Minimal spanning trees
Def A weighted graph is a graph $G=(V, E)$ together with a weight function

$$
\omega: \in \rightarrow \mathbb{R}
$$

Question How to find a spanning tree of minimal weight?

$$
\omega(T)=\sum_{k \in E(T)} \omega(k)
$$

Greedy algorithm Suppose $\left\{k_{1} \ldots k_{e}\right\}$ have been chooren.

1) choose $K_{\ell+1}$ of minimal weight in $E \backslash S K_{1} \ldots K_{l}$?
So teat $k_{1} \ldots, k_{e+1}$ contains no cirrit.
Repeat Step I n-1 times
Claim $T=\left\{k_{1} \ldots, k_{n-1}\right\}$ is a minimal sparring tree.

To see why this algorithm wonks we want to analyse the paperties of subfanorts of graphs.
Let $G=(V, E)$ be a graph

$$
W=\{F \mid \underset{\text { forest }}{ } \subset G \text { is } a\}
$$

The pair (E, W) is a matron
Def 7.11 (Matroid)
let S be a finite set and $U \subseteq B(S)$ be a family of subsets of S

The pair $\mu=(S, U)$ is called a matrad and U the family of indepoedert sets of M if

1) $\phi \in U$
2) $A \in U, B \subset A \Rightarrow B \in U$
3) $A, B \in U,|B|=|A|+1 \Longrightarrow$
$\exists v \in B \backslash A$ st. $A u\{v\} \in U$
(by indian)
A maximal independent set is called a bests.
Lemma if B_{1}, B_{2} are bases of M then $\left|B_{1}\right|=\left|B_{2}\right|$.

Suppose $\left|B_{1}\right|<\left|B_{2}\right|$. We can find $A \subseteq B_{2}$ st.
$|A|=\left|B_{1}\right|+1$ maser $A \in U$
by (2). Therefore by (3) \exists

$$
V \in A \backslash B_{1} \text { sit. } B_{1} u v \in U \text {. }
$$

Hence B_{1} was not maximal $\Rightarrow B_{1}$ not a beois. and we have a contradiction. Therese $\left|B_{1}\right|=\left|B_{2}\right| \quad \square$.
"Matroid" canes from matrices. Abstraction of the notion of independence in mathematics.
let $S=\left\{v_{1}, \ldots, v_{q}\right\}$
where $\quad v_{i} \in \mathbb{R}^{m}$ vectors.
Then $\left.U=\left\{\begin{array}{l} \\ v_{i}\end{array} \ldots v_{i k}\right\} \left\lvert\, \begin{array}{l}v_{i} \ldots v_{i k} \\ \text { linearly indpp }\end{array}\right.\right\}$
Then (S, U) is a matriad. Axiom $1+2$ are clear
Axiom 3 steinitz exchange axiom from linear algebra.

Puposition let G be a graph (V,E) and equip each edge wite an oneatation.

Let $S=\left\{V_{K} \mid V_{k}\right.$ is a column of $\vec{B} \mid$
(\vec{B} oriented incidence matrix)
Then the elements of U correspond to ells of W.

$$
\text { le. } \begin{aligned}
v_{k_{1}} \ldots V_{k_{e}} \\
\text { linearly } \\
\text { independent }
\end{aligned} \Longleftrightarrow \begin{aligned}
& k_{1} \ldots K_{e} \\
& \\
& \\
& \\
& \text { is forest in } G .
\end{aligned}
$$

Coodlany $M=(E, W)$ for a graph $G=(V, E)$ is a matroid

To not jos rely on linear algebra $~$ to practice graph theory
techniques we will pare this directly
Tho 7.12 if $G=(V, E)$ is a graph, then $M=(E, M O)$ is a matroid
Proof Axiom 1 is satisfied by def.
Axiom 2 : It $F \in W$ then F contains no circuit so $F^{\prime} \subset F$ also contains no cirait so $F^{\prime} \subset W$.
Axiom 3 Let F, F^{\prime}, be bole forests wite $|F|=|F|+1$

Sine both F and F^{\prime} are forests we have:

$$
\begin{aligned}
& |F|=|V|-{ }^{*} \text { impanels in } \\
& \left|F^{\prime}\right|=|V|-\underset{F^{\prime}}{\text { compacts in }}
\end{aligned}
$$

$\left|F^{\prime}\right|=|F|+1 \Rightarrow F^{\prime}$ has one less component then F If $\left(V_{1}, F_{1}\right) \ldots\left(V_{t}, F_{t}\right)$ are the components of F then F^{\prime} can have at most $\left|F_{i}\right|$ edges on V_{i} othruse we have a circuit in F ! \Rightarrow thee
existo a k in F^{\prime} which connects two $V_{i}>V_{j}$ So $\omega^{\prime \prime}=(V, F \cup k)$ is a forest axiom 3 is satisfied
Theorem (Nelson 2018)
"Almost all matroids, are non-representable
Do not cove from graphs or vector configurations
As $n=|S| \rightarrow \infty$ the poportion of n-element mathoids $\rightarrow 0$

Nometheleor matroias characterize when the Greedy algorithm wo r 8

Theorem 7.13 Let $M=(S, U)$ be a natroid with weight function $\omega: S \rightarrow \mathbb{R}$
The greedy algontum prodvers a bars of minimal weight:

