Quz $(1,2,3)(4,5)(6,7) = (1,3)(1,2)(4,5)(6,7) \in 4$ transpositive (1,2,3)>) is an even permitation $|S_{5}| = 5! = 60$ 2) $A_5 \le S_5 |A_5| =$ 2. 70,43 3) Index of abgroup $\langle 4 \rangle \leq 2 \langle 8 \rangle$ When $|G| < \infty$ The index of H in G = # of cosets of $\sum_{i=1}^{1} |G_i| \Rightarrow |Z_i | = 8$ $[G_i = H] := # of cosets of <math>\sum_{i=1}^{1} |G_i| \Rightarrow |Y_i | = 8$ H in G H

he cosets of <47 in 28 $+ \langle 47 = \{1, 5\}, 2 + \langle 47 = \{2, 6\}, 3 + \langle 4 \rangle$ 1 = 13 H cosets. are => There Zz = 2012395,673 Lagrange's thin alt agH aztt Notive (47 = 24,03)= 4 +70,45

4) Select which are one the Ire , Coacts of $H \leq G$ all have some size proved λ_6 : $H \rightarrow aH$ is a bygention The right and left cosets att and the of a grup It are always equal. FALSE! Groupe X(1,2)7 < 53 "The caset att is a subgroup. FALSE! att may not contain the identity. The only coset which is a subgroup is the Notice that H=aH <> a = Exercise

a subgrap must duride the order The order of 6 grop TRUE Lagrange's Thm. of the

Sets verses Couch versus Subgroups. A subgroup H of GI is a subset which is 1) closed under multiplication in G. 2) contruins eegs identity 3) Y act we must have a Tett. A left coset of H in G is a subset of the form att= Eah | hett? for some ac bi A nght coset of H in G is a subset of the form Ha = { ha | he H3 for some a € G.

Notice that : Estopopor of GB & Ecosets of GB & Estosets? . A subgroup H of a group & is a subset of G and aloo a right and left coset of H in G · A left coset alt d' H in G 15 not a Obgrap mess att = H. It is always a subset. is not necessarily • An arbitrary about $A \subseteq G$ a abgroup nor a coset.

Alternating grop An < Sn. 1) What is the index of A_n in S_n ? $[S_n: A_n] := \overset{\text{teff}}{\approx} A_n \text{ in } S_n = \frac{1 S_n I}{|A_n|} = \frac{n!}{n!/2} = 2.$ 2) What are the left and right weets Sn=AnUBn of An in Sn right weets. An = Seven permitations? An = Seven perms 3. Anz = 2 odd perms 3= Bn. 2 An = i odd permitations 3 = Bn An x = i odd permission 3) What can one say about left and night (asek of $H \le G$ when [G:H] = 2?

If Index of H in G = 2. The right A cosets are equal = G*H $H = G \setminus H$ left costs G. I = G I H = H a

Pop IP $H \leq G$ has $[G^{\circ}H] = 2$ Then att = Ha & a EG Prop If G is abelian and H≤G the $H = Ha \quad \forall a \in$ Foreshadowing Section 14 "Normal subgroups"

<u>Ex. 10,7</u>	$H = \langle \mu_1 \rangle \leq S_3$	· · ·	LL.		, , , ,	a, 3		2	e Exa 8,7
1-C1-	$H = \{\rho_0, \mu_1\},\$	10.9	Table		4	1700			
1 test	$\rho_1 H = \{\rho_1 \rho_0, \rho_1 \mu_1\} = \{\rho_1, \mu_3\},\$		ρ	μ_1	ρ_1	μ_3	P2	μ_2	left cosets
	$\rho_2 H = \{\rho_2 \rho_0, \rho_2 \mu_1\} = \{\rho_2, \mu_2\}.$	ρ_0	ρ_0	μ_1	ρ_1	μ_3	ρ2	μ_2	M
	osets is	μ_1	μ_1	ρ ₀	μ_2	P2 -	μ_3	ρ_1	Aubioliphan
· · · · · · · · · · · · · · · · · · ·		ρ_1	ρ_1	μ_3	P2	μ2	ρ_0	μ_1	
nght	$H = \{\rho_0, \mu_1\},$	μ_3	μ3	ρ_1	μ_1	ρ_0	μ_2	ρ2	teble
ark	$H\rho_1 = \{\rho_0\rho_1, \mu_1\rho_1\} = \{\rho_1, \mu_2\},\$	P2	ρ2	μ_2	ρ_0	μ_1	ρ_1	μ3	
008010	$H\rho_2 = \{\rho_0\rho_2, \mu_1\rho_2\} = \{\rho_2, \mu_3\}.$	μ_2	μ2	ρ2	μ3	ρ_1	μ_1	ρ ₀	-
		• •							
		• •							
			• • •			• •		0 0	
	· · · · · · · · · · · · · · · · · · ·							0 0	
			• • •		• •	• •	• •	• •	

A	(breshar Siborop	Loung)	$\leq G $ is	normal in
		$A \mathcal{O} \in$	- G UN -	
· · · · · · ·	 	· · · · · · · · · · · ·	· ·	
 	· · · · · · · · · · · · · · · · · ·	· ·	. .	
 	· ·		. .	
· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

Lagranges Thm If H ≤ G, then IH Ne achally show g If H = G then 1G1=[G:H]|H] divider 1611. 1) What would the converse statement to Lagrange's theorem be? "IF m divides IGI then I a subgroup of order M. Not TRUE IN GENERAL. 2) Find examples where it holds or doesn't Toreshadowing " Cayley's Thm Sylow's Thins