Gruph Theory
A graph $G=(V, E)$ consists of a tinite set
V - vertices and a set $E \subseteq\binom{v}{2}$ of paivs $\{u, v\}(u \neq v)$ called \in dges Usvally represent graphs pirtariclly.
V vertiver comrespad to points
E edges conrespord to seguals joing points.
ϵg.

$$
\begin{aligned}
V= & \{1,2,3,4\} \\
E= & \left.\left\{\begin{array}{l}
\{1,2\},\{1,3\},\{1,4\} \\
\\
\end{array} 22,3\right\},\{3,4\}\right\}
\end{aligned}
$$

Any set with a binary relation (symmetric). can be considered as a graph: Consider $\{1, \ldots, n\}$ with nelation $\{i, j\} \Leftrightarrow i \mid j$ or jli.

Then for $n=6$.
A number
 is prime \Leftrightarrow there is al one edge eminating

Native our grape r definition does not allows multiple edges (E is u set not a mutiset). hor does it allow loops

multiple
edges

Some common/important graphs.

1) The complete group h on n vertices K_{n}.
$V=\left\{1, n^{n}\right\}$
$E=\binom{V}{2}$.
$|E|=\binom{n}{2}$

2) A graph is biporfite if $V=S \sqcup T$ and $\forall\{u, v\} \in E$ $u \in S, v \in T$ or vive versa.
 edges only between S and T
3. The complete bipartite graph $K_{n, m}$ contains an ede for each pair $u_{E S} v \in T$.

Bipartite graphs are veefl in assigmeret pudelems person-tusk etc.
4. A hypercube D_{n} has 2^{n} vetiver corresponding to biviary strings of length n. The Q_{n} has an edge between two vetiver if the strings differ
in exactly one place

Vertices in Qn_{n} well be useful in coding theory.
Exerise.
How many edges are in Q_{n} ?
Hint: use induction notiving that On splits into two copies of Qn-1 jawed by some edges
Recall that 0,1 words are in bijection with the set of subsets of $\{1, \ldots, n\}$

Therese we can also view vertices of Qn_{n} as subsets of $\{1,2,3\}$ with an edge between A and B iff

$A=B u i$ or $B=A u i$ for some i. "Boolean lattice"
5. A path is a graph P_{n} with n vertices that can be irdered so that $\left\{u_{i}, u_{i+1}\right\}$ are the only edger.

A circus C_{n} is a path P_{n} with an additional edge $\left\{u_{1}, u_{n}\right.$?
6. The Peterson graph

10 vetiver 15 edges.

Exerise label the edger
with trees

$\{i, j, k, \ell, m\}=21, \ldots, 5\}$. and vertices $>_{m}^{e}>_{i}^{j}$
so that

Def Thus gaps $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ are isomorphic If there is a bijection $\varphi: V \rightarrow V^{\prime}$ s.t. $\{u, v\} \in \epsilon \Leftrightarrow$ $\{\varphi(u), \varphi(u)\} \in E^{\prime}$

G
ad

$|E|=\left|E^{\prime}\right| \quad|V|=\left|V^{\prime}\right|$ are $G \cong G^{\prime}$?
Graph lingo:
If $\{u, v\} \in E$ we say u, v are neighboring or adjacent

If $u \in V$ and $k \in \epsilon$ is an edge $k=\{u, v\}$ we say u and k are incident (u is an end vertex of k)
The set of neighbors of u is denoted $N(u)$. The degree of $\quad u$ is $d(u)=|N(u)|$.
A vertex B isolated if $d(u)=0$.
The dire sequence of G is $d_{1} \geqslant d_{2} \geqslant \ldots \geqslant d_{n}$ where

$$
d_{i}=d\left(u_{i}\right) .
$$

Isomorphic graphs hare the same degree sequence

Puppósition (Thu 6.1). $G=(V, E)$ a graph then

$$
\sum_{u \in V} d(u)=2|E|
$$

Roof

$$
\begin{aligned}
\sum_{u \in V} d(u) & =\sum_{u}\left(\sum_{\substack{k \in E \\
k \in\{\in, N \\
E=\{, N}} 1\right) . \\
& =2|E|
\end{aligned}
$$

Corollary every graph has an even \# of vertives of odd degree
Proof $\sum_{u \in V} d(u)$ is even by a bute. $\sum_{\substack{u \in V \\ \text { due ever }}} d(u)+\sum_{\substack{u \in U \\ \text { due odd }}} d(u)$ is even

For a sum of add \#S to be even there must be an even \# \& them. D.

