Generating functiver continued
Example Find the generating function and a closed formula for \# of partitions of n wilt parts in 21,23 .
From last time :

$$
\begin{aligned}
F(z) & =\left(1+z+z^{2}+\ldots\right)\left(1+z^{2}+z^{4}+\ldots\right) \\
& =\frac{1}{1-z} \cdot \frac{1}{1-z^{2}}
\end{aligned}
$$

Alternatively find a reumence Lat f_{n} denote the \# of such partitions of n. Then

$$
f_{n}=f_{n-2}+1-\begin{gathered}
\text { partition rith } \\
\text { anty wes }
\end{gathered}
$$

le. $F(z)=z^{2} F(z)+\left(1+z+z^{2}+\ldots\right)$.

$$
\begin{aligned}
\Rightarrow\left(1-z^{2}\right) F(z) & =\frac{1}{1-z} \\
F(z) & =\frac{1}{(1-z)} \cdot \frac{1}{\left(1-z^{2}\right)} \\
& =\frac{1}{(1-z)^{2}} \cdot \frac{1}{1+z}
\end{aligned}
$$

Now find portial fraction decomporition Nstive $d_{1}=2$,

$$
F(z)=\frac{1}{(1-z)^{2}} \cdot \frac{1}{1+z}=\frac{g_{1}(z)}{(1-z)^{2}}+\frac{g_{2}(z)}{1+z}
$$

where $g I(z)$ is of degree <2 and $g_{2}(z)$ is of degree <1.

Solve:

$$
\begin{aligned}
& \frac{\text { Solve }}{\frac{1}{(1-z)^{2}(1+z)}=\frac{a z+b}{(1-z)^{2}}+\frac{c}{1+z}} \\
& \Rightarrow 1=a z+a z^{2}+b+z b+c-2 c z+c z^{2} \\
& b+c=1 \\
& a+b-2 c=0 \Rightarrow \begin{aligned}
&-c=a \\
& b=3 c \\
& a+c=0
\end{aligned} \\
& \begin{aligned}
c & =1 / 4 \\
a & =-1 / 4 \\
b & =3 / 4
\end{aligned} \\
& F(z)=\frac{1}{4} \cdot\left[[3-z] \sum_{n=0}^{\infty}\binom{n+1}{n} z^{n}+(-1)^{n} z^{n}\right]
\end{aligned}
$$

$$
\begin{aligned}
F(z) & =\frac{1}{4}\left[\sum_{n=0}^{\infty}[3(n+1)-n+(-1)]^{n} z^{n}\right. \\
& =\frac{1}{4}\left[\sum_{n=0}^{\infty} 2 n+3+(-1)^{n}\right] \\
f_{n} & =\left\{\begin{array}{cc}
\frac{1}{4} \cdot(2 n+4) & n \text { even } \\
\frac{1}{4} \cdot(2 n+2) & n \text { odd }
\end{array}\right. \\
f_{n} & = \begin{cases}\frac{n}{2}+1 & n \text { even } \\
\frac{n+1}{2} & n \text { odd }\end{cases}
\end{aligned}
$$

Extra topic Catalan \#'s
one of the most ubiquitous sequences in combinatorics

Consider \# of ways of arranging n pair of brackets.

$$
\begin{array}{ll}
C_{0}=1 & \varnothing \\
C_{1}=1 & () \tag{}\\
C_{2}=2 & (C)) \\
C_{3}= & (x) \\
\vdots & \\
\vdots & \\
C_{0} C_{2} & C_{1} C_{1} \\
C_{n+1}= & C_{2} C_{0} \\
\sum_{i=0}^{n} C_{i} C_{n-i}
\end{array}
$$

Notice that

$$
\sum_{i=0}^{n} C_{i} C_{n-i} \text { is the } n^{\text {th }}
$$

coefficient of $C(z)^{2}$. where

$$
C(z)=\sum_{n \geqslant 0} C_{n} z^{n}
$$

Therefore,

$$
C(z)=\underbrace{z C(z)^{2}}_{\substack{\text { shift by } \\ z .}}+\underbrace{1}_{\substack{\text { contact lem } \\ C_{0} .}}
$$

