Practice Exam Suggested Solutions.
Problem 1 a cycle of order 12 then $G \cong \mathbb{Z}_{12}=\langle 1\rangle$ The sobyeps correspad to divisors of 12 which are: $\quad 1,2,3,4,6,12$

Therefore the slegronps are:

$\langle 1\rangle=G$	orle 12	
$\langle 2\rangle$	order	6
$\langle 3\rangle$	order 4	
$\langle 4\rangle$	order 3	
$\langle 6\rangle$	order 2	
$\{0\}$		

2. $H=\langle(1,2,3,4)\rangle \leqslant \delta_{4} \quad\left(\begin{array}{l}\text { questai shad hae } \\ \text { specified left }\end{array}\right.$ penile costs's $(1,2,3,4)$ las oder 4 in S_{4} So H has size 4 .

Therefore the t of left cosets 15

$$
\left[S_{4}: H\right]=\frac{\left|S_{4}\right|}{|H|}=\frac{24}{4}=6
$$

H itself is a coset. It's elements ave:

$$
H=\{e,(1,2,3,4),(1,3)(2,4),(1,4,3,2)\}
$$

since $(1,3)$ is not in H, another left coset is

$$
(1,3) H=\{(1,3),(1,2)(3,4),(24),(1,4)(2,3)\}
$$

3. Let P be pine and N a nomal p-abgrop of a finite gop G.

First by Sylow's 1st therem N is contained in a sylow p-subghe P_{0}.
Now cunside un arbatrany p-Sylow subgrap P. By s/lu's 2nd Theorem $\exists g \in G$ s.t.

$$
P=g^{-1} P_{0} g=\left\{g^{-1} h g \mid h \in P_{0}\right\}
$$

Nos sppose $n \in N$, then since N is normal $\exists g \in G$ and $n^{\prime} \in N \leqslant P_{0}$ s.t.
$n=g^{-1} n^{\prime} g$. Therefore, $n \in P$ hane
$N \leq P^{0}$ for every p-solas sologap $P D$

Problem 2

$$
f(x)=x^{2}-1=(x+1)(x-1) \in \mathbb{Q}[x] .
$$

Hence $\alpha f(x)\rangle$ is not a pare ideal and $R=\mathbb{Q}[x] /\left\langle x^{2}-1\right\rangle$ is not an integral domain.
Alternatively: native $(x+1)(x-1)=0$ in R however $x+1, x-1 \neq 0$ in R.

Every field is also an integral domain hance R is not a field.
2. R, S commutative nigu with inity $\Phi: R \rightarrow S$ a sriectivening hanom.
Let $M \subseteq S$ be a noximal idal conorid $\Phi^{-1}(M)=\{a \in R$ s.t. $\Phi(a) \in M\}$

Aside:
Note $\Phi^{\top}(M)$ is an ideal in R siniu the preinage of an additive abgap cuder a homomospuion is aa colditive saboup and for any $r \in R$ If $a \in \Phi^{-1}(M)$ then $\Phi(r a)=S \cdot \Phi(a)$ $=s \cdot m \in M$ so $r a \in \Phi^{\top}(M)$.

Nov sppese $\Phi^{-1}(M)$ is not maximal Then there is a proper idea $\underset{\sim}{N}$ of R such that $\Phi^{-1}(M) \nsubseteq \tilde{M}$. Then $M \subseteq \Phi(\tilde{M})$. Since M is maximal in S, thee are two poosbilitits: either $M=\Phi(\widetilde{M})$ (case 1) or $\Phi(\widetilde{M})=S(\operatorname{cose} 2)$

If $M=\Phi(\tilde{M})$, then

$$
\widetilde{M} \subseteq \Phi \Phi \Phi(\tilde{M})=\Phi^{-1}(M)
$$

where the niewsition $*$ holds since the prermage of $\Phi(\widetilde{M})$ most at least contain $\tilde{M}^{\text {Bt }}$ by assumption $\Phi^{-1}(\mathcal{M}) \subseteq \widetilde{M}$ Hence $\tilde{M}=\Phi^{-1}(M)$

