Fielde Revens + Gram problems. both commtative F a field has the operations t Q, R, C, finite fields GF(q) prin pour both have inverses (Section 19) Constructions of fields: 1) R integral domain => FR field of fractions (Section 21) (commutative ring with nity w) R 2) R compative ring with unity and I maximal ideal then the quotient ring R/ is a field (section 27)

Reall An ideal I = R is a additive subgrap of (K,+) such that & ark aI, Ia EI A Ris commitative enorgh to ask a I = I Harr. I is a maximal ideal of R if Z J ideal of R I = J = R 2* F a field then F[x] = R then "principal ideal $\langle F(x) \rangle = \Sigma g(x) \cdot f(x) | g(x) \in F(x] Z$ generated by f(x)" is maximal ideal (> Fix) is meduable and F FLXJ is a field (fix) is irreduble ores F くちょうう

The field E = F(X]/< fix) contains a zero subfield isomorphic to of fix) and a district coset representatives. $\sum_{i=1}^{n} x + \langle F(x) \rangle$ $\{g(x) + \langle f(x) \rangle \mid g(x) \in F(x) \}$ E = F(x) =uell dedired since (R,+) is abelian (R,+) T<(R,+) $\langle f_{(x)} \rangle$ with operations $(g(x) + \langle F_{1x} \rangle) + (h(x) + \langle F_{1x} \rangle) := g(x) + h(x) + \langle F_{1x} \rangle^{2} normal$ $(g(x) + \langle f(x) \rangle) \bullet (h(x) + \langle f(x) \rangle) := g(x)h(x) + \langle f(x) \rangle$ uell defiel since I is an idel (aI =]

Exam 2020 Robber 4 (NOTE THIS WAS A ONE WEEK EXAM!
$F = \mathbb{Z}_3$ and $f(x) = x^3 + 2x + 1 \in F(x)$
4a Explain why K = F(x)/(F(x)) is a field
K is a field iff < fix)> is a maximal ideal in Fix)
iff fix) is meducide are F.
Since fix) is at degree 3 if it is reducible over F
it must have a zero in $F = 20, 1, 23$.
However, $f(0) = 1$ $f(1) = 1 + 2 + 1 = 1$ $f(2) = 8 + 4 + 1 = 1$
so there is no two of fix) in F Hence fix) is
irreductors F and K is a feld.

Not part of exam ells of K are $\{g(x) + \langle f(x) \rangle\}$ $\chi^{3} + \langle \chi^{3} + 2\chi + 1 \rangle \stackrel{()}{=} \chi^{3} + (-\chi^{3} - 2\chi - 1) + \langle \chi^{3} + 2\chi + 1 \rangle$ Since recall $= -2\chi - 1 + \langle \chi^{3} + 2\chi + 1 \rangle$. $g(x) + \langle f(x) \rangle = g'(x) + \langle f(x) \rangle \iff g(x) - g'(x) \in \langle f(x) \rangle$ Notice by adapting P we can always find a coset representative g(x) with deg(g(x)) < deg(f(x))Moreover ne shawed that the representative satisfying is might. Compare this to $Z/_{nZ} = \{a + nZ\}^{2}$ a coset report to $O \le a \le n-1$

 $E = \frac{F[x]}{\langle F(x) \rangle} \stackrel{N}{=} F(x) = \left\{ a_0 + a_1 x + \dots + a_{n-1} x^{n-1} \middle| a_i \in F \right\}$ $\frac{1}{2} \frac{1}{2} \frac{1}$ Isomorphism is given by: $f(x) = x^n + b_{n-1}x^{n-1} + b_1x + b_0$. $q(x) + \langle f(x) \rangle \longrightarrow q(\alpha).$ deg gix) < n = deg f Notice E contains a subfield isomorphic to F namely $\{\alpha_0 + \langle F(x) \rangle \}$ notice this set to $F \subseteq F(d)$ all a;=0 i>0.

A fiels extension E of F just means a field E containing F. BONNS: IF E is an extension of F then E is a verter spare over F. dim of E over F is called the degree of E orer F and densted it by [E:F]. & algebraic over F. (3 fox) EF(X] wh & a zero) $F_{y} E = F(\alpha)$ with (over F as a verter space Then dim of E 15 deg irr (a, F)

