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Chapter 10

Fourier Series with Riemann
Integration

In the middle of the 18th century, mathematicians and physicists started to study
the motion of a vibrating string (think of the strings of a violin or a guitar). If you
pull the string out and then let it go, how will it vibrate? To make a mathematical
model, assume that at rest the string is stretched along the x-axis from 0 to 1 and
fastened at both ends.
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The figure above shows some possibilities. If we start with a simple sine curve
f1(x) = C1 sin(πx), the string will oscillate up an down between the two curves
shown in the top line of the picture (we are neglecting air resistance and other
frictional forces). The frequency of the oscillation is called the fundamental har-
monic of the string. If we start from a position where the string is pinched at the
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2 10. Fourier Series with Riemann Integration

midpoint as on the second line of the figure (i.e. we use a starting position of the
form f2(x) = C2 sin(2πx)), the string will oscillate with a node in the middle. The
frequency will be twice the fundamental harmonic. This is the first overtone of the
string. Pinching the string at more and more points, i.e. using starting positions of
the form fn(x) = Cn sin(nπx) for larger and larger integers n, we introduce more
and more nodes and more and more overtones (the frequency of fn will be n times
the fundamental harmonic). If the string is vibrating in air, the frequencies – the
fundamental harmonic and its overtones – can be heard as tones of different pitches.

Imagine now that we start with a mixture

(10.0.1) f(x) =

∞∑
n=1

Cn sin(nπx)

of the starting positions above. The motion of the string will then be a superposition
of the motions created by each individual function fn(x) = Cn sin(nπx). The
sound produced will be a mixture of the fundamental harmonic and the different
overtones, and the size of the constant Cn will determine how much overtone number
n contributes to the sound.

This is a nice description, but the problem is that a function is usually not of
the form (10.0.1). Or – perhaps it is? Perhaps any reasonable starting position
for the string can be written in the form (10.0.1)? But if so, how do we prove
it, and how do we find the coefficients Cn? There was a heated discussion on
these questions around 1750, but nobody at the time was able to come up with a
satisfactory solution.

The solution came with a memoir published by Joseph Fourier in 1807. To
understand Fourier’s solution, we need to generalize the situation a little. Since
the string is fastened at both ends of the interval, a starting position for the string
must always satisfy f(0) = f(1) = 0. Fourier realized that if he were to include
general functions that did not satisfy these boundary conditions in his theory, he
needed to allow constant terms and cosine functions in his series. Hence he looked
for representations of the form

(10.0.2) f(x) = A+

∞∑
n=1

(
Cn sin(nπx) +Dn cos(nπx)

)
with A,Cn, Dn ∈ R. The big breakthrough was that Fourier managed to find
simple formulas to compute the coefficients A,Cn, Dn of this series. This turned
trigonometric series into a useful tool in applications (Fourier himself was mainly
interested in heat propagation).

When we now begin to develop the theory, we shall change the setting slightly.
We shall replace the interval [0, 1] by [−π, π] (it is easy to go from one interval to
another by scaling the functions, and [−π, π] has certain notational advantages),
and we shall replace sin(nπx) and cos(nπx) by complex exponentials einx. Not
only does this reduce the types of functions we have to work with from two to
one, but it also makes many of our arguments easier and more transparent. We
begin by taking a closer look at the relationship between complex exponentials and
trigonometric functions.



10.1. Fourier coefficients and Fourier series 3

10.1. Fourier coefficients and Fourier series

You may remember the name Fourier from Section 5.3 on inner product spaces, and
we shall now see how the abstract Fourier analysis presented there can be turned
into concrete Fourier analysis of functions on the real line. Before we do so, it will
be convenient to take a brief look at the functions that will serve as elements of our
orthonormal basis. Recall that for a complex number z = x + iy, the exponential
ez is defined by

ez = ex(cos y + i sin y).

We shall mainly be interested in purely imaginary exponents:

(10.1.1) eiy = cos y + i sin y.

Since we also have

e−iy = cos(−y) + i sin(−y) = cos y − i sin y,

we may add and subtract to get

(10.1.2) cos y =
eiy + e−iy

2

(10.1.3) sin y =
eiy − e−iy

2i
.

Formulas (10.1.1)-(10.1.3) give us important connections between complex expo-
nentials and trigonometric functions that we shall exploit later in the section.

We need some information about functions f : R→ C of the form

f(x) = e(a+ib)x = eax cos bx+ ieax sin bx where a ∈ R.
If we differentiate f by differentiating the real and complex parts separately, we get

f ′(x) = aeax cos bx− beax sin bx+ iaeax sin bx+ ibeax cos bx =

= aeax (cos bx+ i sin bx) + ibeax (cos bx+ i sin bx) = (a+ ib)e(a+ib)x,

and hence we have the formula

(10.1.4)
(
e(a+ib)x

)′
= (a+ ib)e(a+ib)x

that we would expect from the real case. Anti-differentiating, we see that

(10.1.5)

∫
e(a+ib)x dx =

e(a+ib)x

a+ ib
+ C,

where C = C1 + iC2 is an arbitrary, complex constant.

We shall be particularly interested in the functions

en(x) = einx = cosnx+ i sinnx where n ∈ Z.
Observe first that these functions are 2π-periodic in the sense that

en(x+ 2π) = ein(x+2π) = einxe2nπi = einx · 1 = en(x).

This means in particular that en(−π) = en(π) (they are both equal to (−1)n as is
easily checked). Integrating, we see that for n 6= 0, we have∫ π

−π
en(x) dx =

[
einx

in

]π
−π

=
en(π)− en(−π)

in
= 0
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while we for n = 0 have ∫ π

−π
e0(x) dx =

∫ π

−π
1 dx = 2π.

This leads to the following orthogonality relation.

Proposition 10.1.1. For all n,m ∈ Z we have (the bar denotes complex conjuga-
tion) ∫ π

−π
en(x)em(x) dx =

 0 if n 6= m

2π if n = m

Proof. Since

en(x)em(x) = einxe−imx = ei(n−m)x = en−m(x),

the lemma follows from the formulas above. �

The proposition shows that the family {en}n∈Z is almost orthonormal with
respect to the inner product

〈f, g〉 =

∫ π

−π
f(x)g(x) dx.

The only problem is that 〈en, en〉 is 2π and not 1. We could fix this by replacing
en by en√

2π
, but instead we shall choose to change the inner product to

〈f, g〉 =
1

2π

∫ π

−π
f(x)g(x) dx.

Abusing terminology slightly, we shall refer to this at the L2-inner product on
[−π, π]. The norm it induces will be called the L2-norm || · ||2. It is defined by

||f ||2 = 〈f, f〉 12 =

(
1

2π

∫ π

−π
|f(x)|2 dx

) 1
2

.

The Fourier coefficients of a function f with respect to {en}n∈Z are defined by

αn = 〈f, en〉 =
1

2π

∫ π

−π
f(x)en(x) dx =

1

2π

∫ π

−π
f(x)e−inx dx.

From Section 5.3 we know that f =
∑∞
n=−∞ αnen (where the series converges in

L2-norm) provided f belongs to a space where {en}n∈Z is a basis. We shall study
this question in detail in the next sections. For the time being, we look at some
examples of how to compute the Fourier coefficients αn and the Fourier series∑∞
n=−∞ αnen(x).

Example 1: We shall compute the Fourier coefficients αn of the function f(x) = x.
By definition

αn = 〈f, en〉 =
1

2π

∫ π

−π
xe−inx dx.
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It is easy to check that α0 =
∫ π
−π x dx = 0. For n 6= 0, we use integration by parts

(see Exercise 9) with u = x and v′ = e−inx. We get u′ = 1 and v = e−inx

−in , and:

αn = − 1

2π

[
x
e−inx

in

]π
−π

+
1

2π

∫ π

−π

e−inx

in
dx =

=
(−1)n+1

in
+

1

2π

[
e−inx

n2

]π
−π

=
(−1)n+1

in
.

