta N_{2} \ldots \Delta N_{n}=G$ is a subnomal senes with N_{i+1} / N_{1}, solvable then G is solvable ${ }^{4} N_{i+1} \Delta N_{i}$ Exenise 56.6. not necessary that N_{i+1} / N_{i} is simple
- Quotiento of solvebbe gropor are solvible Exeruse 35.29

Lemma 56.3 Let char $F=0, a \in F$, and k be the splitting field of $X^{n}-a$ or F Then $G(K / P)$ is solvable.
Prof Case 1 Spore F contains a primitive not of unity ξ Then runs of $x^{n}-a$ are $\beta, \xi \beta, \ldots \xi^{n-1} \beta$ and $K=F(\beta) . \quad G(K / F) \cong G_{n} \& \operatorname{moltipliatie} \operatorname{gop} \bmod n \quad$ and is abelian hence solvable
Case 2 i\& F. Then let $F^{\prime}=F(\xi) \leftarrow$ aclotomic ext $K=F^{\prime}(\beta)$ so $G\left(F^{\prime} / F\right)$ is abelion. Also K / F^{\prime} is the $F_{1}^{\prime}=F(\xi)$ extrusion from case $1 \Rightarrow G\left(K / F^{\prime}\right)$ is abelion. $\stackrel{1}{F}$
F^{\prime} is splitting field of $x^{n}-1$ over $F \Rightarrow F^{\prime}$ is a normal ext in of $F \Rightarrow G(K / F))$ is a normal sbyop of $G(K / F)$ Consider $O \triangleleft G\left(K / F^{\prime}\right) \Delta G(K / F)$ Then $G(K / F) / G\left(K / F^{\prime}\right) \cong G\left(F / F^{\prime}\right) \Rightarrow$ abelian
$\left.G\left(K_{r}\right)^{\prime}\right) / 0$ abeliar \Rightarrow solvable.
Example
$\Longrightarrow G\left(K_{F}\right)$ is solvable by Exerase 56.6 D
K is splitting field of $X^{3}-2$ over \mathbb{Q}.

Thm 56.4 Let F be a field of char O and suppose $F \leqslant t \leq k \leq F$ where E is a ronal extucir and K is an exturion by radials. Then $G(E / F)$ is a solvable goy p

Poof Let $K=F\left(\alpha_{1,-}, \alpha_{r}\right)$ and form L_{i+1} as the splitting foil of $x^{n_{i+1}}-\alpha_{i+1}$ aver L_{i}. let $L=L_{r}$. By Lemma 56.3 $G\left(L_{1} / F\right)$ is solvable Appose L_{i} is solvable then $0 \Delta G\left(L_{i} / F\right) \Delta G\left(L_{i+1} / F\right)$ wite $\left.G\left(L_{i+1 / F}\right) / G\left(L_{i} / F\right) \xlongequal{\cong} \underline{L_{i}}\right)$
$\Rightarrow G\left(L_{i+1}\right)$

Hence $G(L / F)$ is solvable. Now,

$$
G(L / F) / G\left(L_{E}\right) \cong G(F / E)
$$

and quoticits of solvable greps are solvable Exenise 35.29

Corollary A quintic polynomial of degree 5 over a field F with char $F=O$ is not solvable by radials if $G(K / F) \cong S_{S}$ ulve K is the splitting field.
Such polynomials exist!
$/ \mathbb{R}$ see text book using symmetric polynomials and transcendental \#'s over ©

$$
\begin{aligned}
& y_{1,}, y_{5} \in \mathbb{R} \\
& f(x)=\pi\left(x-y_{i}\right) \in \mathbb{Q}\left(s_{1}, \ldots, s_{5}\right)[x]
\end{aligned}
$$

Then dam $G(K / F) \cong S_{5}$.

Over \mathbb{Q} Sppose $f(x) \in \mathbb{Q}(x]$ is a iredibbe degree 5 polynomal with 3 neal zenos and 2 complex conjugated zuos. ie. $f(x)=2 x^{5}-5 x^{4}+5$
 $\binom{$ show this osing calulur and }{ Gisenstain's ontenon $p=5}$ $\operatorname{Caim} G(K / F) \cong S_{5}$ wher K is the sputhis field.
Genuse 56.8 .

$$
G(K / F) \leqslant S_{5} \leqslant \begin{gathered}
\text { permitations } \\
\text { of } \\
\text { pors }
\end{gathered}
$$

To show = enough to show $G(k / F)$ andanion a trand position

A traupporkite is $(1,2)$
An example of a 5 -çle is $(1,2,3,4,5)$

$$
1_{4}^{5 \rightarrow 1>}
$$