A fix) does not necessarily split over F(x). Fix) is imeduable / D. by Eisenstein P=2 Example Fix) = X⁴-2 Zeros in C: \$2, - \$52, i \$52, - i \$52 $E = Qixi \ge Q(\alpha)$ for any zero α $\langle \widehat{A_{x}} \rangle$ = $\mathbb{Q}(-\sqrt[4]{2}) \xrightarrow{\sim} \mathbb{Q}(i\sqrt[4]{2}) = \mathbb{Q}(-i\sqrt[4]{2})$ equalities are as $\mathbb{Q}(\sqrt[4]{2}) = \mathbb{Q}(-\sqrt[4]{2}) \xrightarrow{\sim} \mathbb{Q}(i\sqrt[4]{2}) = \mathbb{Q}(-i\sqrt[4]{2})$ subfields of $\mathbb{Q}(arc)$ 1^{1} · D. · · K K Q(42) Q(15) $[Q(\chi):Q]=4$ D

The splitting feld K of	fix) must contain all Frenos.
$\mathbb{Q}(4Jz, i) = K = \mathbb{Q}(4z)(i)$	$irr(\dot{c}, Q(52)) = \chi^2 + 1$
$\left(\mathbb{Q}(4Jz) \right)$	[K:Q] = [K:Q(452)][Q(452):Q]
$\mathcal{O}(i) = \mathcal{O}$	= 2.4 = 8. index of the
$G(K/Q) = \{g_{3}, \dots, g_{3}, \mathcal{M} \mathcal{M}\}$	2, S1, S2 {K: Q3 field ext'n ** # of ent'ns of
54.5 Table id sort of sort of the sort of	Z·D→D & sos 2·K→2[K]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	When K is a splitting tield then EK: Q3 = [G(K/Q)]
x = 452	1 separable [K - R] exth

Exam 2016 Rublem 2 Kis the splitting field of $f_{x} = (x^3 - 8)(x^2 - 2) \in \mathbb{Q}[x]$ 1) Find the degree [K: D] and the grap G(K/D) $f(x) = (x-2)(x^2+2x+4)(x^2-2) / D.$ x2-2 has zuos JZ, - JZ $r = -2 \pm \sqrt{4 - 16} = -2 \pm 2i\sqrt{3}$ x²+2x+4 has zeros $2 = -1\pm i\sqrt{3}$ The zeros of f(x) are $2, \sqrt{2}, -\sqrt{2}, -1 \pm i\sqrt{3}$

Therefore	$K = \mathbb{Q}(\sqrt{2}, -1 + i\sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$
Ì J	$\bar{s} \in \mathbb{Q}(\sqrt{2})(-1+\sqrt{3}) > \mathbb{Q}(\sqrt{2},\sqrt{3}) \leq \mathbb{Q}(\sqrt{2},-1+\sqrt{3})$
-1 +iVF	$3 \in \mathbb{Q}(\overline{J_2}, \overline{C}, \overline{J_3}) \rightarrow \mathbb{Q}(\overline{J_2}, \overline{L}, \overline{L}) \subseteq \mathbb{Q}(\overline{J_2}, \overline{C}, \overline{L})$
K = Q	$(52, \hat{v}B)$
	$[Q(JZ, iJ3): Q(JZ)] = 2 = deg(X^{2} + 3)$ (in(iJ3, Q(JZ))
$\mathbb{Q}(J)$	(\overline{z}) \overline{z} (\overline{z}) ; $\partial \overline{z} = 2$
D I	$\int \log(12/7 dx) = day(x^2 - 2)$ 50 $G(K/Q)$ 15
[K : \$	2] = 4 Hence $ (G_1(K/\Phi)) = 4$. $\mathbb{Z}_4 \propto \mathbb{Z}_2 \times \mathbb{Z}_2$

GEG(K/Q) must send & to a conjugates Hence $6^2 = id \quad \forall \quad 6 \in G(K/Q)$ $\sqrt{2} \leftrightarrow \pm \sqrt{2}$ $i \overline{3} \leftrightarrow \pm i \overline{3}$ there is no element of order 4 so $G(K(Q) = \mathbb{Z}_2 \times \mathbb{Z}_2$

2b) Fired an eff ack st $K = D(a)$
let $\beta = \sqrt{2} \beta' = -\sqrt{2} \alpha = i\sqrt{3} \alpha' = -i\sqrt{3}$
By the primitie ell theorem proof find
$CEQ SE. CF \frac{2\sqrt{2}}{2\sqrt{3}}$
$a = \sqrt{2} + ci\sqrt{3}$ ie take $c = 1$
$Claim \qquad Q(\overline{12}+i\overline{13}) = Q(\overline{12},i\overline{13})$
$\mathbb{Q}(\sqrt{2}+\sqrt{3})$
$\mathcal{D}_{\mathcal{A}}$

Claum	[D(12+1)]:D]=4. It can only be	
1,2,4	However if 2 then 1, a	
a ² =	-1+iJG. & cannot be united as	•
٢	$+ Sa$ for $a, r \in Q$.	•
Hence	$\mathcal{O}(\overline{12}+\overline{1}\overline{3})=\mathcal{O}(\overline{12},\overline{1}\overline{2}).$	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · ·		
		•