The Fourier series becomes
∞∑

n=−∞
αnen =

−1∑
n=−∞

(−1)n+1

in
einx +

∞∑
n=1

(−1)n+1

in
einx =

=

∞∑
n=1

2(−1)n+1

n
· e

inx − e−inx

2i
=

∞∑
n=1

2(−1)n+1

n
sin(nx),

where we in the last step have use that sinu = eiu−e−iu
2i . We would like to conclude

that x =
∑∞
n=1

2(−1)n+1

n sin(nx) for x ∈ (−π, π), but we don’t have the theory to
take that step yet. ♣

A remark on real Fourier series. Note that in the example above, we started
with a real-valued function f and ended up with a series expansion with only real-
valued terms. This is a general phenomenon: If the function f is real, we can
rewrite its Fourier series as a real series where the functions einx are replaced by
cosnx and sinnx. The resulting series is called the real Fourier series of f . Let us
take a look at the details.

Assume that f : [−π, π] → R is a real-valued function with Fourier series∑∞
n=−∞ αnen. Note that since f is real

α−n =
1

2π

∫ π

π

f(x)e−i(−nx) dx =
1

2π

∫ π

π

f(x)e−inx dx

=
1

2π

∫ π

π

f(x)e−inx dx = αn .

and hence we can combine the positive and negative terms of the Fourier series in
the following way

∞∑
n=−∞

αne
inx = α0 +

∞∑
n=1

(
αne

inx + α−ne
−inx)

= α0 +

∞∑
n=1

(
αne

inx + αneinx
)

= α0 +

∞∑
n=1

2Re(αne
inx),

where Re(z) denotes the real part of the complex number z. If we put αn = cn+idn,
we get

Re(αne
inx) = Re

(
(cn + idn)(cosnx+ i sinnx)

)
= cn cosnx− dn sinnx,

and hence
∞∑

n=−∞
αne

inx = α0 +

∞∑
n=1

(2cn cosnx− 2dn sinnx).
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Let us take a closer look at what cn and dn are. We have

cn + idn = αn =
1

2π

∫ π

−π
f(x)e−inx dx

=
1

2π

∫ π

−π
f(x) cosnx dx− i 1

2π

∫ π

−π
f(x) sinnx dx,

and since f is real, this implies that cn = 1
2π

∫ π
−π f(x) cosnx dx and that dn =

− 1
2π

∫ π
−π f(x) sinnx dx. If we introduce

(10.1.6) an = 2cn =
1

π

∫ π

−π
f(x) cosnx dx

(10.1.7) bn = −2dn =
1

π

∫ π

−π
f(x) sinnx dx ,

we see that we can rewrite the Fourier series of f as

a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx).

As already mentioned, this is called the real Fourier series of f .

Example 2: Let us compute the real Fourier series of the function

f(x) =

 −1 if x < 0

1 if x ≥ 0

From the symmetry of f , we get

a0 =
1

π

∫ π

−π
f(x) dx = 0,

and by a similar symmetry argument, we see that

an =
1

π

∫ π

−π
f(x) cosnx dx = 0

for all n ∈ N (f(x) cosnx is an odd function, and hence the contribution to the
integral from the interval [−π, 0] cancels the contribution from the interval [0, π] –
see Exercise 10 for more information). Turning to the bn’s, we get

bn =
1

π

∫ π

−π
f(x) sinnx dx =

1

π

∫ π

0

sinnx dx− 1

π

∫ 0

−π
sinnx dx

=
1

π

([
−cosnx

n

]π
0
−
[
−cosnx

n

]0
−π

)
=

1

π

(
−cosnπ

n
+ 2

cos 0

n
− cos(−nπ)

n

)

=
2

nπ

(
1− cos(nπ)

)
=


4
nπ when n is odd

0 when n is even
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Hence the real Fourier series of f is

∞∑
k=1

4

(2k − 1)π
sin
(
(2k − 1)x

)
.

♣

Exercises for Section 10.1.

1. Show that 〈f, g〉 = 1
2π

∫ π
−π f(x)g(x) dx is an inner product on C([−π, π],C).

2. Deduce the formulas for sin(x+ y) and cos(x+ y) from the rule ei(x+y) = eixeiy.

3. In this problem we shall use complex exponentials to prove some trigonometric
identities.

a) Use the complex expressions for sin and cos to show that

sin(u) sin(v) =
1

2
cos(u− v)− 1

2
cos(u+ v).

b) Integrate
∫

sin 4x sinx dx.
c) Find a similar expression for cosu cos v and use it to compute the integral∫

cos 3x cos 2x dx.
d) Find an expression for sinu cos v and use it to integrate

∫
sinx cos 4x dx.

4. a) Show that if we multiply by the conjugate a − ib in the numerator and the
denominator on the right hand side of formula (10.1.5), we get∫

e(a+ib)x dx =
eax

a2 + b2
(
a cos bx+ b sin bx+ i(a sin bx− b cos bx)

)
.

b) Use the formula in a) to show that∫
eax cos bx dx =

eax

a2 + b2
(
a cos bx+ b sin bx

)
and ∫

eax sin bx dx =
eax

a2 + b2
(
a sin bx− b cos bx

)
.

In calculus, these formulas are usually proved by two times integration by parts,
but in our complex setting they follow more or less immediately from the basic
integration formula (10.1.5).

5. Find the Fourier series of f(x) = ex.

6. Find the Fourier series of f(x) = x2.

7. Find the Fourier series of f(x) = sin x
2
.

8. a) Let sn = a0 +a0r+a0r
2 + · · ·+a0r

n be a geometric series of complex numbers.
Show that if r 6= 1, then

sn =
a0(1− rn+1)

1− r .

(Hint: Subtract rsn from sn.)

b) Explain that
∑n
k=0 e

ikx = 1−ei(n+1)x

1−eix when x is not a multiple of 2π.

c) Show that
∑n
k=0 e

ikx = ei
nx
2

sin(n+1
2
x)

sin( x
2
)

when x is not a multiple of 2π.

d) Use the result in c) to find formulas for
∑n
k=0 cos(kx) and

∑n
k=0 sin(kx).
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9. Show that the integration by parts formula∫
f(x)g′(x) dx = f(x)g(x)−

∫
f ′(x)g(x) dx

holds for complex-valued functions f, g.

10. A real-valued function f : [−π, π] → R is called even if f(−x) = f(x) for all x ∈
[−π, π] and it is called odd if f(−x) = −f(x) for all x ∈ [−π, π]. Let an and bn be
the real Fourier coefficients of f .

a) Show that if f is even, bn = 0 for all n = 1, 2, 3, . . ., and that if f is odd, an = 0
for n = 0, 1, 2, . . .. In the first case, we get a cosine series

a0
2

+

∞∑
n=0

an cos(nx)

and in the second case a sine series
∞∑
n=0

bn sin(nx).

b) Show that the real Fourier series of |x| is

π

2
− 4

π

(
cosx+

cos 3x

32
+

cos 5x

52
+ . . .

)
.

c) Show that the real Fourier series of | sinx| is

2

π
− 4

π

∞∑
n=1

cos(2nx)

4n2 − 1
.

(Hint: Show first that sin[(n+ 1)x]− sin[(n− 1)x] = 2 sinx cosnx.)

Let f : [−π, π]→ R be a real-valued function function with real Fourier series

a0
2

+

∞∑
n=0

(
an cos(nx) + bn sin(nx)

)
.

d) Show that fe(x) = f(x)+f(−x)
2

is an even function with real Fourier series

a0
2

+

∞∑
n=0

an cos(nx).

and that fo(x) = f(x)−f(−x)
2

is an odd function with real Fourier series

∞∑
n=0

bn sin(nx).

