Clapper 5 Asymptotic Analysis
This technique can be used to understand the growth of sequences even whee exact formulas canst be foul.
Def Let $f(n), g(n)$ be sequences We say $g(n)$ grows faster than $f(x) \quad f(n) \prec g(n)$ if $\forall \varepsilon>0$ thee exists $n_{0}(\varepsilon)$ st.

$$
|f(n)| \leqslant \varepsilon|g(n)| \quad \forall n \geqslant n_{0}(\varepsilon)
$$

- If $f(n)<g(n)$ and $g(n) \equiv 0$ Wen $f(n)=0$ for $n \geq n_{0}(\varepsilon)$ for some $n_{0}(\varepsilon)$.

If $g(n)$ las only finitely many zeros then

$$
f(n)<g(n) \Longleftrightarrow \lim _{n \rightarrow \infty}\left|\frac{f(n)}{g(n)}\right|=0 .
$$

- The relation $<$ is transitive
ie. $f(n)<g(n), g(n)<f(n) \not \psi_{m}$ $f(n)<h(n)$.
- $n^{a}<n^{b}$ for $a, b \in \mathbb{R} \quad a \leq b$
- We have the hierarchy:

$$
c \prec \log n \prec n^{\varepsilon}<c^{n}<n^{n}
$$

noise from calculus $\log \log n<\log n$ and so on
Where is n ! in this hierarchy? $n!<n^{n}$ sine $k!<k^{k}$ $k>1$
yet $c^{n} \leqslant n$! for large enough n (depadiry on c) so $\quad c^{n} \prec n$!

Definition Big O notation
$O(g(n))=\left\{f(n) \left\lvert\, \begin{array}{l}\exists \text { a constant Cost. } \\ |f(n)| \leqslant C|g(n)|\end{array}\right.\right\}$ for sol $n \geqslant n_{0} 7 n_{0}$

Notice $O(\mathrm{~g}(\mathrm{n}))$ is a set.
Nonetheless it is convention to wite $f(n)=O(g(n))$ when we really mean $f(n) \in O(g(n))$

$$
\begin{aligned}
& \text { Example } p(n)=2 n^{3}-n^{2}+6 n+100 \\
& p(n)=O\left(n^{3}\right) \text { since } \\
& |p(n)| \leqslant 2\left|n^{3}\right|+\left|n^{2}\right|+6|n|+100 \\
& \leqslant 2\left|n^{3}\right|+\ln ^{3}|+6| n^{3} \mid+100 \leqslant 5 \\
& \begin{aligned}
0\left|n^{3}\right|
\end{aligned}
\end{aligned}
$$

Notice we cold have alto whiten $p(n)=O\left(n^{4}\right), O\left(n^{5}\right)$. these are not the best passible estimates

Def For estimates from below consider

$$
\begin{aligned}
& \text { consider } \\
& \Omega(g(n))=\left\{\begin{array}{l}
|f(n)| \begin{array}{l}
\exists \text { a constant } c>0 \text { st. } \\
|f(n)| \geqslant c|g(n)| \text { for } n \geqslant n_{0}
\end{array}
\end{array} . \begin{array}{l}
\text { if }
\end{array}\right.
\end{aligned}
$$

again unte $f(n)=\Omega(g(n))$ if $f(n) \in \Omega(g(n))$.
Notice

$$
\begin{aligned}
& f(n)=O(g(n)) \Longleftrightarrow \\
& g(n)=\Omega(f(n))
\end{aligned}
$$

Both O and Ω are tranistic.
To incorporate both:

$$
\begin{aligned}
& \theta(g(n))=\left\{\begin{array}{l}
f(n)\left|\begin{array}{l}
\exists \text { contact } C_{1}, C_{2}>0 \\
\text { set. } \\
c_{1} \mid g(n)
\end{array}\right| \leqslant|f(n)|
\end{array}\right. \\
& \leq C_{2}|g(n)| \\
& \text { for } n \geqslant n_{0} \text {. }
\end{aligned}
$$

We can also wite

$$
\begin{aligned}
f(n) \asymp g(n) & \Leftrightarrow f(n)=\Theta(g(n)) \\
& \Leftrightarrow g(n)=\theta(f(n))
\end{aligned}
$$

Even stranger versia of this is.

$$
f(n) \sim g(n) \Leftrightarrow \lim _{n \rightarrow \infty}\left|\frac{f(n)}{g(n)}\right|=1
$$

Def (f $f(n) \sim g(n)$ we say $f(n)$ and $g(n)$ are asymptotically equal
Example Polynomials provide examples of all three notions

1) $p(n)<q(n) \Leftrightarrow \operatorname{deg} p(n)<\operatorname{deg} g(n)$
2) $p(n) \asymp q(n) \Leftrightarrow \operatorname{deg} p(n)=\operatorname{deg} q(n)$
3) $p(n \mid \sim q(n) \Leftrightarrow p(n) \approx q(n)$ and leading

Example for fixed $k>0$ what is the asymptotic of $\binom{n}{k}$?

$$
\begin{aligned}
\binom{n}{k} & =\frac{n(n-1) \ldots(n-k+1)}{k!} \\
& =\frac{n^{k}-(1+2+\ldots+(k-1)) n^{k-1}+\ldots}{k!}
\end{aligned}
$$

Therefore it is polynomial in n of degree k
For fixed K

$$
\binom{n}{k} \sim \frac{1}{k!} n^{k}
$$

What about $n!=n(n-1) \ldots(2)(1)$ This is not polynomial in n of fixed degree $\underset{=}{d}$.

