Subgraps	$\S 5$ Fro	lei	Sh.	· · · · ·			· · · · · · · ·
Read "notation	+ terminalogy	Pa	49				· · · · · · · · ·
Sutch from	- a*b	to	ab.	milt	pliatie	ortation	n + 1
For G comm	ntatre ve	80M	eturs		Q76		NSTRUMEN
$a \neq b \Rightarrow ab \\ a \neq b$	multipliatie	· · · ·	· · · · · ·	· · · · ·	· · · · · · · ·	· · · · · · · ·	
	mille Labe			· · · · ·	· · · · · · ·	· · · · · · ·	
$\alpha' \Rightarrow -\alpha$	additive	· · · ·	· · · · · ·	 	· · · · · · ·	 	· · · · · · · ·
	multiplicatie	· · · · ·					· · · · · · · ·
$e \Rightarrow 0$	additive	· · · · ·	· · · · · ·	· · · · ·	· · · · · · ·	· · · · · · ·	· · · · · · · ·

Def 5.4 A subset H of	a grap (G,*) is a
Subgroup it it is riseri	To check a shappi
60 (H, *) is a bivery structure.	
<u>GI</u> # is associative	
<u>63</u> VaeH Jinverse aleH	· · · · · · · · · · · · · · · · · · ·
Thm 5.14 A subset H of (G,*)	is a subgroup if and only if
1) It is closed under #	3) VaeH, a'eH

Examples 1) $(n\mathbb{Z}, +) < (\mathbb{Z}, +) \leq (\mathbb{Q}, +) \leq (\mathbb{R}, +) \leq (\mathbb{C}, +).$ 2) $(U, \cdot) \leq (\mathbb{C}^{\times}, \cdot)$ 3) * = + $H_2 = \hat{s}f:\mathbb{R} \rightarrow \mathbb{R}^3 \leq H_1 = \hat{s}f:\mathbb{R} \rightarrow \mathbb{R}^2 \leq G = \hat{s}f:\mathbb{R} \rightarrow \mathbb{R}^3$ differentiable continuous GLn(R) > SLn(R) = ? A & GLn(R) | det A = 1 ? 4) *= • Ex 5.16 Def 5.5. The impose abyop is G ≤ G The trivial subgroup is fe's & G · All other stograps are called non-trivial

Subgroup chagrams

Cyclic Segaps Des 5.18 Let G be a group then H= 2a" In EZZ is the whice abyrap generated by a. Write H = <a7. The element a is a generator of H The 5.17 $H = 2a^{n} \ln z^{2}$ is a group. Prof. H is closed and = antm EZ eeH since $a^{\circ} = e$ $-if b = a^n \in H$ then $b^{-1} = a^n \in H$

Cyclic Groups \$6 Fraleigh D_{ef} A group G is cyclic if $G = \frac{3}{2}a^{n}|n \in \mathbb{Z}^{3}$ for some $a \in G$. The element a 13 a generator of G Ex $(Z'_{n,+})$ is cyclic Δ milt \rightarrow additie $a^n = a + \dots + a$ generators a = 1 or -1. • $(\mathbb{Z}_n, +,)$ modelar arithmetric $\mathbb{Z}_n = \{0, 1, ..., n-1\}$ $a + nb = \begin{cases} a + b & \text{if } < n \\ a + b - n & \text{if } < n \end{cases}$

Thim 6! Every cyclic group is abelian Proof let $G = \langle a \rangle = \langle a^n | n \in \mathbb{Z} \rangle$ and $g_1, g_2 \in G$. Then $g_1 = a^r$ and $g_2 = a^r$ for some $r, s \in \mathbb{Z}$. $g_{1}g_{2} = a^{r}a^{s} = a^{r+s} = a^{s}a^{r} = g_{2}g_{1}$ Division algorithm \mathbb{Z} 63 if $m \in \mathbb{Z}^+$ and n any integer $\exists a might a g and <math>\tau$ with $0 \le r \le m$ and n = qm + r. Proof see text.

Thm 6.6 A stogue of a cyclic group is cyclic.
Proof Let G= <a7 and="" h="Se3</td" h≤g.="" if=""></a7>
it is cyclic. Otherwise let MEZt be smallest
such that a ~ EH. Claim: H = < a ~ >
\mathcal{C}
Let be H will show b= c' for some rel
Since beg b= a tor nell.
By division alog n= mq +r for q=Z O≤r <m< td=""></m<>
-Then $a^n = a^m q^{+r} = (a^m)^q a^r \implies a^n = a^n (a^m)^q$
έH e H

However OSram and muses speed to be smallest integer. => r=0. $b = a^n = (a^m)^q = c^q \Rightarrow b$ is a power of c so It is updic. Corollary 6.7 The abgraps of Z under addition are precisely the groups nZ for nEZ. Ex Let $H = \{nr + ms \mid n, m \in \mathbb{Z}\}$ Grenise Ohan H is $H = \{nl\}$ where d = acd(ns) a subap of $(\mathbb{Z}, +)$ H= < d>> where d= gcd(r,s). See Def 6.8

Structure of cyclic graps Thm 6.10 Let G = < a7 be a cyclic group $|f| |G| = \infty \quad \text{then} \quad G \cong (Z, +)$ $|f |G| = n \quad \text{then} \quad G \cong (Z_n, +_n)$ Proof Case! Suppose $a^{m} \neq e$ for $m \neq 0$. If $h \neq k$, then $a^{h} \neq a^{k}$, otherwise $a^{k}(a^{h}) = a^{k-h} = e$. Hence $\ell: G \rightarrow \mathbb{Z}$ $\ell(a^{\vee}) = i$ is a byection Also $\phi(a^{i}a^{j}) = i + j = \phi(a^{i}) + \phi(a^{j})$

Case 2 a^m = e for some m = 0. Let n = Z⁺ be smalled such that a"=e. - $G = \{a^{n}, a^{n-1}\}$ since $a^{n} = a^{n+1} = (a^{n})^{n} a^{n-1}$ division alg 05 r<n q: G > Zn is a byection and

The 6.14 Let G = xay with |G| = n and $b = a^s \in G$. Then H= < b7 is a cyclic abgroup with [H]= n where d = gcd(n, s). Also $\langle a^{s} \rangle = \langle a^{t} \rangle \iff g(d(s,n)) = g(d(t,n)).$ Post |H| = m where m EZt is smallest s.t b^m = e: Now, $b^m = e \iff (a^s)^m = e \iff n \mid sm$. The smallest m s.t. n/sm is precisely $M = \frac{10}{9 \text{ cd}(n,s)}$, See Py 64.

Generators of cyclic groups.
Corollary 6.16 if $G = Xa7$ and $ G = N$, then the other generators of G are the elements of the form a where $gcd(r,n) = 1$.
Prof Let $H = \langle a^{r} \rangle \leq G = \langle a \rangle$. By the 6.14
$ H = \frac{n}{\gcd(n,r)} = \frac{n}{1} = n \text{so} H = G $
Hence $H = G$. \square .
Ex. The only generators of (Z,+) are +1 and -1.