11. a) Show that if b 6= n, then∫ π

−π
eibx · e−inx dx = 2(−1)n

sin(bπ)

b− n .

b) Use a) to find the Fourier series of cos(ax) when a ∈ R isn’t an integer. What
is the Fourier series when a is an integer?

12. In this exercise, we shall see how the problem of the vibrating string can be treated
by the theory we have started to develop. For simplicity, we assume that the string
has length π rather than one, and that the initial condition is given by a continuous
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function g : [0, π] → R with g(0) = g(π) = 0. Let ḡ : [−π, π] → R be the odd
extension of g, i.e. the function defined by

ḡ(x) =


g(x) if x ∈ [0, π]

−g(−x) if x ∈ [−π, 0)
.

a) Explain that the real Fourier series of ḡ is a sine series
∑∞
n=1 bn sin(nx).

b) Show that bn = 2
π

∫ π
0
g(x) sin(nx) dx.

c) Show that if the sine series converges pointwise to ḡ, then

g(x) =

∞∑
n=1

bn sin(nx) for all x ∈ [0, π].

Explain the connection to the vibrating string.

10.2. Convergence in mean square

Recall from the previous section that the functions

en(x) = einx, n ∈ Z

form an orthonormal set with respect to the L2-inner product

〈f, g〉 =
1

2π

∫ π

−π
f(x)g(x) dx.

The Fourier coefficients of a continuous function f : [−π, π] → C with respect to
this set are given by

αn = 〈f, en〉 =
1

2π

∫ π

−π
f(x)en(x) dx.

From Parseval’s theorem 5.3.10, we know that if {en} is a basis (for whatever space
we are working with), then

f(x) =

∞∑
n=−∞

αnen(x),

where the series converges in the L2-norm, i.e.

lim
N→∞

||f −
N∑

n=−N
αnen||2 = 0.

Convergence in L2-norm is also referred to as convergence in mean square.

At this stage, life becomes complicated in two ways. First, we don’t know
yet that {en}n∈Z is a basis for C([−π, π],C), and second, we don’t really know
what L2-convergence means. It turns out that L2-convergence is quite weak, and
that a sequence may converge in L2-norm without actually converging at a single
point! This means that we would also like to investigate other forms for convergence
(pointwise, uniform etc.).

Let us begin by observing that since en(−π) = en(π) for all n ∈ Z, any function
that is the pointwise limit of a series

∑∞
n=−∞ αnen must also satisfy this periodicity

assumption. Hence it is natural to introduce the following class of functions:
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Definition 10.2.1. Let CP be the set of all continuous functions f : [−π, π] → C
such that f(−π) = f(π). A function in CP is called a trigonometric polynomial if

it is of the form
∑N
n=−N αnen where N ∈ N and each αn ∈ C.

To distinguish it from the L2-norm, we shall denote the supremum norm on
C([−π, π],C) by || · ||∞, i.e.

||f ||∞ = sup{|f(x)| : x ∈ [−π, π]}

Note that the metric generated by || · ||∞ is the metric ρ that we studied in Chapter
4. Hence convergence with respect to || · ||∞ is the same as uniform convergence.

Theorem 10.2.2. The trigonometric polynomials are dense in CP in the || · ||∞-
norm. Hence for any f ∈ CP there is a sequence {pn} of trigonometric polynomials
that converges uniformly to f .

If you have read Section 4.11 on the Stone-Weierstrass Theorem, you may
recognize this as Corollary 4.11.13. If you haven’t read Section 4.11, don’t despair:
In the next section, we shall get a more informative proof from ideas we have to
develop anyhow, and we postpone the proof till then. In the meantime we look at
some consequences.

Corollary 10.2.3. For all f ∈ CP , the Fourier series
∑∞
n=−∞〈f, en〉en converges

to f in L2-norm, i.e. limN→∞ ||f −
∑N
n=−N 〈f, en〉en||2 = 0.

Proof. As usual, we let αn = 〈f, en〉 = 1
2π

∫ π
−π f(x)e−inx dx be the Fourier coef-

ficients of f . Given an ε > 0, we must show that there is an N0 ∈ N such that

||f −
∑N
n=−N αnen||2 < ε for all N ≥ N0. By the previous result, we know that

there is a trigonometric polynomial p such that ||f − p||∞ < ε. But then we also
have ||f − p||2 < ε as

||f − p||2 =

(
1

2π

∫ π

−π
|f(t)− p(t)|2 dt

) 1
2

≤
(

1

2π

∫ π

−π
ε2 dt

) 1
2

= ε.

Let N0 be the degree of p and assume that N ≥ N0. By Proposition 5.3.8,∑N
n=−N αnen is the element in Sp(eN , e−N+1, . . . , eN−1, eN ) closest to f in L2-

norm. As Sp(eN , e−N+1, . . . , eN−1, eN ) consists of the trigonometric polynomials

of degree N , this means that
∑N
n=−N αnen is the trigonometric polynomial of de-

gree N closest to f in L2-norm. Since p is trigonometric polynomial of degree N ,
we get

||f −
N∑

n=−N
αnen||2 ≤ ||f − p||2 < ε.

�

The corollary above is rather unsatisfactory. It is particularly inconvenient that
it only applies to periodic functions such that f(−π) = f(π) (although we can not
have pointwise convergence to functions violating this condition, we may well have
L2-convergence as we soon shall see). To get a better result, we introduce a bigger
space D of piecewise continuous functions.
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Definition 10.2.4. A function f : [−π, π] → C is said to be piecewise continuous
with one sided limits if there exists a finite set of points

−π = a0 < a1 < a2 < . . . < an−1 < an = π

such that:

(i) f is continuous on each interval (ai, ai+1).

(ii) f has one-sided limits at each point ai, i.e. f(a−i ) = limx↑ai f(x) and f(a+
i ) =

limx↓ai f(x) both exist, but need not be equal (at the endpoints a0 = −π and
an = π we do, of course, only require limits from the appropriate side).

(iii) The value of f at each jump point ai is the average of the one-sided limits, i.e.
f(ai) = 1

2 (f(a−i ) + f(a+
i )). At the endpoints, this is interpreted as f(a0) =

f(an) = 1
2 (f(a−n ) + f(a+

0 )).

The collection of all such functions will be denoted by D.

Remark: Part (iii) is only included for technical reasons (we must specify the
values at the jump points to make D an inner product space), but it reflects how
Fourier series behave — at jump points they always choose the average value. The
treatment of the end points may seem particularly strange; why should we enforce
the average rule even here? The reason is that since the trigonometric polynomials
are 2π-periodic, they regard 0 and 2π as the “same” point, and hence it is natural
to compare the right limit at 0 to the left limit at 2π.

Note that the functions in D are bounded and integrable, that the sum of two
functions in D is also in D, and that D is an inner product space over C with the
L2-inner product. The next lemma will help us extend Corollary 10.2.3 to D.

Lemma 10.2.5. CP is dense in D in the L2-norm, i.e. for each f ∈ D and each
ε > 0, there is a g ∈ CP such that ||f − g||2 < ε.

Proof. I only sketch the main idea of the proof, leaving the details to the reader.
Assume that f ∈ D and ε > 0 are given. To construct g, choose a very small δ > 0
(it is your task to figure out how small) and construct g as follows: Outside the
(non-overlapping) intervals (ai−δ, ai+δ), we let g agree with f , but in each of these
intervals, g follows the straight line connecting the points (ai − δ, f(ai − δ)) and
(ai+δ, f(ai+δ)) on f ’s graph. Check that if we choose δ small enough, ||f−g||2 < ε
(In making your choice, you have to take M = sup{|f(x)| : x ∈ [−π, π]} into
account, and you also have to figure out what to do at the endpoints −π, π of the
interval). �

We can now extend Corollary 10.2.3 above from CP to D.