If $\Phi(\tilde{M})=S$ then for every $r \in R$ there exists an $m \in \tilde{M}$ sit.

$$
\Phi(r)=\Phi(m) \Rightarrow \Phi(r-m)=0
$$

since $O \in M, \quad r-m \in \Phi^{-1}(M) \subseteq \widetilde{M}$
Since $m \in \tilde{M}$ and \tilde{M} is an ideal, we have $r \in \mathbb{M}$ for even $r \in R$.

$$
\Rightarrow \tilde{M}=R
$$

Combining the two cases implies that $\tilde{M}=R$ or $\tilde{M}=\Phi(M)$.
Hence $\Phi^{-1}(M)$ is raxinial in R.

Example Consider the hamsmaphosm $f: \mathbb{Z} \rightarrow \mathbb{Z}_{3}$ and the maximal ideal $I=\alpha \alpha\rangle \subseteq \mathbb{Z}$ then $f(\langle 2\rangle)=\{0,1,2\}=\mathbb{Z}_{3}$ So $f(I)$ is not a maximal ideal of \mathbb{Z}_{3}.
3. let J_{1}, J_{2} be ideals of R.

Defue $J_{1}+J_{2}=\left\{a_{1}+a_{2} \subset R \mid a_{1} \in J_{1} a_{2} \in J_{2}\right\}$
Fisty $J_{1}+J_{2}$ is an additive sebyp of R.
Closed If $a, b \in J_{1}+J_{2}$ then

$$
\begin{array}{ll}
a=a_{1}+a_{2} & a_{i} \in J_{1} \\
b=b_{1}+b_{2} & b_{i} \in J_{1}
\end{array}
$$

So $a+b=a_{1}+a_{2}+b_{1}+b_{2}$

$$
\begin{aligned}
& =\left(a_{1}+b_{1}\right)+\left(a_{2}+b_{2}\right) \\
& =a_{1}^{\prime}+a_{2}^{\prime} \in J_{1}+J_{2}
\end{aligned}
$$

$\Rightarrow J_{1}+J_{2}$ is closed uder additio
deatity $0=0+0 \in J_{1}+J_{2}$
lnverses $a=a_{1}+a_{2} \in J_{1}+J_{2}-a=-a_{1}-a_{2}$ whe $-a_{i} \in J_{i}$ wence $-a \in J_{1}+J_{2}$

Nav given $a=a_{1}+a_{2} \in J_{1}+J_{2}$

$$
r a=r\left(a_{1}+a_{2}\right)=r a_{1}+r a_{2}
$$

$r a_{i} \in J_{i}$ since J_{i} is an ideal

$$
\Rightarrow \quad r a \in J_{1}+J_{2}
$$

$J_{1}+J_{2}$ is an idol

$$
\begin{aligned}
\operatorname{ker} \Phi= & \left\{a \in R: \Phi(a)=0 \in R / J_{1} \times R_{/} J_{2}\right\} \\
& \left\{a \in R \left\lvert\, \begin{array}{l}
a+J_{1}=J_{1} \text { and } \\
a+J_{2}=J_{2}
\end{array}\right.\right\} \\
a+J_{i}= & J_{i} \Leftrightarrow a \in J_{i} \text {. The fere } \\
\operatorname{ker} \Phi= & \left\{a \in R \mid a \in J_{1} a \in J_{2}\right\} \\
= & J_{1} \cap J_{2} .
\end{aligned}
$$

Problem 3 $\quad F=\mathbb{Z}_{5}$

1) Show $f(x)=x^{3}+x+1 \in F(x)$ ir irreducible over F.
$\operatorname{deg} f(x)=3$ so if it is reducible aver F it not have a hines factor.
Check:

$$
\begin{array}{ll}
f(0)=1 \neq 0 & \text { Hence the } \\
f(1)=3 \neq 0 & \text { pojnomal } \\
f(2)=1 \neq 0 & \text { is irediule } \\
f(3)=1 \neq 0 & \text { are F. } \\
f(4)=4 \neq 0 &
\end{array}
$$

