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These solutions are mash up from those proposed in the assignments and
those of my own. Special thanks to Jon Pål Hamre for sharing a latex file
with solutions!

Problem 1. Let Kn be the complete graph on n vertices {v1, . . . , vn}.

1. How many spanning trees are there of K6 which contain a single vertex
of degree 5? Is there a spanning tree of K6 with vertex degree sequence
(3, 3, 2, 1, 1, 1)?

2. Let d1, . . . , dn be a sequence of natural numbers each greater than or
equal to 1 with ∑n

i=1 di = 2n− 2. Show that the number of spanning
trees in Kn in which deg(vi) = di for all i is equal to

(n− 2)!
(d1 − 1)! . . . (dn − 1)!

Hint: Adapt the bijection constructed in the lectures between spanning
trees and sequences.

3. Consider the multivariable generating function where the sum is over
all spanning trees T of Kn

T(z1, . . . , zn) =
∑
T

n∏
i=1

z
deg(vi)−1
i .

By the above exercise we have

T(z1, . . . , zn) =
∑

d1,...,dn

(n− 2)!
(d1 − 1)! . . . (dn − 1)!z

d1−1
1 . . . zdn−1

n ,

where the sum is over all sequences of natural numbers d1, . . . , dn

which are greater than or equal to 1 satisfying ∑n
i=1 di = 2n− 2.

Prove that T(z1, . . . , zn) = (z1 + · · ·+ zn)n−2 for all n.

Deduce the result proved in the lectures that the number of spanning
trees of Kn is equal to nn−2.

Solution to Problem 1.1
If a spanning tree of K6 has a single vertex of degree 5 then all other

vertices must be of degree 1 since ∑6
i=1 deg(vi) = 2|E| = 2(|V | − 1) = 10

and deg(vi) > 0 for all i. Therefore, once the vertex of degree 5 is chosen
the tree is determined. There are 6 choices for the vertex of degree 6 and
thus 6 such spanning trees.
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Again a spanning tree of K6 must satisfy ∑6
i=1 deg(vi) = 2|E| =

2(|V |−1) = 10. However if a spanning tree has degree sequence (3, 3, 2, 1, 1, 1)
then the sum of these degrees is 12 6= 10 so there are no such spanning trees.

Solution to Problem 1.2
We adapt the proof enumerating the spanning trees of Kn from Aigner.

The book outlines a bijection between spanning trees of Kn and sequences
a = (a1, . . . , an−2) where ak ∈ {1, . . . , n}. From the construction of the
bijection, if a spanning tree of Kn has deg(vi) = di then i appears exactly
di − 1 times its sequence a.

Therefore, the set of spanning trees of Kn with vertices of degrees
d1, . . . , dn are in bijection with sequences (a1, . . . , an−2) where ak ∈
{1, . . . , n} and i appears exactly di − 1 times for all i ∈ {1, . . . , n}. The
number of such sequences is equal to the number of orderings of the multi-set
{1, . . . , 1, 2, . . . , 2, . . . , n, . . . , n} where i appears di times. This is

(n− 2)!
(d1 − 1)! . . . (dn − 1)! .

Solution to Problem 1.3
We must show that

(z1 + · · ·+ zn)n−2 =
∑

d1,...,dn

(n− 2)!
(d1 − 1)! . . . (dn − 1)!z

d1−1
1 . . . zdn−1

n ,

where the sum is over all sequences of natural numbers d1, . . . , dn which
are greater than or equal to 1 satisfying ∑n

i=1 di = 2n− 2.
This follows from the so-called multinomial theorem: For any k, n ∈ N

we have
(z1 + · · ·+ zn)k =

∑
i1,...,in

i1+···+in=k

k!
i1! . . . in!z

i1
1 . . . z

in
n .

The above statement holds for all k when n = 2, this is the usual binomial
theorem. Now suppose by induction that the statement holds for all k and
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for all n′ ≤ n. Then,

(z1 + · · ·+ zn)k = [z1 + · · ·+ zn−2 + (zn−1 + zn)]k

=
∑

i1,...,in−2,j
i1+···+in−2+j=k

k!
i1! . . . in−1!

zi1
1 . . . z

in−2
n−2 (zn−1 + zn)j

=
∑

i1,...,in−2,j
i1+···+in−1=k

k!
i1! . . . in−2!j!

zi1
1 . . . z

in−2
n−2

∑
in−1,in

in−1+in=j

j!
in!in−1!

zin−1
n−1 z

in
n

=
∑

i1,...,in
i1+···+in=k

k!
i1! . . . in!z

i1
1 . . . z

in
n

This establishes the more general statement and we get

T(z1, . . . , zn) = (z1+· · ·+zn)n−2 =
∑

d1,...,dn

(n− 2)!
(d1 − 1)! . . . (dn − 1)!z

d1−1
1 . . . zdn−1

n .

