Sobgops $£ 5$ Fraleigh.
Read "nstation + terminolony" pg 49
Sutch from $a * b$ to $a b$. miltipliative notation For G commatative we sometinis ue $a+b$ additive notation
$a * b \Rightarrow a b$ multipliahice
$a+b$ odective
$a^{\prime} \Rightarrow-a^{-1}$ multipliahice
$e \Rightarrow \quad \begin{aligned} & 1 \text { multipliahice } \\ & 0 \text { odoetive }\end{aligned}$

Def 5.4 A subset H of a grap $(G, *)$ is a sibgrop if it is itself a grop under $*$.
Recall Grap axions:
To check a sobgoup:
$60(H, *)$ is a bivany structure.
GI * is associative
G2 $e \in H$ deatity
G3 $\forall a \in H \quad \exists$ inverse $a^{-1} \in H$.
Thm 5.14 A subet H of $(G, *)$ B a slbgrop if and only if
$11 H$ is closed under *
3) $\forall a \in H, a^{-1} \in H$
2) the dectity e of G is in H

Excimples 1) $(n \mathbb{Z},+)<(\mathbb{Z},+) \leqslant(\mathbb{Q},+) \leqslant(\mathbb{R},+) \leqslant(\mathbb{C},+)$
2) $(U, \cdot) \leqslant\left(\mathbb{C}^{x}, \cdot\right)$.
3) $*=+H_{2}=\left\{\begin{array}{c}\{: \mathbb{R} \rightarrow \mathbb{R}\} \\ \text { difeceratiabi }\end{array} \leqslant H_{1}=\{f: \mathbb{R} \rightarrow \mathbb{R}\} \leqslant G=\{f: \mathbb{R} \rightarrow \mathbb{R}\}\right.$
4) $*=\cdot G L_{n}(\mathbb{R}) \geqslant S L_{n}(\mathbb{R})=\left\{A \in G L_{n}(\mathbb{R}) \mid \operatorname{det} A=1\right\}$. Ex 5.16 .

Def 5.5. The impaper abgup is $G \leqslant G$

- The trinal sibgap is $\{e\} \leqslant G$
- All other sbgrops are called non-trival

SUgroup diagrams

5.10 Table					5.11 Table				
$\mathbb{Z}_{4}:+$	0	1	2	3	V :	e	a	b	c
0	0	1	2	3	e	e	a	b	c
1	1	2	3	0	a	a	e	c	b
2	2	3	0	1	b	b	c	e	a
3	3	0	1	2	c	c	b	a	e

5.12 Figure (a) Subgroup diagram for \mathbb{Z}_{4}. (b) Subgroup diagram for V.

Cyclic Sbgraps
Def 5.18 Let G be a goup then $H=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$ is the ychic slognop generated by a. Write $H=\langle a\rangle$.
The elenent a is a generator of H
The 5.17 $H=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$ is a grop.
Ploof. H is closed $a^{n} a^{m}=a^{n+m} \in \mathbb{Z}$. eeH sinue $a^{0}=e$

- if $b=a^{n} \in H$ ther $b^{-1}=a^{-n} \in H$

Cyclic Graps \& 6 Fraleigh
Def A grop G is cychic if $G=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$ for some $a \in G$.
The element a is a generator of G
Ex. $(\mathbb{Z},+)$ is cychi $\Delta_{\text {mult }} \Rightarrow$ oddalive $a^{n}=\frac{a+\cdots+a}{n \text { fimes }}$ genvatos $a=1$ or -1 .

- $\left(\mathbb{Z}_{n},+_{n}\right)$ modlar arithnetic

$$
\begin{aligned}
& \left(\mathbb{Z}_{n},+{ }_{n}\right) \text { modlar arithmetic } \\
& \mathbb{Z}_{n}=\{0,1, \ldots, n-1\} \quad a+_{n} b=\left\{\begin{array}{l}
a+b \text { if }<n \\
a+b-n \text { if } \geq n
\end{array}\right. \text {. }
\end{aligned}
$$

Thu 6! Every cyclic group is abehan
Proof Let $G=\langle a\rangle=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$ and $g_{1}, g_{2} \in G$. Then $g_{1}=a^{r}$ and $g_{2}=a^{5}$ for some $r, s \in \mathbb{Z}$

$$
g_{1} g_{2}=a^{r} a^{s}=a^{r+s}=a^{s} a^{r}=g_{2} g_{1}
$$

Division algorithm $\mathbb{Z} 6.3$ If $m \in \mathbb{Z}^{+}$and n any integer \exists a unique of and r whet $0 \leqslant r<m$ and

$$
n=q m+r
$$

Proof see text.