2. Explain why $f(x)$ divides $x^{5^{3}}-x$ wee F
Let α_{1} be a zeus of $f(x)$ in \bar{F}
Since $f(x)$ is irredubbe and of degree $3, F\left(\alpha_{1}\right)$ is a field of size 5^{3} in fact

$$
F\left(\alpha_{1}\right)=\left\{\alpha \in \bar{F} \mid \alpha^{5^{3}}-x\right\}
$$

Since F is finite $f(x)$ spots vier the field $F\left(\alpha_{1}\right)$ as.

$$
f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)
$$

for $\alpha_{1}, \alpha_{2}, \alpha_{3} \in F\left(\alpha_{1}\right)$ Therefore $\alpha i^{\delta^{3}}-\alpha=0$ and the
zoos of $f(x)$ are mos of $x^{5^{3}}-x$, and we hare that $f(x)$ dives $x^{5^{3}}-x$.
Applying the divisa algorithm we find an $g(x) \in F(x)$ st.

$$
x^{5^{3}}-x=f(x) g(x)
$$

3. Let $\alpha \in \bar{F}$ be a roo of $f(x)$

A basis for $\epsilon=F(\alpha)$ wer F is $\quad\left\{1, \alpha, \alpha^{2}\right\} \sin c \operatorname{dg} f=3$.

The Frobenios aitonondusin in this ave is:

$$
\begin{aligned}
6: F(\alpha) & \rightarrow F(\alpha) \\
a & \mapsto a^{5}
\end{aligned}
$$

The Galas group is:
$G(E / F)=\langle 6\rangle$ so powers of 6 send α oo other zeros of $f(x)$
The roots are $\alpha, \sigma(\alpha), \sigma^{2}(\alpha)$

$$
\alpha^{11}\left(\alpha^{5}\right)^{5}
$$

$$
\begin{aligned}
6(\alpha)=\alpha^{5}=\alpha^{2} \alpha^{3} & =\alpha^{2}(-\alpha-1) \\
& =-\alpha^{3}-\alpha^{2} \\
& =-(-\alpha-1)-\alpha^{2} \\
& =4 \alpha^{2}+\alpha+1 \\
6^{2}(\alpha)= & \left(6^{5}\right)^{5}=\left(4 \alpha^{2}+\alpha+1\right)^{5} \text { (Freshman's dream) } \\
& =\left(4 \alpha^{2}\right)^{5}+\alpha^{5}+1 \\
& =4 \alpha^{10}+4 \alpha^{2}+\alpha+2 \\
& =4\left(\frac{3}{2}^{2}+3 \alpha+3\right)+4 \alpha^{2}+\alpha+2 \\
& =2 \alpha^{2}+2 \alpha+2+4 \alpha^{2}+\alpha+2 \\
& =\alpha^{2}+3 \alpha+4
\end{aligned}
$$

$$
\begin{aligned}
& \alpha^{10}=\left(\alpha^{5}\right)^{2}=\left(4 \alpha^{2}+\alpha+1\right)^{2}= \\
& =\alpha^{4}+\alpha^{2}+1+8 \alpha^{3}+8 \alpha^{2}+\alpha \\
& =\alpha\left(\alpha^{3}\right)+3 \alpha^{3}+4 \alpha^{2}+\alpha+1 \\
& =\alpha(-\alpha-1)+3(-\alpha-1)+4 \alpha^{2}+\alpha+1 \\
& =4 \alpha^{2}+4 \alpha+2 \alpha+2+4 \alpha^{2}+\alpha+1 \\
& =3 \alpha^{2}+3 \alpha+3
\end{aligned}
$$

Alternative to soluing $\sigma^{2}(\alpha)$.cald notrici ve know $\sigma^{2}(\alpha)=a \alpha^{2}+b \alpha+c \quad a, b, c$

$$
\begin{aligned}
& f(x)=x^{3} d_{t}^{0 \cdot x^{2}} x+1=(x-\alpha)\left(x-6(\alpha)\left(x-6^{2}(\alpha)\right)\right. \\
& =x^{3}-\left(\alpha+6(\alpha)+6^{2}(\alpha)\right) x^{2}+\ldots \text { mattipyiy }
\end{aligned}
$$

So $\alpha+4 \alpha^{2}+\alpha+1+a \alpha^{2}+b \alpha+c=0 \Rightarrow$ $a=1, b=3, c=4$.