The number of spanning trees of Kn is simply the sum of all the
coefficients of the generating series T(z1, . . . , zn). This is obtained by
substituting zi = 1 for all i. So that T(1, . . . , 1) = (1 + · · ·+ 1)n−2 = nn−2.

An alternative proof of the multinomial theorem via multivari-
able generating functions: Consider the k fold product: (z1 + · · · +
zn)(z1 + · · · + zn) . . . (z1 + · · · + zn). We can think of the terms in the
product as “bins" and the terms zi as labelled balls contained in the bins.
A term in the expansion of this product corresponds to picking a single
labeled ball from each bin. When we choose zj exactly ij number of times
this contributes to the monomial zi1

1 . . . z
in
n . Therefore, the coefficient of

the monomial zi1
1 . . . z

in
n corresponds to a choice of associating balls with

prescribed labels to the k bins. In other words, it is the number of ways
of orderings of the elements of the multiset {1, . . . , 1, 2, . . . , 2, . . . , n, . . . , n}
where j appears ij times. This number is k!

i1!...in! .

Problem 2. Let G = (V,E) be a graph with |V | = n. A map
f : V → {1, . . . , t} is called an admissible vertex labeling if f(v) 6= f(v′)
whenever vv′ is an edge of G. Let PG(t) denote the number of admissible
vertex labelings of a graph G with t colours.

1. Calculate PG(t) for the path Pn with n vertices, the circuit Cn with n
vertices, and the the complete graph Kn.
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2. For a graph G = (V,E) and an edge k ∈ E, let G\k = (V,E\k) and
let G/k denote the graph obtained from G by contracting the edge
k = uv and identifying the vertices u and v.1 Prove that

PG(t) = PG\k(t)− PG/k(t).

Conclude from the above exercise that PG(t) is a polynomial in t for
all G.

3. If G is the graph with n vertices and no edges then PG(t) = tn. Using
this and the above formula, show that PG(t) has degree n = |V | and
the leading coefficient is 1.

Solution to Problem 2.1
1. Let v1, . . . , vn be the vertices of Pn so that vi is adjacent to vi+1. To

obtain an admissible labelling of Pn we can begin by labeling v1 by choosing
any of the t labels. Then to label v2 have only t− 1 possibilities in order to
remain admissible. Labeling the vertices in succession, we see that at each
step there are exactly t− 1 choices to label vi for i > 1, since the vertex vi−1
has already taken on a label.

Therefore,
PPn(t) = t(t− 1)n.

For the circuit Cn, the same approach does not work so easily. We will
prove that PCn(t) = (t−1)n +(−1)n(t−1) by finding a recursive formula for
the polynomial and then continuing by induction. Labelling the vertices in
succession as above we arrive at a problem when we get to vn. We need to
know if v1 and vn−1 have been given the same label or if they are different.

Case 1 : If v1 and vn−1 have the same label then there are t− 1 possible
labels of vn.

Case 2: If v1 and vn−1 have different labels then there are t− 2 possible
labels of vn

A labeling of v1 through vn−1 satisfying case 1 would give us an admissible
labeling of Cn−2 by removing the vertex vn and identifying vn−1 and v1.

Therefore, we have the recurrence:

PCn(t) = (t− 1)PCn−2(t) + (t− 2)PCn−1(t).

Alternatively, we can use Problem 2.2 to derive the recurrence:

PCn(t) = PPn(t)− PCn−1(t). (1)
1Notice that this operation might produce loops or multiple edges. If G has a loop

then PG(t) = 0 and it has multiple edges then PG(t) = PG′(t) where G′ is the graph with
all but one of the multiple edges removed.
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Using either of these recurrences we can prove by induction that PCn(t) =
(t−1)n+(−1)n(t−1).We will use Equation 1. The base case of the induction
is when n = 3. Here we have

PC3(t) = t(t− 1)(t− 2)
= (t− 1)[(t− 1)2 − 1]
= (t− 1)2 − (t− 1).