The 6.6 A sobgrep of a cyclic goop is cyclic Proof Let $G=\langle a\rangle$ and $H \leq G$. If $H=$ se 3 it is cyclic. Othenuise let $m \in \mathbb{Z}^{+}$be smallest such that $a_{11}^{m} \in H$. Claim: $H=\left\langle a_{1}^{m}\right\rangle$

Let $b \in H$ will show $b=c^{r}$ for some $r \in \mathbb{Z}$ Since $b \in G \quad b=a^{n}$ for $n \in \mathbb{Z}$.
By division alg $n=m q+r$ for $q \in \mathbb{Z} \quad 0 \leqslant r<m$ Then ${\underset{\epsilon}{c}}_{a^{n}}=a^{m q+r}=\left(a^{m}\right)^{q} a^{r} \Rightarrow a^{r}=a^{n}\left(a_{\in}^{m}\right)^{-q}$ $\in H$

However $0 \leqslant r<m$ and m was supposed t be smallest integer $\Rightarrow r=0$.
$b=a^{n}=\left(a^{n}\right)^{q}=c^{q} \Rightarrow b$ is a power of c so H is cyclic.

Corollary 6.7 The sobguaps of \mathbb{Z} under addition are precisely the groups $n \mathbb{Z}$ for $n \in \mathbb{Z}$.
Ex Let $H=\{n r+m s \mid n, m \in \mathbb{Z}\}$. Exenise Show H is $H=\langle d\rangle$ where $d=\operatorname{gcd}(r, \delta)$. a subgip of $(\mathbb{Z},+)$ See Def 6.8

Structure of cyclic greps
The 6.10 Let $G=\langle a\rangle$ be a cyclic group if $|G|=\infty$ then $G \cong(\mathbb{Z},+)$
if $|G|=n$ then $G \cong\left(\mathbb{Z}_{n}, T_{n}\right)$
Proof Case 1 Sppose $a^{m} \neq e$ for $m \neq 0$.
If $h \neq k$, then $a^{h} \neq a^{k}$. otherwise $a^{k}\left(a^{h}\right)^{-1}=a^{k-h}=e$.
Hence $\varphi: G \rightarrow \mathbb{Z} \varphi\left(a^{j}\right)=i$ is a bijection
Aldo $\quad \phi\left(a^{i} a j\right)=i+j=\phi\left(a^{i}\right)+\phi(a j)$

Case 2 $\quad a^{m}=e$ for some $m \neq 0$. Let $n \in \mathbb{Z}^{+}$be smallest such that $a^{n}=e$. Then
$G=\left\{a^{0}, a^{1}, \ldots, a^{n-1}\right\}$ since $a^{s}=a^{q n+r}=\left(a^{n}\right)^{q} a^{r}=a^{r}$ division $\mathrm{alg} \quad 0 \leq r<n$
$\varphi: G_{i} \rightarrow \mathbb{Z}_{n}$ is a bijection and $a^{i} \mapsto i$

Thin 6.14 Let $G=\langle a\rangle$ with $|G|=n$ and $b=a^{s} \in G$ Then $H=\langle b\rangle$ is a cyclic sobgoup with $|H|=\frac{n}{d}$ whee $d=\operatorname{gcd}(n, s)$. Also

$$
\left\langle a^{s}\right\rangle=\left\langle a^{t}\right\rangle \Longleftrightarrow \operatorname{gcd}(s, n)=\operatorname{gcd}(t, n)
$$

Prof $|H|=m$ where $m \in \mathbb{Z}^{+}$is smallest st $b^{m}=e$ Now, $b^{m}=e \Leftrightarrow\left(a^{s}\right)^{m}=e \Leftrightarrow n \mid s m$. The smallest m sit. n / sm is precisely $m=\frac{n}{\operatorname{gcd}(n, s)}$ see pg 64 .

Generators of cyclic groups.
Corollaing 6.16 If $G=\langle a\rangle$ and $|G|=n$, then the other generators of G are the elements of the form a^{r} whee $\operatorname{gcd}(r, n)=1$.

Proof Let $H=\left\langle a^{r}\right\rangle \leqslant G=\langle a\rangle$ By thm 6.14

$$
|H|=\frac{n}{\operatorname{gdd}(n, r)}=\frac{n}{1}=n \quad \text { so } \quad|H|=|G|
$$

Hence $H=G \quad \square$
Ex. The on y generates of $(\mathbb{Z},+)$ are +1 and -1 .

