MAT2250 Exercise list by chapter Spring 2020

Chapter 1

$1.8^{*}, 1.9,1.11,1.12,1.14,1.15,1.26,1.32,1.37,1.45^{*}, 1.46,1.54,1.58$

Chapter 2

$2.8,2.9,2.11,2.13^{*}, 2.15,2.37,2.38,2.42^{*}$
Chapter 3
3.1, 3.9*, 3.10, 3.15, 3.18, 3.24, 3.36

Chapter 5

$5.1^{*}, 5.7,5.14,5.16,5.22,5.23$

Chapter 6

$6.1,6.3^{*}, 6.14,6.23^{*}, 6.28,6.43$

Chapter 7

$7.5,7.8^{*}, 7.15,7.26^{*}, 7.29^{*}, 7.30,7.32$ (in 7.29 you can also use a directed incidence matrix for an arbitrary orientation of G and work over the reals)

Chapter 8

Sections 8.1, 8,2, 8.3
8.1, 8.6, 8.9*, 8.30, 8.35, 8.38, 8.40

Section 8.4
8.11*, 8.17, $8.43^{*}, 8.44$

See also exercises at the end of the screencast/pdf for the supplementary topic "Tropical arithmetic and graph algorithms".

Chapter 12

Sections 12.1 and 12.2
$12.3,12.5^{*}, 12.20,12.23,12.30^{*}$
Sections 12.3 and 12.4
$12.14,12.36,12.41^{*}$ (done in zoom session), $12.44^{*}, 12.45$.
Additional exercise: Show that there exists a finite projective plane of order n if and only if there exist $n-1$ orthogonal latin squares of order n.
(Hint: Consider two points x, y of the plane and the line L passing through them. Enumerate the other lines through x by $L_{1}, \ldots L_{n}$ and the lines through y by J_{1}, \ldots, J_{n}. Think about the n^{2} points of the plane that are not contained on L as the n^{2} entries of a latin square where the point $p_{i j}$ corresponds to entry (i, j) if $p_{i j}$ is on lines L_{i} and J_{j}. The L line contains $n-1$ other points and there are exactly n lines through each of these points. Use each of these $n-1$ points to come up with a latin square so the $n-1$ squares are mutually orthogonal.)
Chapter 13
$13.5^{*}, 13.9^{*}, 13.1213 .16^{*}, 13.17,13.31,13.36,13.37,13.46^{*}$ (what is the generating polynomial of the dual code?)

Chapter 14

$14.9^{*}, 14.10,14.22^{*}, 14.23,14.27$