So suppose the statement is true for all k ≤ n. Then

PCn+1(t) = PPn+1(t)− PCn(t)
= t(t− 1)n − [(t− 1)n + (−1)n(t− 1)]
= (t− 1)n+1 + (−1)n+1(t− 1).

For the complete graph Kn notice that starting from vertex v1 we have
t possible labels. Assigning labels to the vertices v2, . . . , vn in succession
we see that there are t− i choices to assign a label to the vertex vi+1 since
i labels have been used for the previous vertices moreover every pair of
vertices are joined by an edge in the complete graph. Therefore we obtain

PKn(t) = t(t− 1) . . . (t− n+ 1).

Solution to Problem 2.2
We will prove the equivalent statement that PG\k(t) = PG(t) + PG/k(t).

Consider the admissible labelings by the set {1, . . . , t} of the graph G \ k.
The set of admissible t-labelings LG\k(t) admits a partition

LG\k(t) = SG\k(t) tDG\k(t),

where SG\k(t) denotes the set of admissible labelings where u and v have
the same label, and DG\k(t) denotes the set of admissible labelings where
u and v have different labels. By definition we have PG\k(t) = |LG\k(t)|.
Moreover, labelings in DG\k(t) correspond to admissible labelings of G, so
PG(t) = |DG\k(t)|. Finally, given a labeling in SG\k(t) upon contracting the
edge k we obtain an admissible labeling of G/k, so that PG/k(t) = |SG\k(t)|.
Combining all of this we obtain

PG\k(t) = |LG\k(t)| = |DG\k(t)|+ |SG\k(t)| = PG(t) + PG/k(t),

which proves the claim.
To see that PG(t) is a polynomial we proceed by double induction on

n = |V | and m = |E|. For m = 0 and any n we have PG(t) = tn, which is a
polynomial.
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Assume the claim is proved for all n and all m′ < m. If G has m edges,
then G\k and G/k have m− 1 edges so that both PG\k(t) and PG/k(t) are
polynomials. The difference of two polynomials is a polynomial thus PG(t)
is a polynomial.

Solution to Problem 2.3
To see that PG(t) has degree n = |V | and leading coefficient 1, we again

proceed by double induction on n and m = |E| If m = 0 the statement is
true as above. Now we can assume the statement holds for all n and m′ < m.
Therefore, the polynomial PG\k(t) has degree n and leading coefficient 1,
whereas the polynomial PG/k(t) has degree n − 1. Their difference PG(t)
thus has degree n and leading coefficient 1.

Problem 3. 1. Let T = {1, 2, . . . , 4}. Find the number of distinct
transversals (or selection functions) of the family of sets

A = {{1, 2}, {2, 3}, {3, 4}, {4, 1}}.

Following Aigner we consider the bipartite graph G = (T + A, E)
where E = {tAi | t ∈ Ai}. Therefore the graph G is

4

3

2

1

{1,4}

{3,4}

{2,3}

{1,2}

Following page 156 of Aigner injective assignments are injective maps
of subsets of A to T . In this example there are exactly 2 injective
assignments of all of A to T :

{1, 2} → 1, {2, 3} → 2, {3, 4} → 3, {1, 4} → 4

{1, 4} → 1, {1, 2} → 2, {2, 3} → 3, {3, 4} → 4.

The definition of transversal of page 156 is the same as the one on
page 160: it is a subset of T which can be matched in the graph.
Alternately, it is a subset TI = {φ(B) ∈ T | B ∈ B where B ⊂ A
and φ : B → T is an injective assignment. Therefore there are 16
transversals and 2 injective assignments.
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2. Suppose a bipartite graph G = (S + T,E) is k-regular for k ≥ 1
(i.e. deg(u) = k for all u ∈ S ∪ T ). Show that |S| = |T | and G always
contains a matching M with |M | = |S| = |T |.
Solution to Problem 3.2 If G is a bipartite graph then |E| =∑

u∈S deg(u) = ∑
v∈T deg(v). Since G is k-regular we have deg(u) =

deg(v) = k for all u ∈ S and v ∈ T . Therefore, |E| = k|S| = k|T | and
so |S| = |T |.
To prove that G has a matching M with |M | = |S| = |T | we use
Hall’s matching condition: G admits a matching with |M | = |S| if
and only if for all A ⊆ S we have |A| ≤ |N(A)|, where N(A) is the set
of neighbours of A.
Let A ⊆ S, then there are k|A| edges incident to the set A by the
regularity of G. These k|A| edges must be divided among the |N(A)|
vertices of N(A). If |N(A)| < |A| then there must be more than k
edges incident to a vertex of N(A) contradicting that G is k regular.
Therefore, |A| ≤ |N(A)| for all A ⊆ S and there exists a matching M
of G with |M | = |S|.