Problem $4 \quad p>2$ prime $\# f(x) \in \mathbb{X}(x)$ rimed of deque P is sputtry field of f.

1) $\alpha \in \overline{\mathbb{Q}}$ a zero of f then

$$
\begin{aligned}
{[\mathbb{Q}(\alpha): \mathbb{Q}]=\operatorname{deg} i v(\alpha, \mathbb{Q}) } & =\operatorname{deg} f(x) \\
& =p .
\end{aligned}
$$

2) Let $\alpha_{1}, \ldots, \alpha_{p}$ be the distinct coals of $f(x)$. (They are distinct snie $f(x)$ is imeducible ard \mathbb{Q} is perfect) $\sigma \in G(K / Q)$ permutes $\alpha_{i}^{\prime} s$ hence we new $G(K / \mathbb{Q}) \leq S p$
$[K: \mathbb{Q}]=|G(K / \mathbb{Q})|$ mseaver

$$
\begin{aligned}
{[k: \mathbb{Q}] } & =[k: \mathbb{Q}(\alpha)]\left[\mathbb{Q}\left(\alpha_{i}\right): \mathbb{Q}\right] \\
& =\left[k: \mathbb{Q}\left(\alpha_{i}\right)\right] \cdot p
\end{aligned}
$$

so P divides $|G(K / \mathbb{Q})|$ hence by sylows theocm there is a sbyup of order $p \quad H \leq G(k / Q)$ Moreover H mut be cyclic so $H=\langle\sigma\rangle$ wite 6 a pemitution of order p. The any pemiluivo of soler p in $S p$ are cycles of lengs P.
Henve $G(K / \mathbb{Q})$ contarns a acle of lenoth p.

Suppose f has $p-2$ zenor whet are \mathbb{O}-conjugate.
Let $\tau: \Phi \rightarrow \mathbb{Q}$ denote the field artomonphiom of \mathbb{C}-conj. we con reotnct τ to K to obtain an isomsophions s
$\tau: K \rightarrow K^{\prime} \leq \bar{Q}$. Moreover

$$
K=K^{\prime} \text { since } K=\mathbb{Q}\left(\alpha_{1,-}, \alpha_{p}\right)
$$ and $\tau\left(\alpha_{1}\right)=\alpha_{2}$ if α_{1}, α_{2} are the complex conjugate sots and $\tau\left(\alpha_{i}\right)=\alpha_{i} \quad i \neq 1,2$.

so $\tau \in G(K / Q)$ and τ is the transposition $(1,2)$ if α_{1}, α_{2} are the \mathbb{C} - conjugated cock
3. Conclude $G(k / Q) \cong S p$ For which p is $G(K / Q)$ solvable he claim S_{n} is generated by an n-cycle and a single transposition $($ say $(1,2)]$ for any n. Recall every permantion in S_{n} can be written as a product of trans positions. Therefore if we can unite evan transposition in terms of the n-gule ard $(1,2)$ we ar dove.
urteat loss of generality we can adore that the n-cycle is $(1,2,3, \ldots, n)$

Then compting we got

$$
6^{k} \tau 6^{-k}=(k+1, k+2)
$$

for $k=0, \ldots, n-2$.
There we can obtain the trunspartion of the form

$$
(1,2),(2,3), \cdots,(n, n-1)
$$

For $i<j$ be have

$$
(i, j)=(j-1, j) \ldots(i+1, i+2)(i, i+1)(i+1, i+2) \ldots(j-1, j)
$$

There ever pemtation is S_{p} can be exposed as a product of the cole of leigh P and the transposita avidly from \mathbb{C}-conjugation $\Rightarrow G(K / Q) \cong S_{p}$ S_{n} is not solvable for $n \geqslant 5 \Longrightarrow$ f^{n} is soluble for $p=2,3 . D$.