1) Let $A_{0}=\phi \in U$
2) If $A_{i}=\left\{a_{1}, \ldots, a_{i}\right\} \subseteq S$ then let $X_{i}=\left\{x \in S \backslash A_{i}: A_{i} \cup\{x\}\right.$ cU $\}$
If $X_{i}=\varnothing$ then A_{i} is the desired basis, Oheruise choose an a_{i+1} in X_{i} of mimunal weight and set
$A_{i+1}=A_{i} \cup\left\{a_{i+1}\right\}$. Repeat 2)
Roof let $A=\left\{a_{1} \ldots, a_{r}\right\}$ be the obtrineel at. It follows from axiom (3) that A is a buns. Moreover $\omega\left(a_{1}\right) \leq w\left(a_{2}\right) \leq \ldots \leq w\left(a_{r}\right)$ $\omega\left(a_{1}\right) \leqslant \omega\left(a_{i}\right)$ sine $\omega\left(a_{1}\right)$ las minimal weight among indepadet element r. for $2 \leq i \leq r-1$
since $\left\{a_{1}, \ldots, a_{r}\right\} \in U$ we have $\left\{a_{1} \ldots a_{i-1}\right\} \in U$ by axiom (2) Therefore $a_{i}, a_{i+1} \in X_{i-1}$ and sine ne chose a_{i} ore a_{i+1} $w\left(a_{i}\right) \leq w\left(a_{i+1}\right)$.

Suppose $\exists B$ basis st $\omega(B)<\omega(A)$. Asave $w(b,) \leqslant \ldots \leqslant w\left(b_{r}\right)$. Then there exists a smallest index i st. $\omega\left(b_{i}\right)<\omega\left(a_{i}\right)$ and $i \geq 2$.
Both

$$
\begin{aligned}
& A_{i-1}=\left\{a_{1} \ldots a_{i-1}\right\} \in \mathbb{U} \\
& B_{i}:=\left\{b_{1} \ldots b_{i}\right\}
\end{aligned}
$$

By axion (3), there wold exist a $b_{j} \in B_{i} \backslash A_{i-1}$ with

$$
A_{i-1} v\left\{b_{j}\right\} \in U \text { ie. } \quad b_{j} \in X_{i-1}
$$

and $w\left(b_{j}\right) \leqslant \omega\left(b_{i}\right)<w\left(a_{i}\right)$ and the greedy algorithms world hae picked bjour a_{i}
we have a contradiction I The greedy algantum appicel to gropes is called
Krusal's algorithm
Exeruse 7,30 asks fo the converse
Thu let (S, U) be a collection of sets satisfying axioms 1 and 2. Show (S, U) is a matroid if and only if the greedy algorithms yields the optimum maximal (by inclusion) set of U for ever weight function
$\omega: S \rightarrow \mathbb{R}$

The computational complexity of the greedy algorithm require an analysis of sorting algorithmot. postpone until Chapter 9.

Dijkstra's algoritum/shatest path in a graph 7.4.
Let $G=(V, E)$ be connected and with weight function

$$
w: E \rightarrow \mathbb{R}^{+}=\{x \in \mathbb{R}: x \geqslant 0\}
$$

Let $u, v \in P$ and let P be a path from u to v

$$
l(P)=\sum_{K \in E(P)} \omega(K) \quad \text { the }
$$

weighted length of P

$$
d_{\omega}(u, v):=\min _{P u \text { hov }} l(P)
$$

we wart the path which minimizes the distance.
Fix u. Dijkstra's algorithm returns a spanning tree T Whose unique path u to v is the shortest putt from u to v.

1) Let $u_{0}=u \quad V_{0}=\left\{u_{0}\right\} E_{0}=\varnothing$ $l\left(u_{0}\right)=0$.
2) Suppose $V_{i}=\left\{u_{0}, u_{1}, \ldots u_{i}\right\}$
$E_{i}=\left\{k_{1} \ldots, k_{i}\right\}$ if $i=n-1$ be are done. Othemise consider for edges $k=v w$ sit. $v \in V_{i}$ and $\omega \in V \backslash V_{i}$ the expersien

$$
f(k)=\ell(v)+w(k)
$$

where $l(v)$ is distance in thee $\left(V_{i}, E_{i}\right)$ furan u to v. chase $\bar{v} \bar{w}=\bar{k} \quad$ s.t. $f(\bar{k})=\min f(k)$ Then set $u_{i+1}=\bar{\omega} \quad k_{i+1}=\bar{k}$ and add these to V_{i} and ϵ_{i} to obtain V_{i+1} and E_{i+1} respectuely. Repeat stop 2.)

compare this with tree obtained from other choives when there was a tie

Theorem 7.15 Dijkstra's alg. gives a spanning tree T with the property that the unique path from u to v is always a minimal U, v path in G with $d(u, v)=l(v)$ for all v.

Prof The alg. constructs a spanning thee
Proof of minimality by induction. Let $T_{i}=\left(V_{i}, E_{i}\right)$. Then
T_{1} is the minimal path bethe u_{0} and u_{1}. Suppose that the unique path in T_{i} from u_{0} to any $u_{j} \in V_{i}$ is mammal in G. Suppose T_{i+1} is obtained by coding $\bar{k}=\bar{v} \bar{w}$ we must show that $\ell(\bar{w})=l(\bar{v})+w(\bar{k})$ is the weighted distance $d_{w}(u, \bar{\omega})$.

Let P be a shortest $U_{0} \bar{\omega}$ pots in G and let V $\frac{b e}{T i}$ the lost vertex of P in

Then

$$
\begin{gathered}
\left.d\left(u_{0}, \bar{\omega}\right)=l\left(P u_{0}, v\right)\right) \\
\quad+\omega(k) \\
\quad+l(P(\omega, \bar{\omega}) \\
=(l(v)+\omega(k))+l\left(P_{\omega}, \bar{\omega}\right) \\
=f(k)+l(P(\omega, \bar{\omega})) \\
\geqslant \geqslant \min f(k)=f(\bar{k}) \\
\geqslant f(\bar{k})=l\left(P_{0}\right)
\end{gathered}
$$

Therefor, P_{0} is a shortest path.