We can solve Ynir as if it is a quadratic equation in $C(z)$!

$$
\begin{aligned}
& z C(z)^{2}-C(z)+1=0 \\
\Rightarrow & C(z)=\frac{1 \pm \sqrt{1-4 z}}{2 z}
\end{aligned}
$$

Which function do we choose "土"?
Recall that:

$$
\begin{aligned}
& \text { Recall that: } \\
& \sqrt{1-4 z}=(1-4 z)^{1 / 2}=\sum_{n=0}^{\infty}\binom{1 / 2}{n}(-4) z^{n} \\
& =1-4(1 / 2) z+\ldots
\end{aligned}
$$

$C(z)$ has no terms with negative exponents in z So we wist take $C(z)=\frac{1-\sqrt{1-4 z}}{2 z}$

A cord formula for C_{n}

$$
\begin{aligned}
& C_{n}=-\frac{(-4)^{n+1}}{2}\binom{\frac{1}{2}}{n+1} \\
&=(-1)^{n} 2^{2 n+1}\binom{\frac{1}{2}}{n+1} \\
&=(-1)^{n} 2^{2 n+1} \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) \cdots\left(-\frac{(2 n-1)}{2}\right)}{(n+1)!} \\
&=\frac{2^{2 n+1} 2^{-(n+1)}}{(n+1)!}(3 \cdots(2 n-1) \\
&=\frac{2^{n}!}{(n+1)!} \frac{(2 n)!}{\partial^{7} n!}=\frac{1}{n+1}\binom{2 n}{n}
\end{aligned}
$$

The Catalan numbers envmerute nan other dgecto

Exercise Shaw the \# of ways of trianglating a labelled $n+2$-goo is C_{n}
eq.

Generating functions of exponential type (3.3)
Another practical book keeping device is the exponential generating function of a sequence $\left(a_{n}\right)$

$$
\hat{A}(z)=\sum_{n \geqslant 0} \frac{a_{n}}{n!} z^{n}
$$

we can add, multiply and convolute there sener

$$
\begin{aligned}
& \hat{C}(z)=\hat{A}(z) \hat{B}(z) \quad \text { then } \\
& \frac{C_{n}}{n!}=\sum \frac{a_{k} b_{n-k}}{k!(n-k)!} \quad C_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} b_{n-k}
\end{aligned}
$$

Example

$$
\begin{aligned}
e^{a z} & =\sum \frac{a^{n}}{n!} z^{n} \\
e^{b z} & =\sum \frac{b^{n}}{n!} z^{n} \\
e^{a z} e^{b z} & =\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} \\
e^{\prime \prime} & =\sum \frac{(a+b)^{n}}{n!} z^{n}
\end{aligned}
$$

We obtain the binomial theorem

$$
(a+b)^{n}=\sum_{1}\binom{n}{k} a^{k} b^{n-k}
$$

immediately ham the exponential $g \cdot f$.

Consider again the number D_{n} of derangement on $\$ 1, \longrightarrow n\}$
Recall we fond

$$
n!=\sum_{k=0}^{n}\binom{n}{k} D_{k}
$$

So,

$$
\begin{aligned}
& \hat{D}(z)=\sum \frac{D n}{n!} z^{n} \\
& e^{z}=\sum \frac{1}{n!} z^{n}
\end{aligned}
$$

give:

$$
\begin{aligned}
& \hat{D}(z) e^{z}=\sum \frac{n^{!}}{n!} z^{n}=\frac{1}{1-z} \\
& \hat{D}(z)=\frac{e^{-z}}{1-z} \leftarrow \text { the no colficit } \\
& \text { the fist om oresmsot ot } e^{\text {th }}
\end{aligned}
$$

ie. $\frac{D_{h}}{n!}=\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}$
This is a gervating function formulati. "binamíal juessior"

$$
\begin{aligned}
& \hat{V}(z)=\hat{U}(z) e^{z} \Leftrightarrow e^{-z} V(z)=\hat{U}(z) \\
& \hat{U}(z)=\sum \frac{u_{n}}{n!} z^{n} \\
& \hat{V}(z)=\sum \frac{v_{n}}{n!} z^{n}
\end{aligned}
$$