																					•					•				•				• •	
				• •					• •			• •									• •		• •	• •		• •			•					• •	
				• •			• •														• •			• •		• •								• •	
				• •			• •														• •			• •		• •								• •	
				• •			• •														• •			• •		• •								• •	
				• •			• •														• •			• •		• •								• •	
				• •			• •														• •			• •		• •								• •	
	• •			• •			• •		• •			• •		•	• •			• •			• •		• •	• •		• •		•	•	• •	•			• •	
	• •			• •			• •		• •			• •			• •						• •		• •	•		• •			•			•		• •	
	• •			• •			• •		• •		•	• •		•	• •			• •			• •		• •	• •		• •		•	•	• •			•	• •	
	• •			• •			• •		• •		•	• •		•	• •			• •			• •		• •	• •		• •		•	•	• •			•	• •	
	• •			• •		•	• •		• •			• •		•	• •		•	• •			• •		• •	• •		• •	•	•	•	• •			•	• •	
•	• •		•	• •			•		•		•	• •	•	•	• •			• •			• •		• •	• •		• •	•	•	•	• •			•	• •	
	• •	•		•	•		• •		• •		•	• •			• •			• •			•			•		•		•	•	• •			•	• •	
•	•			• •		•	• •	•	• •		•	• •	•	•	• •			• •		•	• •		• •	• •		• •	•		•	• •			•	• •	
	•			• •			• •		•			•			• •			• •			•		• •	• •		•			•	• •			•	• •	
	• •			•		•	• •		• •		•	• •		•	• •		•	• •			• •		• •	•		• •				• •			•	• •	
	• •			• •		•	• •	•	•	•	•	• •	•	•	• •		•	• •	•	•	• •		• •	• •		• •			•	• •			•	• •	
•			•	• •		•	• •	•	•	•	•	• •	•	•	• •			• •		•	• •		• •	• •		• •			•	•			•	• •	
	• •			• •			• •														• •					• •			•					• •	
							• •		• •												• •			• •		• •								• •	
•			•	• •			• •	•		•	•		•					• •			• •		• •			• •			•				•	• •	
						•	• •														• •					• •								• •	
						•	• •							•						•	• •		• •	• •		• •									
																							• •												
																							• •												

																						•					•				•				• •	
				• •						• •			• •									• •		• •	• •		• •			•					• •	
				• •			• •															• •			• •		• •								• •	
				• •			• •															• •			• •		• •								• •	
				• •			• •															• •			• •		• •								• •	
				• •			• •															• •			• •		• •								• •	
				• •			• •															• •			• •		• •								• •	
	• •			• •			• •			• •			• •		•	• •			• •			• •		• •	• •		• •		•	•	• •	•			• •	
	• •			• •			• •			• •			• •			• •						• •		• •	• •		• •			•			•		• •	
	• •			• •			• •			• •		•	• •		•	• •			• •			• •		• •	• •		• •		•	•	• •			•	• •	
	• •			• •			• •			• •		•	• •		•	• •			• •			• •		• •	• •		• •		•	•	• •			•	• •	
	• •			• •		•	• •			• •			• •		•	• •		•	• •			• •		• •	• •		• •	•	•	•	• •			•	• •	
•	• •		•	• •			•		•	•		•	• •	•	•	• •			• •			• •		• •	• •		• •	•	•	•	• •			•	• •	
	• •	•		•	•		• •			• •			• •			• •			• •			•			•		•		•	•	• •			•	• •	
•	•			• •		•	• •		•	• •		•	• •	•	•	• •			• •		•	• •		• •	• •		• •	•		•	• •			•	• •	
	•			• •			• •			•			•			• •			• •			• •		• •	• •		• •			•	• •			•	• •	
	• •			•		•	• •			• •		•	• •		•	• •		•	• •			• •		•	•		• •				• •			•	• •	
	• •			• •		•	• •		•	•	•	•	• •	•	•	• •		•	• •	•	•	• •		• •	• •		• •			•	•			•	• •	
•			•	• •		•	• •		•	•	•	•	• •	•	•	• •			• •		•	• •		• •	• •		• •			•	•			•	• •	
	• •			• •			• •															• •					• •			•					• •	
							• •			• •							•					• •			• •		• •								• •	
•			•	• •			• •		•		•	•		•					• •			• •		• •			• •			•				•	• •	
						•	• •															• •					• •								• •	
						•	• •	•							•						•	• •		• •	• •		• •									
																								• •												
																								• •												