Theorem 10.2.6. For all f ∈ D, the Fourier series
∑∞
n=−∞〈f, en〉en converges

to f in L2-norm, i.e. limN→∞ ||f −
∑N
n=−N 〈f, en〉en||2 = 0.

Proof. Assume that f ∈ D and ε > 0 are given. By the lemma, we know that there
is a g ∈ CP such that ||f −g||2 < ε

2 , and by Corollary 10.2.3 there is a trigonometric
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polynomial p =
∑N
n=−N αnen such that ||g − p||2 < ε

2 . The triangle inequality now
tells us that

||f − p||2 ≤ ||f − g||2 + ||g − p||2 <
ε

2
+
ε

2
= ε

Invoking Proposition 5.3.8 again, we see that for M ≥ N , we have

||f −
M∑

n=−M
〈f, en〉en||2 ≤ ||f − p||2 < ε,

and the theorem is proved. �

The theorem above is satisfactory in the sense that we know that the Fourier
series of f converges to f in L2-norm for a wide class of functions f . However, we
still have things to attend to: We haven’t really proved Theorem 10.2.2 yet, and we
would really like to prove that Fourier series converge pointwise (or even uniformly)
for a reasonable class of functions. We shall take a closer look at these questions in
the next sections.

Exercises for Section 10.2.

1. Show that CP is a closed subset of C([−π, π],C).

2. In this problem we shall prove some properties of the space D.
a) Show that if f, g ∈ D, then f + g ∈ D.
b) Show also that if f ∈ D and g ∈ CP , then fg ∈ D. Explain that there are

functions f, g ∈ D such that fg /∈ D.
c) Show that D is a vector space.
d) Show that all functions in D are bounded.
e) Show that all functions in D are integrable on [−π, π].

f) Show that 〈f, g〉 = 1
2π

∫ π
−π f(x)g(x) dx is an inner product on D.

3. Complete the proof of Lemma 10.2.5.

10.3. The Dirichlet kernel

Our arguments so far have been entirely abstract – we have not really used any
properties of the functions en(x) = einx except that they are orthonormal and
dense in D. To get better results, we need to take a closer look at these functions.
In some of our arguments, we shall need to change variables in integrals, and such
changes may take us outside our basic interval [−π, π], and hence outside the region
where our functions are defined. To avoid these problems, we extend our functions
f ∈ D periodically outside the basic interval such that f(x + 2π) = f(x) for all
x ∈ R. Figure 10.3.1 shows the extension graphically; in part a) we have the original
function, and in part b) (a part of) the periodic extension. As there is no danger
of confusion, we shall denote the original function and the extension by the same
symbol f .

To see the point of this extension more clearly, assume that we have a function
f : [−π, π] → R. Consider the integral

∫ π
−π f(x) dx, and assume that we for some

reason want to change variable from x to u = x+ a. We get∫ π

−π
f(x) dx =

∫ π+a

−π+a

f(u− a) du.
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Figure 10.3.1. The periodic extension of a function

This is fine, except that we are now longer over our preferred interval [−π, π]. If f
has been extended periodically, we see that∫ π+a

π

f(u− a) du =

∫ −π+a

−π
f(u− a) du.

Hence∫ π

−π
f(x) dx =

∫ π+a

−π+a

f(u− a) du =

∫ π

−π+a

f(u− a) du+

∫ π+a

π

f(u− a) du

=

∫ π

−π+a

f(u− a) du+

∫ −π+a

−π
f(u− a) du =

∫ π

−π
f(u− a) du,

and we have changed variable without leaving the interval [−π, π]. Variable changes
of this sort will be made without further comment in what follows.

Remark: Here is a way of thinking that is often useful: Assume that we take our
interval [−π, π] and bend it into a circle such that the points −π and π become
the same. If we think of our trigonometric polynomials p as being defined on the
circle instead of on the interval [−π, π], it becomes quite logical that p(−π) = p(π).
When we are extending functions f ∈ D the way we did above, we can imagine
that we are wrapping the entire real line up around the circle such that the the
points x and x + 2π on the real line always become the same point on the circle.
Mathematicians often say they are “doing Fourier analysis on the unit circle”.

Let us begin by looking at the partial sums

sN (x) =

N∑
n=−N

〈f, en〉en(x)

of the Fourier series. Since

αn = 〈f, en〉 =
1

2π

∫ π

−π
f(t)e−int dt,
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we have

sN (x) =
1

2π

N∑
n=−N

(∫ π

−π
f(t)e−int dt

)
einx =

1

2π

∫ π

−π
f(t)

N∑
n=−N

ein(x−t) dt =

=
1

2π

∫ π

−π
f(x− u)

N∑
n=−N

einu du,

where we in the last step have substituted u = x− t and used the periodicity of the
functions to remain in the interval [−π, π]. If we introduce the Dirichlet kernel

DN (u) =

N∑
n=−N

einu,

we may write this as

sN (x) =
1

2π

∫ π

−π
f(x− u)DN (u) du.

Note that the sum
∑N
n=−N e

inu =
∑N
n=−N (eiu)n in the Dirichlet kernel is a geo-

metric series. For u = 0, all the terms are 1 and the sum is 2N + 1. For u 6= 0, we
use the summation formula for a finite geometric series to get:

DN (u) =
e−iNu − ei(N+1)u

1− eiu
=
e−i(N+ 1

2 )u − ei(N+ 1
2 )u

e−i
u
2 − eiu2

=
sin((N + 1

2 )u)

sin u
2

,

where we have used the identity sinx = eix−e−ix
2i twice in the last step. This formula

gives us a nice, compact expression for DN (u). If we substitute it into the formula
above, we get

sN (x) =
1

2π

∫ π

−π
f(x− u)

sin((N + 1
2 )u)

sin u
2

du.

If we want to prove that the partial sums sN (x) converge to f(x) (i.e. that the
Fourier series converges pointwise to f), the obvious strategy is to prove that the
integral above converges to f . In 1829, Dirichlet used this approach to prove:

Theorem 10.3.1 (Dirichlet’s Theorem). If f ∈ D has only a finite number of local
minima and maxima, then the Fourier series of f converges pointwise to f .

Dirichlet’s result must have come as something of a surprise; it probably seemed
unlikely that a theorem should hold for functions with jumps, but not for contin-
uous functions with an infinite number of extreme points. Through the years that
followed, a number of mathematicians tried – and failed – to prove that the Fourier
series of a periodic, continuous function always converges pointwise to the function.
In 1873, the German mathematician Paul Du Bois-Reymond explained why they
failed by constructing a periodic, continuous function whose Fourier series diverges
at a dense set of points.

It turns out that the theory for pointwise convergence of Fourier series is quite
complicated, and we shall not prove Dirichlet’s theorem here. Instead we shall
prove a result known as Dini’s test which allows us to show convergence for many
of the functions that appear in practice. But before we do that, we shall take a
look at a different notion of convergence which is easier to handle, and which will
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also give us some tools that are useful in the proof of Dini’s test. This alternative
notion of convergence is called Cesaro convergence or convergence in Cesaro mean.
However, first of all we shall collect some properties of the Dirichlet kernels that
will be useful later.

