Finite Fields Section 33
Main Goal: Thy
Existence Fo every prime p ard any $n>0$ there exists a finite fold of order p^{n}

Uniqueness If E and E^{\prime} are fields of order p^{n} then $E \cong E^{\prime}$

Structure of finite fields
A finite field F most have characteristic a prime P (e. $\quad P \cdot 1=1+\cdots+1=0$ in F

Thu 33.1 If E is a degree n extension over a finite field F with $|F|=q$, then $|E|=q^{n}$.
Proof Recall E is a rector space of $\operatorname{dim} n$ over F. le. $E=\left\{b_{1} \alpha_{1}+\ldots+b_{n} \alpha_{n} \mid b_{1} \in F\right\}$. $|E|=|F|^{n}$

Exauple $E=\mathbb{Z}_{2}(x] /\left\langle x^{2}+x+1\right)$ is a feld of size $\alpha^{2}=4 \quad E=\left\{a_{0}+a_{1} \alpha \mid a_{0}, a_{1} \in \mathbb{Z}_{2}\right\}$ whe $\alpha^{2}+\alpha+1=0 \Rightarrow \alpha^{2}=\alpha+1 \ldots$

Coollany 33.2 If E is a fincte feld with chor $E=p$ then E has oreler p^{n} for some $n>0$
Proof Every field of choratastic P contanis $\mathbb{Z}_{p}=\{a \cdot 1 \mid 0 \leq a<p\} \leq E$. Hence E is a finte extusion of \mathbb{Z}_{p}. Now apply $33.1 \square$

The 33,3 Let E be a field wite $|E|=p^{n}$ The elements of E are precisely the zeros in \mathbb{Z}_{p} of the polynomial $x^{p^{n}}-x$ in $\mathbb{Z}_{p}(x)$
Proof $0 \in E$ is a zn of $X^{p^{n}}-x$
let E^{*} denote the non-zers ellis. Then ϵ^{*} is a gap of carder $p^{n}-1$ andes multiplication.
Recall $g^{|6|}=1$ for al $g \in G$.
$\Rightarrow \alpha \in E^{*}$ satisfos $\alpha^{p^{n}-1}=1 \Rightarrow \alpha^{p^{n}}=\alpha \Rightarrow$

p^{n} rosto and $|E|=p^{n}$. Hence the elemet of E are precisity the unos of $x p^{n}-x$. $]$

Exampe $E=\frac{\mathbb{Z}_{2}(x]}{\left\langle x^{2}+x+1\right\rangle} \quad[E: F]=2 \quad|E|=f$.
let $\alpha=x+\left\langle x^{2}+x+1\right\rangle \quad E=\left\{a_{0}+a_{1} \alpha \mid a_{0}, a_{1} \in \mathbb{Z}_{2}\right\}$

$$
a_{0}=a_{1}=1 \quad(1+\alpha)^{4}+(1+\alpha)=1+\alpha+1+\alpha=0
$$

Notive alo $E^{*}=\{1, \alpha, 1+\alpha\}$ har 3 eltr. Hence cyclic!

Thm 38,5 The gop $\left.\left\langle F^{*},\right\rangle\right\rangle$ of nor-zes elevents of a fiute field under multiplication is cych'c.
Proof $(23.6)\left\langle F^{*},>\right.$ is a fiuite abelian gp, honce isomonphic to $\mathbb{Z}_{d_{1}} \times \ldots \times \mathbb{Z}_{d_{k}}$ for some d_{i} 's with $\left|F^{*}\right|=d_{1} \ldots d_{k}$.
If $m=\operatorname{lcm}\left(d_{1},, d_{k}\right)$ then $\alpha^{m}=1$ for all $\alpha \in F^{*}$ Hovever, $x^{m}-1$ has at nost m distinct nootr so $m=\left|F^{*}\right|=d_{1} \cdot \cdots \cdot d_{k}$. Hence $\left\langle F^{*}, \cdot\right\rangle=\mathbb{Z}_{\left|F^{*}\right|}$ and $i t$ is aychz

Def 33.4 An elemat α of a field is an $n^{\text {th }}$ root \& unity if $\alpha^{n}=1$. It is a prinitue $n^{\text {th }}$ coot of unity if $\alpha^{n}=1$ ad $\alpha^{m} \neq 1 m<n$ Prenair tho theorems state:

1) every $\alpha \in F^{*}|F|=p^{n}$ is a $\left(p^{n}-1\right)$ en root of wily
a) The primitive $\left(p^{n}-1\right)$ th roots of unity are the generation of $\left\langle F^{*}, \cdot\right\rangle$

Example $E=\mathbb{Z}_{11}\left|E^{*}\right|=10$ and io cyclic Who ore the generator (primitive $10^{\text {th }}$ roots of unity)?
Recall the oder of ellis must divide $10,(1,2,5,10)$
Ty: $2^{2} \quad 2^{5} \quad$ hence 2 has oder k
All other primitue $10^{\text {th }}$ roster of unity in E are:

$$
2^{1}=2, \quad 2^{3}=8, \quad 2^{7}=7 \quad 2^{9}=6
$$

Corday 33.6 A finite exturion E of a finite field F is a simple extension $E=F(\alpha)$
Prod Let α be a generator of E^{*}.
Then $F(\alpha)$ contains all powers of α. (hence $p^{n}-1$ efts) in addition it if a subfield of E Hence $F(\alpha)=E$.