3. Show that a k-regular bipartite graph G = (S+T,E) contains at least
k! matchings with |S| = |T | number of edges.
Hint: Perform induction on n = |S| = |T | and see Exercise 8.28 of
Aigner.
Solution to Problem 3.3 We will follow the hint from Aigner and
establish the stronger statement for bipartite graphs with deg u ≥ k
for all u ∈ S ∪ T . Let k be fixed. If n < k G can not be k-regular, so
the base step of the induction is when n = k.
A k-regular bipartite graph with |S| = |T | = n = k is the complete
bipartite graph Kk,k, we know there is a one to one correspondence
between the maximal matchings of Kk,k and permutations of
{1, 2, . . . , k}. There are k! such permutations so there are k! maximal
matchings of Kk,k.
Suppose the statement is true for all k and all n′ < n+ 1 and we will
establish the statement when |S| = n + 1. Let G = (S t T,E) be a
k-regular bipartite graph with |S| = |T | = n + 1. We want to show
there exist at least k! maximal matchings in G. Call a subset A ⊆ S
critical if |A| = |N(A)|. Both ∅ and S are critical.
Case 1: Suppose there exist no proper non-empty subsets A of S
which are critical. Then let uv ∈ E be any edge of G and consider
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G′ = G \ {u, v}. G′ is no longer k-regular, but every vertex have at
least degree k − 1 so by the induction hypothesis there is at least
(k − 1)! matchings in G′ of size n. We want to show that for any of
these matchings there exists at least k matchings in G of size n+ 1.
Let M ′ be a matching of G′ of size n. Then M ′ is not a maximal
matching of G since u and v are not matched. By matching u and
v we obtain a single maximal matching of G, namely M = M ′ ∪ k.
So each of the (k − 1)! matchings of G′ can be extended to give a
matching M of G with |M | = n. We want to show in fact that each
such matching can be extended in k ways.
Label the vertices of S and T so that u = un+1 and v = vn+1. Let
the vertices adjacent to u in G be denoted vj1 , . . . , vjk

. For each
i0 ∈ {j1, . . . , jk} our goal is to find an M ′-alternating path

u, vi0 , ui0 , vi1 , ui1 , . . . , uil
, v

Recall that M ′ alternating means that vIk
uik
∈ M ′ and uik

vik+1 ∈
E\M ′ for all 0 ≤ k ≤ l. Then we can “flip” the alternating path as in
Theorem 8.9 of Aigner to obtain a maximal matching M of G.
Two maximal matchings M and M̃ obtained in this way can only be
equal if they came from the same choice of i0 ∈ {j1, . . . , jk}, the same
choice of alternating paths, and ultimately the same matching M ′ of
G′. This shows that the k(k − 1)! = k! matchings of G are distinct
and the theorem holds.
To find the M ′-alternating path we use Algorithm 8.10 in Aigner
starting to build the M ′ alternating tree from vertex u and choose
vertex vi0 for the vertex y the first time we perform step 2.
Case 2: If there exists some proper non-empty subset A ⊂ S such that
|A| = |N(A)| then the graph G consists of two connected components,
one of which is G′ = (A tN(A), E ′) of G consisting of only vertices
from A and N(A) and the edges E ′ between them. The graph G′ is
still k-regular and since A is a proper subset of S we have |A| < n+ 1
and we can apply the induction assumption to obtain k! matchings of
G′ with |A| edges.
The complement of G′ in G is the graph G′′ = ((S\A)+(T\N(A), E ′′).
This graph is also regular and |S\A| < n + 1 so there are again k!
matchings of G′′ with |S\A| edges. Combining these we obtain at least
k! matchings of G.
This covers the two cases and completes the proof.
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