Let us first see what they look like. Figure 10.3.2 shows Dirichlet’s kernel Dn

for n = 5, 10, 15, 20. Note the changing scale on the y-axis; as we have already
observed, the maximum value of Dn is 2n + 1. As n grows, the graph becomes
more and more dominated by a sharp peak at the origin. The smaller peaks and
valleys shrink in size relative to the big peak, but the problem with the Dirichlet
kernel is that they do not shrink in absolute terms — as n goes to infinity, the area
between the curve and the x-axis (measured in absolute value) goes to infinity. This
makes the Dirichlet kernel quite difficult to work with. When we turn to Cesaro
convergence in the next section, we get another set of kernels – the Fejér kernels –
and they turn out not to have this problem. This is the main reason why Cesaro
convergence works much better than ordinary convergence for Fourier series.
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Figure 10.3.2. Dirichlet kernels

The following lemma sums up some of the most important properties of the
Dirichlet kernel. Recall that a function g is even if g(t) = g(−t) for all t in the
domain:
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Lemma 10.3.2. The Dirichlet kernel Dn(t) is an even, real-valued function such
that |Dn(t)| ≤ Dn(0) = 2n+ 1 for all t. For all n,

1

2π

∫ π

−π
Dn(t) dt = 1,

but

lim
n→∞

∫ π

−π
|Dn(t)| dt =∞.

Proof. That Dn is real-valued and even, follows immediately from the formula

Dn(t) =
sin((n+ 1

2 )t)

sin t
2

. To prove that |Dn(t)| ≤ Dn(0) = 2n+ 1 , we just observe that

Dn(t) = |
n∑

k=−n

eikt| ≤
n∑

k=−n

|eikt| = 2n+ 1 = Dn(0).

Similarly for the integral

1

2π

∫ π

−π
Dn(t) dt =

n∑
k=−n

1

2π

∫ π

−π
eikt dt = 1

as all integrals except the one for k = 0 are zero. To prove the last part of the
lemma, we observe that since | sinu| ≤ |u| for all u, we have

|Dn(t)| =
| sin((n+ 1

2 )t)|
| sin t

2 |
≥

2| sin((n+ 1
2 )t)|

|t|
.

Using the symmetry and the substitution z = (n+ 1
2 )t, we see that∫ π

−π
|Dn(t)| dt =

∫ π

0

2|Dn(t)| dt ≥
∫ π

0

4| sin((n+ 1
2 )t)|

|t|
dt =

=

∫ (n+ 1
2 )π

0

4| sin z|
z

dz ≥
n∑
k=1

∫ kπ

(k−1)π

4| sin z|
kπ

dz =
8

π

n∑
k=1

1

k
.

The expression on the right goes to infinity since the series diverges. �

Exercises for Section 10.3.

1. Let f : [−π, π]→ C be the function f(x) = x. Draw the periodic extension of f . Do
the same with the function g(x) = x2.

2. Check that Dn(0) = 2n+ 1 by computing limt→0
sin((n+ 1

2
)t)

sin t
2

.

3. Work out the details of the substitution u = x − t in the derivation of the formula
sN (x) = 1

2π

∫ π
−π f(x− u)

∑N
n=−N e

inu du.

4. Explain the details in the last part of the proof of Lemma 10.3.2 (the part that
proves that limn→∞

∫ π
−π |Dn(t)| dt =∞).
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10.4. The Fejér kernel

Before studying the Fejér kernel, we shall take a look at a generalized notion of
convergence for sequences. Certain sequences such as

0, 1, 0, 1, 0, 1, 0, 1, . . .

do not converge in the ordinary sense, but they do converge “in average” in the
sense that the average of the first n elements approaches a limit as n goes to infinity.
In this sense, the sequence above obviously converges to 1

2 . Let us make this notion
precise:

Definition 10.4.1. Let {ak}∞k=0 be a sequence of complex numbers, and let Sn =
1
n

∑n−1
k=0 ak. We say that the sequence converges to a ∈ C in Cesaro mean if

a = lim
n→∞

Sn = lim
n→∞

a0 + a1 + · · ·+ an−1

n
.

We shall write a = C- limn→∞ an.

The sequence at the beginning of the section converges to 1
2 in Cesaro mean,

but diverges in the ordinary sense. Let us prove that the opposite can not happen:

Lemma 10.4.2. If limn→∞ an = a, then C-limn→∞ an = a.

Proof. Given an ε > 0, we must find an N such that

|Sn − a| < ε

when n ≥ N . Since {an} converges to a, there is a K ∈ N such that |an − a| < ε
2

when n ≥ K. If we let M = max{|ak−a| : k = 0, 1, 2, . . .}, we have for any n ≥ K:

|Sn − a| =
∣∣∣∣ (a0 − a) + (a1 − a) + · · ·+ (aK−1 − a) + (aK − a) + · · · (an−1 − a)

n

∣∣∣∣ ≤
≤
∣∣∣∣ (a0 − a) + (a1 − a) + · · ·+ (aK−1 − a)

n

∣∣∣∣+

∣∣∣∣ (aK − a) + · · · (an−1 − a)

n

∣∣∣∣ ≤ MK

n
+
ε

2
.

Choosing n large enough, we get MK
n < ε

2 , and the lemma follows. �

The idea behind the Fejér kernel is to show that the partial sums sn(x) converge
to f(x) in Cesaro mean; i.e. that the sums

Sn(x) =
s0(x) + s1(x) + · · ·+ sn−1(x)

n

converge to f(x). Since

sk(x) =
1

2π

∫ π

−π
f(x− u)Dk(u) du,

where Dk is the Dirichlet kernel, we get

Sn(x) =
1

2π

∫ π

−π
f(x− u)

(
1

n

n−1∑
k=0

Dk(u)

)
du =

1

2π

∫ π

−π
f(x− u)Fn(u) du,

where Fn(u) = 1
n

∑n−1
k=0 Dk(u) is the Fejér kernel.

We can find a closed expression for the Fejér kernel as we did for the Dirichlet
kernel, but the arguments are a little longer:
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Lemma 10.4.3. The Fejér kernel is given by

Fn(u) =
sin2(nu2 )

n sin2(u2 )

for u 6= 0, and Fn(0) = n.

Proof. Since

Fn(u) =
1

n

n−1∑
k=0

Dk(u) =
1

n sin(u2 )

n−1∑
k=0

sin((k +
1

2
)u),

we have to find
n−1∑
k=0

sin((k +
1

2
)u) =

1

2i

(
n−1∑
k=0

ei(k+ 1
2 )u −

n−1∑
k=0

e−i(k+ 1
2 )u

)
.

The series are geometric and can easily be summed:

n−1∑
k=0

ei(k+ 1
2 )u = ei

u
2

n−1∑
k=0

eiku = ei
u
2

1− einu

1− eiu
=

1− einu

e−i
u
2 − eiu2

and
n−1∑
k=0

e−i(k+ 1
2 )u = e−i

u
2

n−1∑
k=0

e−iku = e−i
u
2

1− e−inu

1− e−iu
=

1− e−inu

ei
u
2 − e−iu2

.

Hence
n−1∑
k=0

sin((k +
1

2
)u) =

1

2i

(
1− einu + 1− e−inu

e−i
u
2 − eiu2

)
=

1

2i

(
einu − 2 + e−inu

ei
u
2 − e−iu2

)
=

=
1

2i
· (ei

nu
2 − e−nu2 )2

ei
u
2 − e−iu2

=

( ei nu2 −e−nu2 )
2i

)2
ei
u
2 −e−i

u
2

2i

=
sin2(nu2 )

sin u
2

,

and thus

Fn(u) =
1

n sin(u2 )

n−1∑
k=0

sin((k +
1

2
)u) =

sin2(nu2 )

n sin2 u
2

.

To prove that Fn(0) = n, we just have to sum an arithmetic series

Fn(0) =
1

n

n−1∑
k=0

Dk(0) =
1

n

n−1∑
k=0

(2k + 1) = n.

