MAT2250 Exercise list Spring 2024 - Instructor: Kris Shaw

1. Week of January 15 th - Fundamentals of counting and permutations

Warm ups.

(1) How many lists of length 4 without repetition can be formed from a set of size 6 ? What if repetitions are allowed?
(2) How many binary strings of length 5 are there containing at most three 0 's?
(3) Draw the Young diagrams for all of the integer partitions of $n=6$.
(4) How many ways are there of partitioning a set of size 6 into 3 subsets?
(5) Write the following permutations on 7 elements in the alternate forms (as words, bijective functions, and cycle notation)
(a) The permutation of the word $\pi=5673214$.
(b) The permutation given by the map $\pi(i)=i+1$ for $i<7$ and $\pi(7)=1$.
(c) The permutation given in cycle notation $(1,2)(4,7)(5,3)$.
(6) How many permutations on 6 elements are there of cycle type $1^{3} 3^{1}$?

Problem 1.1. Show that the binomial coefficients are "unimodal" by showing that they satisfy:

$$
\binom{n}{0}<\binom{n}{1}<\binom{n}{2} \cdots<\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}=\binom{n}{\left\lceil\frac{n}{2}\right\rceil}>\cdots>\binom{n}{n} .
$$

Problem 1.2. Let (n, m) be positive integers. A lattice path from $(0,0)$ to (m, n) is a sequence of steps of length 1 either to the right or in the up direction (you aren't allowed to go down or to the left).
(1) How many distinct lattice paths are there from $(0,0)$ to (m, n) ? Hint: Write down the steps of a path in a word.
(2) Partition the set of lattice paths from $(0,0)$ to (m, n) based on where they first meet the line $x=m$. Use this to come up with a summation formula for the number of paths found in Part (1).
(3) Show that the number of lattice paths from $(0,0)$ to (m, n) which intersect the diagonal line from $(0, n)$ to $(n, 0)$ (i.e. the line given by the equation $x+y=n)$ in the point $(k, n-k)$ is equal to $\binom{n}{k}\binom{m}{n-k}$. Use this to prove Vandermond's identity

$$
\binom{m+n}{n}=\sum_{k=0}^{n}\binom{n}{k}\binom{m}{n-k} .
$$

Problem 1.3. The Bell number \tilde{B}_{n} is the number of all set partitions of a set of size n (i.e. into any number of non-empty subsets). Write down the first four Bell numbers by listing all of the set partitions. Show that

$$
\tilde{B}_{n+1}=\sum_{k=0}^{n}\binom{n}{k} \tilde{B}_{n-k}
$$

Hint: Take the point of view of the set element $n+1$ and think about the size of the subset it ends up in.

Problem 1.4. Consider a permutation in word (one line) notation given by $\pi=a_{1} a_{2} a_{3} \ldots a_{n}$. Let b_{j} denote the number of elements to the left of j in the word π which are strictly bigger than j. Prove that a permutation π is determined by its sequence b_{1}, \ldots, b_{n}.
Hints: As an example if $\pi=1234 \ldots n$, then $b_{j}=0$ for all j. Notice that $0 \leq b_{j} \leq n-j$ and that the number of sequences b_{1}, \ldots, b_{n} satisfying these inequalities is equal to n !.

Problem 1.5.

1) Construct a map from the set of permutations of $\{1, \ldots, n\}$ with k cycles to the set of set partitions of $\{1, \ldots, n\}$ with k parts.
2) Construct a map from the set of set partitions of $\{1, \ldots, n\}$ with k parts to the set of integer partitions of n with k parts.
Hint: Remember to forget!
3) Show that the maps from (1) and (2) are surjective and conclude that $P_{n, k} \leq S_{n, k} \leq \sigma_{n, k}$ for all n, k.
4) Describe the composition of the two maps which sends the set of permutations of $\{1, \ldots, n\}$ with k-cycles to integer partitions of n with k parts. What does this have to do with the cycle type of a partition.
