Splith Recal	ng Felds \$5 2 Isonorphism	Dextensions			
Def 19 The SE;FS isomory	19 E finite index of E 3 = # & exte phoson where	extension of over F words of ~[E] =	F id: F→ < F	F b 2:[- - → 7[E]
Thm	G(E/F)	< { E :	F3 <	[E:F]	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Prest	all adonoptions are 1000000005	ex.	erase	49,13	

 $\mathbb{O}\left(2^{\prime} \mathcal{A}, \mathcal{C}\right)$ \rightarrow 2 $\{ Q_{0} + Q_{1} Q_{1}^{2} + Q_{2} Q_{3}^{2} \} = (Q_{0}^{1/3}) \xrightarrow{Q_{0}} Q_{0}^{1/3} Q_{0}^{1/3} = (Q_{0}^{1/3}) \xrightarrow{Q_{0}} Q_{0}^{1/3} Q_{0}^{1/3} = Q_{0}^{1/3} Q_{0}^{1/3} = Q_{0}^{1/3} Q_{0}^{1/3} = Q_{0}^{1/3} Q_{0}^{1/3} = Q_{0}^{1/3} Q_{0}^{1/3} Q_{0}^{1/3} = Q_{0}^{1/3} = Q_{0}^{1/3} = Q_{0}^{1/3} Q_{0}^{1/3} = Q$ $Q_{3} = 3$ Notice id trense $\{ \mathbb{Q}(2^{1/3}, i) : \mathbb{Q}(2^{1/3}) \}$ $SQ(2^{13},i) = Q?$

 $K = Q(2^{1/3}, e^{2\pi i/3}, a^{1/3}, e^{2\pi i/3}, a^{1/3}) = ?$. (2 · D

Jhm 4917 Let E be a finite ext	f F and G:F->F an
isomorphism. The # of exte	ensions of 6 to
E = E ler some E < F	=, is trute and
independent of F', F', and	6.
Rof start who Fi', Fj	and $G_1 \cdot F \rightarrow F_1 \cdot G_2 \cdot F \rightarrow F_2$
want to make a blection:	$\overline{F_1'} \xrightarrow{\lambda} \overline{F_2'}$ $\downarrow \qquad \qquad$
$\{\gamma_{i}: E \rightarrow T_{i}(E)\} \longrightarrow \{\gamma_{2}: E \rightarrow \gamma_{2}(E)\}$ extinues of c_{1} extinues of c_{2}	$\tau_1[E] \longleftarrow \frac{\tau_1}{E} \xrightarrow{E_1 \tau_2} [E] \xrightarrow{\tau_2} \tau_2[E]$
· · · · · · · · · · · · · · · · · · ·	$F' \leftarrow \sigma_1 \qquad F \leftarrow \sigma_2 \qquad F'$
· · · · · · · · · · · · · · · · · · ·	49.8 Figure

To see that the # of extensions is finite see text or exercise 49,13 which poves $\{E:F\} \leq [E:F] = N$ Corollary 19,10 If FEEEK where K is a finite extension field of F then {K:F3 = {K:E3{E'F}} We will soon establish that $\{E:F\} = [E:F]$ for finite helds a helds of chor = 0

De 50.1 let g= & fi(x) | ie IZ be a cellection of polynsmiles in Fixi. The splitting field of F over F is the smallest field E < F s.E. FEE and E containor all zeros of polynomials м З. "splitting" => Y fie J, Fi(x) "splits" into linear fuctors over E. Say K is a splitting held over F if 7 a collection of polynomials f C F(x)

Example 50.8 $Q(\overline{Z},\overline{P})$ is the spatting field of $3x^2-2$, x^2-33 and $3x^4-5x^2+63$ ell extinação of id. D-20 are cubinophinos $P(J_2, J_3): Q_3 =$ G(E/F) =h id, 6, , 62, 63 ? $\mathbb{Q}(\overline{52},\overline{53}) \longrightarrow \mathbb{Q}(\overline{52},\overline{53})$ $\mathbb{Q}(\sqrt{2}) \xrightarrow{\sqrt{2} + \sqrt{2}} \mathbb{Q}(\sqrt{2})$ Klein E-grop! (1)

How to think about the sphitting held: Suppose E is a splitting held of $\mathcal{F} \subset F(x)$ let Z= { x j | x j zero of } C F • If $|Z|=K<\infty$ then $E=F(\alpha_1, \alpha_2, \dots, \alpha_K)$. • If $|Z| = \infty$ then E constitutes of all fruite Sems and finite products of elevents in Z and F (see beginning of pool 50.3) An isomorphism of E fixing F is determined by whole it sends Z.

Thm 50,3 A field E where F = E = F is a
splithing held over F if and only if every
isomorphism of F leaving F fixed restricts
to an automorphism of E
Ruf Let E be a splitting field and 6: F > F an
adomorphism where $G(\alpha) = \alpha + \alpha \in T$.
For are Z G(xj) must be a conjugerer of Xj
hence $\tilde{wr}(x_j, F) = \tilde{wr}(G(\alpha_j), F)$ and $G(\alpha_j)$ is
a two of some feg => 6(dj) EE.
So G(E) CE and is in fact an adomorphism.

Syppose every	6: F > F	fixing F	restricts to
an atomorphi	on of E	mared the	· · · · · · · · · · · · · · · · · · ·
$let \mathcal{F} = \xi g$	$f(x) \in F(x]$	zero in ES	
claum E is	splitting field	£ 3.	(se text)
idea: if ace	E XEF IF	is the zero e	f some gef. If
B is conjugate	consider	Mais: FCX)	$\rightarrow F(3)$ and
its extension to	$F \rightarrow F$	This mus	t restrict to
an actomorphicin	£E	hence	3 <i>e</i> E ,

Corollary 50.6 If E < F is a splitting field over F then every medicible polynomial in Fixi with a runo in E splits over E. Corollary 50,7 If ESF is a splitting held over F of finite degree then {e: F3 = 1G(e/₹)

Gense 50.10 let & be a zero of X3+X71 over Zz, Show that it splits in Zz(x). What are the other zeros? α , α^2 , $\alpha^4 = \alpha(\alpha^3) = \alpha(\alpha^2 + 1) = \alpha^3 + \alpha$. $(X+\alpha)(X+\alpha^2)(X+\alpha^3+\alpha) = X^3+X^2+1.$