�

Figure 10.4.1 shows the Fejér kernels Fn for n = 5, 10, 15, 20. At first glance
they look very much like the Dirichlet kernels in the previous section. The peak in
the middle is growing slower than before in absolute terms (the maximum value is
n compared to 2n+1 for the Dirichlet kernel), but relative to the smaller peaks and
valleys, it is much more dominant. The functions are now positive, and the area
between their graphs and the x-axis is always equal to one. As n gets big, almost
all this area belongs to the dominant peak in the middle. The positivity and the
concentration of all the area in the center peak make the Fejér kernels much easier
to handle than their Dirichlet counterparts.
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Figure 10.4.1. Fejér kernels

Let us now prove some basic properties of the Fejér kernels.

Proposition 10.4.4. For all n, the Fejér kernel Fn is an even, positive function
such that

1

2π

∫ π

−π
Fn(x) dx = 1.

For all nonzero x ∈ [−π, π]

0 ≤ Fn(x) ≤ π2

nx2
.

Proof. That Fn is even and positive follows directly from the formula in the lemma.
By Proposition 10.3.2, we have

1

2π

∫ π

−π
Fn(x) dx =

1

2π

∫ π

−π

1

n

n−1∑
k=0

Dk dx =
1

n

n−1∑
k=0

1

2π

∫ π

−π
Dk dx =

1

n

n−1∑
k=0

1 = 1.

For the last formula, observe that for u ∈ [−π2 ,
π
2 ], we have 2

π |u| ≤ | sinu| (make a
drawing). Thus

Fn(x) =
sin2(nx2 )

n sin2 x
2

≤ 1

n( 2
π
x
2 )2
≤ π2

nx2
.

�
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We shall now show that if f ∈ D, then Sn(x) converges to f(x), i.e. that the
Fourier series converges to f in Cesaro mean. We have already observed that

Sn(x) =
1

2π

∫ π

−π
f(x− u)Fn(u) du.

If we introduce a new variable t = −u and use that Fn is even, we get

Sn(x) =
1

2π

∫ −π
π

f(x+ t)Fn(−t) (−dt) =

=
1

2π

∫ π

−π
f(x+ t)Fn(t) dt =

1

2π

∫ π

−π
f(x+ u)Fn(u) du.

If we take the average of the two expressions we now have for Sn(x), we get

Sn(x) =
1

4π

∫ π

−π
(f(x+ u) + f(x− u))Fn(u) du.

Since 1
2π

∫ π
−π Fn(u) du = 1, we also have

f(x) =
1

2π

∫ π

−π
f(x)Fn(u) du.

Hence

Sn(x)− f(x) =
1

4π

∫ π

−π

(
f(x+ u) + f(x− u)− 2f(x)

)
Fn(u) du.

To prove that Sn(x) converges to f(x), we only need to prove that the integral goes
to 0 as n goes to infinity. The intuitive reason for this is that for large n, the kernel
Fn(u) is extremely small except when u is close to 0, but when u is close to 0, the
other factor in the integral, f(x+u) +f(x−u)−2f(x), is very small (see the proof
below for details).

Theorem 10.4.5 (Fejér’s Theorem). If f ∈ D, then Sn converges to f on [−π, π],
i.e. the Fourier series converges in Cesaro mean. The convergence is uniform on
each subinterval [a, b] ⊆ [−π, π] where f is continuous.

Proof. Given ε > 0, we must find an N ∈ N such that |Sn(x) − f(x)| < ε when
n ≥ N . Since f is in D, there is a δ > 0 such that

|f(x+ u) + f(x− u)− 2f(x)| < ε

when |u| < δ (keep in mind that since f ∈ D, f(x) = 1
2 limu↑0[f(x+u)−f(x−u)]).

We have

|Sn(x)− f(x)| ≤ 1

4π

∫ π

−π
|f(x+ u) + f(x− u)− 2f(x)|Fn(u) du =

=
1

4π

∫ δ

−δ
|f(x+ u) + f(x− u)− 2f(x)|Fn(u) du+

+
1

4π

∫ −δ
−π
|f(x+ u) + f(x− u)− 2f(x)|Fn(u) du+

+
1

4π

∫ π

δ

|f(x+ u) + f(x− u)− 2f(x)|Fn(u) du.
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For the first integral we have

1

4π

∫ δ

−δ
|f(x+ u) + f(x− u)− 2f(x)|Fn(u) du ≤

≤ 1

4π

∫ δ

−δ
εFn(u) du ≤ 1

4π

∫ π

−π
εFn(u) du =

ε

2
.

For the second integral we get (using the second part of Proposition 10.4.4)

1

4π

∫ −δ
−π
|f(x+ u) + f(x− u)− 2f(x)|Fn(u) du ≤

≤ 1

4π

∫ −δ
−π

4||f ||∞
π2

nδ2
du =

π2||f ||∞
nδ2

.

Exactly the same estimate holds for the third integral, and by choosing N >
4π2||f ||∞
εδ2 , we get the sum of the last two integrals less than ε

2 . But then |Sn(x) −
f(x)| < ε and the convergence is proved.

So what about the uniform convergence? We need to check that we can choose
the same N for all x ∈ [a, b]. Note that N only depends on x through the choice of
δ, and hence it suffices to show that we can use the same δ for all x ∈ [a, b].

Since f ∈ D, it has to be continuous on an interval [a − η, b + η] slightly
larger than [a, b], and since [a− η, b+ η] is compact, f is uniformly continuous on
[a− η, b+ η]. Hence there is a δ, 0 < δ ≤ η, such that if |u| < δ, then

|f(x+ u) + f(x− u)− 2f(x)| ≤ |f(x+ u)− f(x)|+ |f(x− u)− f(x)| < ε

for all x ∈ [a, b]. This proves that we can choose the same δ for all x ∈ [a, b], and
as already observed the uniform convergence follows. �

We have now finally proved Theorem 10.2.2 which we restate here:

Corollary 10.4.6. The trigonometric polynomials are dense in CP in || · ||∞-norm,
i.e. for any f ∈ CP there is a sequence of trigonometric polynomials converging
uniformly to f .

Proof. According to the theorem, the sums SN (x) = 1
N

∑N−1
n=0 sn(x) converge

uniformly to f . Since each sn is a trigonometric polynomial, so are the SN ’s. �

Exercises to Section 10.4.

1. Let {an} be the sequence 1, 0, 1, 0, 1, 0, 1, 0, . . .. Prove that C-limn→∞ an = 1
2
.

2. Assume that {an} and {bn} converge in Cesaro mean. Show that

C- lim
n→∞

(an + bn) = C- lim
n→∞

an + C- lim
n→∞

bn

3. Check that Fn(0) = n by computing limu→0
sin2(nu

2
)

n sin2 u
2

.

4. Show that SN (x) =
∑N−1
n=−(N−1) αn(1− |n|

N
)en(x), where αn = 〈f, en〉 is the Fourier

coefficient.

5. Assume that f ∈ CP . Work through the details of the proof of Theorem 10.4.5 and
check that Sn converges uniformly to f .
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6. Assume that for each n ∈ N, Kn : [−π, π]→ R is a continuous function. We say that
{Kn} is a sequence of good kernels if the following conditions are satisfied:

(i) For all n ∈ N, 1
2π

∫ π
−πKn(x) dx = 1.

(ii) There is an M such that
∫ π
−π |Kn(x)| dx ≤M for all n ∈ N.

(iii) For every δ > 0, we have limn→∞
∫ −δ
−π |Kn(x)| dx = limn→∞

∫ π
δ
|Kn(x)| dx = 0.

a) Show that the Fejér kernels {Fn} form a sequence of good kernels while the
Dirichlet kernels {Dn} do not.

b) Assume that {Kn} is a sequence of good kernels. For f ∈ CP , let

sn(x) =
1

2π

∫ π

−π
f(x− u)Kn(u) du.