Stirling's formula:

$$
\lim _{n) \rightarrow \infty} \frac{n!}{n^{n+1 / 2} e^{-n}}=\sqrt{2 \pi}
$$

so that

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

This can be expressed and proved logarithmically

$$
\begin{aligned}
& \text { pared loganthnicelyy } \\
& \log n!=n \log n-n+\frac{\log n}{2}(+\log \sqrt{2 \pi} \\
& +R(n)
\end{aligned}
$$

Some other know asymptotict Stirlly \#'s of second kind
For k fixed $n \rightarrow \infty$ $S_{n, k} \sim \frac{k^{n}}{k!}$

$$
S_{n, k}=\begin{aligned}
& \# \text { of set partitions of }\{1, \ldots, n\} \\
& \text { into } k \text {-subsets. }
\end{aligned}
$$

Shirty \#'s of the first kind $\sigma_{n, k}=\#_{\text {of }}$ perms on $\{1, \ldots n\}$ with K cycle
For n fired as $k \rightarrow \infty$.

$$
6_{n+k, k} \sim \frac{k^{2 n}}{2^{n} n^{\prime}}
$$

Catalan \#'s recall

$$
\begin{aligned}
& C_{n}=\frac{1}{(n+1)}\binom{2 n}{n} \\
& C_{n} \approx \frac{4^{n}}{\sqrt{\pi} n^{3 / 2}}(1+O(1 / n) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Partitions } \\
& P_{n} \sim \frac{1}{4 n \sqrt{3}} e^{\pi \sqrt{\frac{2 n}{3}}} \\
& \log _{n} P_{n} \sim \pi \sqrt{\frac{2 n}{3}} \\
& P_{n}^{\text {dist }} \sim \frac{3^{3 / 4}}{12 n^{3 / 4}} e^{\pi \sqrt{\frac{n}{3}}}
\end{aligned}
$$

$$
\Rightarrow \log n!\sim n \log n-n+\frac{\log n}{2}
$$

Lart bit of notation "1ittle ondation"

$$
o(g(n))=\left\{f(n): \begin{array}{l}
\forall \varepsilon>0 \text { there } \\
\text { exirts } n_{0}(\varepsilon) \\
\text { st } \\
\\
|f(n)| \leq \varepsilon|g(n)| \\
\text { for } n \geqslant n_{0}(\varepsilon)
\end{array}\right\}
$$

By convertion we unte:
$f(n)=O(g(n))$ to mean
$f(n) \in O(g(n))$
l.e. $\quad f_{(n)}=0(1) \Rightarrow f(n) \rightarrow 0$
whike $f(n)=O(1)$ weans
$f(n)$ is bouded above br a corstent C

Votive Hat little O is a stronger statement than big 0

$$
f(n) \in O(g(n)) \Rightarrow f(n) \in O(g(n))
$$

converse is not true.

$$
\begin{aligned}
& x^{2} \notin 0\left(x^{2}\right) \quad x^{2} \in O\left(x^{2}\right) . \\
& x^{2} \in O\left(x^{3}\right) .
\end{aligned}
$$

Order of magnitude for recurrence relations.
Recall Fibonacci sequence: we fond

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\hat{\phi}^{n}\right)
$$

Also $\left|\hat{\phi}_{n}\right|<1$ therefore

$$
F_{n} \sim \frac{1}{\sqrt{5}} \phi^{n} \quad \phi=\frac{1+\sqrt{5}}{2}
$$

less precisely $F_{n} \asymp \phi^{n}$
clanging iutial conditions wouldn't change anything The generating function wald be $\widetilde{F}(z)=\frac{c+d z}{1-z-z^{2}}$
and we wold obtain

$$
\tilde{F}_{n}=a \phi^{n}+b \hat{\phi}^{n}
$$

Fo recurrences with fixed leigh and constant coefficients (Thu 3.1) we can use explicit formulas to hived asymptotics. Wat about other recurrences?

Example. Tournament. Sppore $2^{k}=n$ players are in a tournament with losers eliminated. How may rounds not be played?

$$
T(n)=T(n / 2)+1, T(1)=0 .
$$

$$
\begin{aligned}
& T\left(2^{k}\right)=T\left(2^{k-1}\right)+1 \\
&=T\left(2^{k-2}\right)+2 \ldots \\
&=T(1)+k=k \\
& T(n)=\log _{2}(n)=k \quad \text { for } n=2^{k}
\end{aligned}
$$

What about when $n \neq 2^{k}$.
Then $\left\lfloor\frac{n}{2}\right\rfloor$ mather are played in first noun and plays are eliminated so.

$$
T(n)=T\left(\left\lceil\frac{n}{2}\right\rceil\right)+1 T(1)=0 .
$$

$$
T(n)=\left\lceil\log _{2} n\right\rceil
$$

Ingereal we can consider asomptoticals

$$
\begin{aligned}
& T(n)=a T(n / b)+f(n) \\
& T(1)=c
\end{aligned}
$$

whee $\frac{n}{b}$ neans eituer $\left\lceil\frac{n}{b}\right\rceil$ or $\left\lfloor\frac{n}{b}\right\rfloor$.
Thm $5.2 a \geqslant 1, b \geqslant 1 \quad T(n)=a\left(\frac{n}{b}\right)+f(n)$
a) If $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right) f \varepsilon>0$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
b) If $f(n)=\Theta\left(n^{\log _{b} a}\right)$ then $T(n)=\Theta$ $\left(n^{\log _{b a}}\right)$
c) If $f(n)=\Omega\left(n^{\log b a t \varepsilon}\right)$ for some $\varepsilon>0$ and $a f\left(\frac{n}{b}\right)$ $\leqslant c f(n)$ for some $c<1$ and $n \geqslant n_{0}$ then $T(n)=$ $\Theta(f(n))$.

See text for the proof.

