UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in: \quad MAT2200 - Groups, Rings and Fields
Day of examination: PRACTICE EXAM
Examination hours: 4 hours-
This problem set consists of 2 pages.
Appendices: none
Permitted aids: all

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Justification must be provided for all solutions. Solutions can be submitted in English or Norwegian. The format may be in Latex or as scanned handwritten notes.

Problem 1 Group theory

1. (5 points) Let G be a cyclic group of order 12. List all of the subgroups of G.
2. (10 points) Consider the subgroup H of S_{4} generated by the 4 -cycle $(1,2,3,4)$. Determine the number of cosets of H in S_{4} and write down two of them as subsets of S_{4}. Is H a normal subgroup of S_{4} ?
3. (10 points) Let p be a prime number and let N be a normal p-subgroup of a finite group G. Prove that $N \leq P$ for every Sylow p-subgroup P of G.

Problem 2 Ring theory

1. (5 points) Let $f(x)=x^{2}-1$. Show that the ring $R=\mathbb{Q}[x] /\langle f(x)\rangle$ is not an integral domain. Is R a field?
2. (10 points) Let R and S be commutative rings with unity and let $\Phi: R \rightarrow S$ be a ring homomorphism. Show that if Φ is surjective then the preimage of a maximal ideal is maximal. Give an example of rings R and S, a non-trivial ring homomorphism $\Phi: R \rightarrow S$, and an ideal $I \subset R$ such that I is maximal in R but $\Phi(I)$ is not maximal in S.
3. (10 points) Let R be a commutative ring with unit element 1. If J_{1} and J_{2} are two ideals, define $J_{1}+J_{2}=\left\{a_{1}+a_{2} \in R \mid a_{1} \in J_{1}\right.$ and $\left.a_{2} \in J_{2}\right\}$. Show that $J_{1}+J_{2}$ is an ideal of R. Find the kernel of the ring homomorphism $\Phi: R \rightarrow R / J_{1} \times R / J_{2}$ defined by $\Phi(a)=\left(a+J_{1}, a+J_{2}\right)$.

Problem 3 Finite fields

Consider $F=\mathbb{Z}_{5}$.

1. (5 points) Show the polynomial $f(x)=x^{3}+x+1 \in F[x]$ is irreducible over F.
2. (10 points) Explain why $f(x)$ divides the polynomial $x^{5^{3}}-x$ over F.
3. (10 points) Let $\alpha \in \bar{F}$ denote a zero of $f(x)$. Write a basis of $E=F(\alpha)$ over F using α. Use the Frobenius automorphism of $F(\alpha)$ to find the other roots of $f(x)$ and express them in this basis. Conclude that $f(x)$ splits over $F(\alpha)$. Are there any intermediate fields E^{\prime} such that $F<E^{\prime}<E$?

Problem 4 Galois theory

Let $p>2$ be a prime number and $f(x) \in \mathbb{Q}[x]$ be a degree p irreducible polynomial over \mathbb{Q}. Let K denote the splitting field of $f(x)$.

1. (5 points) Let $\alpha \in \overline{\mathbb{Q}}$ be a zero of $f(x)$. What is the degree of the field extension $\mathbb{Q}(\alpha)$ over \mathbb{Q} ?
2. (10 points) The Galois group $G(K / \mathbb{Q})$ can be viewed as a subgroup of the symmetric group S_{p}. Show that $G(K / \mathbb{Q})$ must contain a cycle of length p. Suppose f has $p-2$ zeros in \mathbb{R} and two zeros which are complex conjugates. Show that the automorphism of complex conjugation $\sigma: \mathbb{C} \rightarrow \mathbb{C}$ restricted to K yields an element $G(K / \mathbb{Q})$ which is a transposition in S_{p}.
3. (10 points) Conclude that the Galois group $G(K / \mathbb{Q})$ is isomorphic to S_{p}. Determine for which primes such a polynomial $f(x)$ is solvable by radicals.
Hint: Show that the symmetric group S_{n} can be generated by any n-cycle σ and any transposition τ.