Show that {sn} converges uniformly to f .

10.5. The Riemann-Lebesgue lemma

The Riemann-Lebesgue lemma is a seemingly simple observation about the size of
the Fourier coefficients, but it turns out to be a very efficient tool in the study of
pointwise convergence.

Theorem 10.5.1 (Riemann-Lebesgue Lemma). If f ∈ D and

αn =
1

2π

∫ π

−π
f(x)e−inx dx, n ∈ Z,

are the Fourier coefficients of f , then lim|n|→∞ αn → 0.

Proof. According to Bessel’s inequality 5.3.9,
∑∞
n=−∞ |αn|2 ≤ ||f ||22 < ∞, and

hence αn → 0 as |n| → ∞. �

Remark: We are cheating a little here as we only prove the Riemann-Lebesgue
lemma for function which are in D and hence square integrable. The lemma holds
for integrable functions in general, but even in that case the proof is quite easy.

The Riemann-Lebesgue lemma is rather deceptive. It seems to be a result about
the coefficients of certain series, and it is proved by very general and abstract
methods, but it is really a theorem about oscillating integrals as the following
corollary makes clear.

Corollary 10.5.2. If f ∈ D and [a, b] ⊆ [−π, π], then

lim
|n|→∞

∫ b

a

f(x)e−inx dx = 0.

Also

lim
|n|→∞

∫ b

a

f(x) cos(nx) dx = lim
|n|→∞

∫ b

a

f(x) sin(nx) dx = 0.
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Proof. Let g be the function (this looks more horrible than it is!)

g(x) =



0 if x /∈ [a, b]

f(x) if x ∈ (a, b)

1
2 limx↓a f(x) if x = a

1
2 limx↑b f(x) if x = b

Then g is in D, and∫ b

a

f(x)e−inx dx =

∫ π

−π
g(x)e−inx dx = 2παn,

where αn is the Fourier coefficient of g. By the Riemann-Lebesgue lemma, αn →
0. The last two parts follows from what we have just proved and the identities

sin(nx) = einx−e−inx
2i and cos(nx) = einx+e−inx

2 �

Let us pause for a moment to discuss why these results hold. The reason
is simply that for large values of n, the functions sinnx, cosnx, and einx (if we
consider the real and imaginary parts separately) oscillate between positive and
negative values. If the function f is relatively smooth, the positive and negative
contributions cancel more and more as n increases, and in the limit there is nothing
left. This argument also indicates why rapidly oscillating, continuous functions are
a bigger challenge for Fourier analysis than jump discontinuities – functions with
jumps average out on each side of the jump, while for wildly oscillating functions
“the averaging” procedure may not work.

Since the Dirichlet kernel contains the factor sin((n+ 1
2 )x), the following result

will be useful in the next section:

Corollary 10.5.3. If f ∈ D and [a, b] ⊆ [−π, π], then

lim
|n|→∞

∫ b

a

f(x) sin
(
(n+

1

2
)x
)
dx = 0.

Proof. Follows from the corollary above and the identity

sin
(
(n+

1

2
)x
)

= sin(nx) cos
x

2
+ cos(nx) sin

x

2
.

�

Exercises to Section 10.5.

1. Work out the details of the sin(nx)- and cos(nx)-part of Corollary 10.5.2.

2. Work out the details of the proof of Corollary 10.5.3.

3. a) Show that if p is a trigonometric polynomial, then the Fourier coefficients βn =
〈p, en〉 are zero when |n| is sufficiently large.

b) Let f be an integrable function, and assume that for each ε > 0 there is
a trigonometric polynomial such that 1

2π

∫ π
−π |f(t) − p(t)| dt < ε. Show that if

αn = 1
2π

∫ π
−π f(t)e−int dt are the Fourier coefficients of f , then lim|n|→∞ αn = 0.
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4. If f, g : R→ R are two continuous, 2π-periodic functions (i.e. f(x+ 2π) = f(x) and
g(x+ 2π) = g(x) for all x ∈ R), we define the convolution f ∗ g to be the function

(f ∗ g)(u) =
1

2π

∫ π

−π
f(u− x)g(x) dx

a) Show that f ∗ g = g ∗ f .
b) Show that if

an =
1

2π

∫ π

−π
f(x)e−inx dx and bn =

1

2π

∫ π

−π
g(y)e−iny dy

are the Fourier coefficients of f and g, and

cn =
1

2π

∫ π

−π
(f ∗ g)(u)e−inu du

is the Fourier coefficient of f ∗ g, then cn = anbn.
c) Show that there is no continuous, 2π-periodic function k : R → R such that

k ∗ f = f for all continuous f .

5. We shall prove the following statement:

Assume that f ∈ D has Fourier coefficients αn = 1
2π

∫ π
−π f(x)e−inx dx. If there are

positive constants c, γ ∈ R+ such that

|f(x)− f(y)| ≤ c|x− y|γ

for all x, y ∈ [−π, π], then

|αn| ≤
c

2

(π
n

)γ
for all n ∈ Z.

Explain the following calculations and show that they prove the statement:

αn =
1

2π

∫ π

−π
f(x)e−inx dx =

1

2π

∫ π−π
n

−π−π
n

f(t+
π

n
)e−in(t+

π
n
) dt

= − 1

2π

∫ π

−π
f(t+

π

n
)e−int dt = − 1

2π

∫ π

−π
f(x+

π

n
)e−inx dx.

Hence

|αn| = |
1

4π

∫ π

−π
f(x)e−inx dx− 1

4π

∫ π

−π
f(x+

π

n
)e−inx dx|

≤ 1

4π

∫ π

−π
|f(x)− f(x+

π

n
)| dx ≤ 1

4π

∫ π

−π
c
(π
n

)γ
dx =

c

2

(π
n

)γ
.

Remark: This result connects the “smoothness” of f (the larger γ is, the smoother
f is) to the decay of the Fourier coefficients: Roughly speaking, the smoother the
function is, the faster the Fourier coefficients decay (recall that by the Riemann-
Lebesgue Lemma, |αn| → 0). This is an important theme in Fourier analysis.

10.6. Dini’s Test

We shall finally take a serious look at pointwise convergence of Fourier series. As
already indicated, this is a rather tricky business, and there is no ultimate theorem,
just a collection of scattered results useful in different settings. We shall concentrate
on a criterion called Dini’s test which is relatively easy to prove and sufficiently
general to cover a lot of different situations.
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Recall from Section 10.3 that if

sN (x) =

N∑
n=−N

〈f, en〉en(x)

is the partial sum of a Fourier series, then

sN (x) =
1

2π

∫ π

−π
f(x− u)DN (u) du.

If we change variable in the integral and use the symmetry of DN , we see that we
also have

sN (x) =
1

2π

∫ π

−π
f(x+ u)DN (u) du.

Taking the average of these two expressions, we get

sN (x) =
1

4π

∫ π

−π

(
f(x+ u) + f(x− u)

)
DN (u) du.

Since 1
2π

∫ π
−πDN (u) du = 1, we also have

f(x) =
1

2π

∫ π

−π
f(x)DN (u) du,

and hence

sN (x)− f(x) =
1

4π

∫ π

−π

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du

(note that the we are now doing exactly the same to the Dirichlet kernel as we
did to the Fejér kernel in Section 10.4). To prove that the Fourier series converges
pointwise to f , we just have to prove that the integral converges to 0.

The next lemma simplifies the problem by telling us that we can concentrate
on what happens close to the origin:

Lemma 10.6.1. Assume that f ∈ D. Let x ∈ [−π, π], and assume that there is a
η > 0 such that

lim
N→∞

1

4π

∫ η

−η

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du = 0.