Existence - Uniqueness of finite fields
Plan: Use existuce of algebraic closure $\overline{\mathbb{Z}}_{p}$ and shes zenor of $x^{p^{n}-x}$ form a subfield of size p^{n}.

Lemma 3318 if F is a field wite char $(F)=p$ and alg. chore \bar{F} then $x^{p^{n}}-x$ has p^{n} district zeros in \bar{F}.
Poof Fist 0 in a us of $x^{n}-x$ wii malt. 1. Take $\alpha \neq 0$ a zero of $x \rho^{n}-x$, Then $(x-\alpha)$ divids $f(x)=x^{p^{n}}-x$

$$
\begin{aligned}
& \frac{x p^{n}-x}{x-\alpha}=g(x)=x^{p^{n}-2}+\alpha x^{p^{n}-3}+\ldots+\alpha^{p^{n}-3} x+\alpha^{p^{n}-2} \\
& g(\alpha)=\alpha^{p^{n-2}}++\alpha^{p^{n}-2}=\left(p^{n}-1\right) \frac{1}{\alpha}=-\frac{1}{\alpha} \neq 0
\end{aligned}
$$

Hence α is a zew of meltipliafy 1 of $x p^{n}-x$. all zuor we distinct!

Thin 33,10 A finite field GF $\left(p^{n}\right)$ of p^{n} elk exists of every prime power p^{n}

Proof Let $\overline{\mathbb{Z}}_{p}$ be alg close $\delta \mathbb{Z}_{p}$. Let

$$
G F\left(p^{n}\right)=\left\{\alpha \mid \alpha^{p^{n}}=\alpha \quad \alpha \in \mathbb{Z}_{p}\right\}
$$

cain $\operatorname{GF}\left(\hat{p^{\prime}}\right)$ is a field

$$
\begin{aligned}
& \text { 1) } \alpha, \beta \in G F\left(p^{n}\right) \\
& (\alpha+\beta)^{p^{n}}=\alpha^{p^{n}}+\beta^{p^{n}}=\alpha+\beta \\
& \Rightarrow \alpha+\beta \in G F\left(p^{n}\right)
\end{aligned}
$$

2) $\alpha, \beta \in G F\left(p^{n}\right)$ then $(\alpha \beta)^{p^{n}}=\alpha^{p^{n}} \beta^{p^{n}}=\alpha \beta$ $\Rightarrow \alpha \beta \in G F\left(p^{\prime}\right)$
3) $\alpha \in G F\left(p^{n}\right)$ then $(-\alpha)^{p^{n}}=(-1)^{p^{n}} \alpha^{p^{n}}=-\alpha$ if p pd since $(-1)=1$ when $\rho=2 \Rightarrow(-\alpha)^{p^{n}}=-\alpha$. $\Rightarrow-\alpha \in G F\left(p^{n}\right)$
4) $0,1 \in G F\left(p^{n}\right)$
5) $\alpha \in G F\left(p^{n}\right)$ then $\left(\frac{1}{\alpha}\right)^{p^{n}}=\left(\frac{1}{\alpha}\right) \Rightarrow \frac{1}{\alpha} \in G F\left(p^{n}\right)$. Therese $\operatorname{GF}\left(p^{n}\right)$ if a field.

Corollay' 33.11 If F is any triite ferd, tum there exists an irreduibe polynainal of degree n in $F[x]$ for all $n>0$.

Proof $|F|=p^{r}=q$ elemento. By Thm $83.10 \exists$ a field K with q^{n} and $\mathbb{Z}_{p} \leq K \leq \bar{F}$ s.t.

$$
\begin{aligned}
& K=\left\{\alpha \in \bar{F} \mid \alpha^{q}=\alpha\right\} \quad \beta \in F \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \beta \in K
\end{aligned}
$$

$F \leq K$. Mreser $[K: F]=n$ and snue K s
simple over F of degree $n \quad K=F(\alpha)$ for some $\alpha \in K$ and irs (α, F) has degree n.

Thu 33.12 if E, E^{\prime} are finite fields of the same order then $E \cong E^{\prime}$.

Proof Suppose $|E|=\left|E^{\prime}\right|=p^{n}$ so that $\mathbb{Z}_{p} \leqslant E, E^{\prime}$ (up to isomondiomn) then $E, E^{\prime} \leq \overline{\mathbb{Z}}_{p}$ both consisting of ever of $x^{p^{n}}-x$.
Notice E, E^{\prime} are bot simple extensions. The irreduable $f(x)$ of both extensous dinges $x^{p^{n}}-x$. B

Exanple \mathbb{Z}_{3} and $f(x)=x^{2}+x+2, g(x)=x^{2}+1$ Botr are irrediuble $/ \mathbb{Z}_{3}$. clock!

$$
\begin{aligned}
& \left.E=\mathbb{Z}_{3}[x] /\left\langle f_{2 x}\right\rangle\right\rangle=\left\{a_{1} \alpha+a_{0} \quad \mid a_{i} \in \mathbb{Z}_{3}\right\} . \\
& E^{\prime}=\mathbb{Z}_{3}[x] /\langle g(x)\rangle=\left\{b_{1} \beta+b_{0} \mid b_{i} \in \mathbb{Z}_{3}\right\} . \\
& \psi\left(a_{1} \alpha+a_{0}\right)=a_{1} \beta+b_{0} \text { is not an cromonopuom }
\end{aligned}
$$