Then the Fourier series converges to the function f at the point x, i.e. sN (x) →
f(x)

Proof. Note that since 1
sin x

2
is a bounded function on [η, π], Corollary 10.5.3 tells

us that

lim
N→∞

1

4π

∫ π

η

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du =

= lim
N→∞

1

4π

∫ π

η

[(
f(x+ u) + f(x− u)− 2f(x)

) 1

sin u
2

]
sin
(
(N +

1

2
)u
)
du = 0.

The same obviously holds for the integral from −π to −η, and hence

sN (x)− f(x) =
1

4π

∫ π

−π

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du =
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=
1

4π

∫ η

−π

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du+

+
1

4π

∫ η

−η

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du+

+
1

4π

∫ π

η

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du

→ 0 + 0 + 0 = 0.

�

Theorem 10.6.2 (Dini’s Test). Assume that f ∈ D. Let x ∈ [−π, π], and assume
that there is a δ > 0 such that∫ δ

−δ

∣∣∣∣f(x+ u) + f(x− u)− 2f(x)

u

∣∣∣∣ du <∞.
Then the Fourier series converges to the function f at the point x, i.e. sN (x) →
f(x).

Proof. According to the lemma, it suffices to prove that

lim
N→∞

1

4π

∫ δ

−δ
(f(x+ u) + f(x− u)− 2f(x))DN (u) du = 0.

Given an ε > 0, we have to show that if N ∈ N is large enough, then

1

4π

∫ δ

−δ

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du < ε.

Since the integral in the theorem converges, there is an η > 0 such that∫ η

−η

∣∣∣∣f(x+ u) + f(x− u)− 2f(x)

u

∣∣∣∣ du < ε.

Since | sin v| ≥ 2|v|
π for v ∈ [−π2 ,

π
2 ] (make a drawing), we have |DN (u)| = | sin((N+ 1

2 )u)

sin u
2

| ≤
π
|u| for u ∈ [−π, π]. Hence

| 1

4π

∫ η

−η

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du| ≤

≤ 1

4π

∫ η

−η
|f(x+ u) + f(x− u)− 2f(x)| π

|u|
du <

ε

4
.

Using Corollary 10.5.3 the same way as in the previous proof, we see that we can
get

1

4π

∫ δ

η

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du

as small as we want by choosing N large enough, and similarly for the integral from
−δ to −η. In particular, we can get

1

4π

∫ δ

−δ

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du =

=
1

4π

∫ −η
−δ

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du+
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+
1

4π

∫ η

−η

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du+

+
1

4π

∫ δ

η

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du

less than ε, and hence the theorem is proved. �

Dini’s test has some immediate consequences that we leave to the reader to
prove.

Corollary 10.6.3. If f ∈ D is differentiable at a point x, then the Fourier series
converges to f(x) at this point.

We may even extend this result to one-sided derivatives:

Corollary 10.6.4. Assume f ∈ D and that the limits

lim
u↓0

f(x+ u)− f(x+)

u

and

lim
u↑0

f(x+ u)− f(x−)

u

exist at a point x. Then the Fourier series sN (x) converges to f(x) at this point.

Exercises to Section 10.6.

1. Show that the Fourier series
∑∞
n=1

2(−1)n+1

n
sin(nx) in Example 10.1.1 converges to

f(x) = x for x ∈ (−π, π). What happens at the endpoints?

2. In Example 2 in Section 10.1 we showed that the real Fourier series of the function

f(x) =


−1 if x < 0

1 if x ≥ 0

is
∑∞
n=1

4
(2k−1)π

sin
(
(2k − 1)x

)
. Describe the limit of the series for all x ∈ R.

3. Prove Corollary 10.6.3

4. Prove Corollary 10.6.4

5. Show that if a ∈ R, a 6= 0, then

eax =
eaπ − e−aπ

π

(
1

2a
+

∞∑
n=1

(−1)n

n2 + a2
(
a cosnx− n sinnx

))
for all x ∈ (−π, π).

6. Show that for x ∈ (0, 2π),

x = π − 2

(
sinx+

sin 2x

2
+

sin 3x

3
+ . . .

)
.

(Warning: Note that the interval is not the usual [−π, π]. This has to be taken into
account.)

7. Let the function f be defined on [−π, π] by

f(x) =


sin x
x

for x 6= 0

1 for x = 0

and extend f periodically to all of R.
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a) Show that

f(x) =

∞∑
−∞

cne
inx

where

cn =
1

2π

∫ (n+1)π

(n−1)π

sinx

x
dx.

(Hint: Write sinx = eix−e−ix
2i

and use the changes of variable z = (n+1)x and
z = (n− 1)x.)

b) Use this to compute the integral∫ ∞
−∞

sinx

x
dx.

8. Let 0 < r < 1 and consider the series
∞∑
−∞

r|n|einx.

a) Show that the series converges uniformly on R, and that the sum equals

Pr(x) =
1− r2

1− 2r cosx+ r2
.

This expression is known as the Poisson kernel .
b) Show that Pr(x) ≥ 0 for all x ∈ R.
c) Show that for every δ ∈ (0, π), Pr(x) converges uniformly to 0 on the intervals

[−π,−δ] and [δ, π] as r ↑ 1.
d) Show that

∫ π
−π Pr(x) dx = 2π.

e) Let f be a continuous function with period 2π. Show that

lim
r↑1

1

2π

∫ π

−π
f(x− y)Pr(y) dy = f(x).

f) Assume that f has Fourier series
∑∞
−∞ cne

inx. Show that

1

2π

∫ π

−π
f(x− y)Pr(y) dy =

∞∑
−∞

cnr
|n|einx

and that the series converges absolutely and uniformly. (Hint: Show that the
function on the left is differentiable at x.)

g) Show that

lim
r↑1

∞∑
n=−∞

cnr
|n|einx = f(x).

10.7. Pointwise divergence of Fourier series

In this section, we shall explain why it is so hard to prove pointwise convergence
of Fourier series by showing that in one sense the “normal behavior” of a Fourier
series (even for a periodic, continuous function) is to diverge! The main tool will
be Theorem 5.6.7 from the section on Baire’s Category Theory. If you haven’t read
that section, you should skip this one (unless, of course, you want to go back and
read it now).
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As our normed space, we shall be using CP with the supremum norm || · ||∞. If

sn(f)(x) =

n∑
k=−n

〈f, ek〉ek(x)

denotes the partial sums of the Fourier series of f , we know from Section 10.3 that

sn(f)(x) =
1

2π

∫
f(x− u)Dn(u) du.

If we fix an x ∈ [−π, π], we can think of f 7→ sn(f)(x) as a linear functional from
CP to C. Let us denote this functional by An; hence

An(f) =
1

2π

∫
f(x− u)Dn(u) du).

Note that An is bounded since

|An(f)| = 1

2π
|
∫
f(x− u)Dn(u) du| ≤ 1

2π

∫
|f(x− u)||Dn(u)| du ≤ Kn||f ||∞,

where

Kn =
1

2π

∫
|Dn(u)| du.

We need to know that the operator norms ||An|| increase to infinity, and an easy
way to show this, is to prove that ||An|| = Kn (we know from Lemma 10.3.2 that
Kn →∞).

Lemma 10.7.1. ||An|| = Kn = 1
2π

∫
|Dn(u)| du.

Proof. From the calculations above, we know that ||An|| ≤ Kn. To prove the
opposite inequality, define a 2π-periodic function g by

g(x− u) =

 1 if Dn(u) ≥ 0

−1 if Dn(u) < 0

and note that

1

2π

∫
g(x− u)Dn(u) du =

1

2π

∫
|Dn(u)| du = Kn.

Obviously, g is not in CP , but since Dn has only finitely many zeroes, it is clearly
possible to find a sequence {gk} of functions in CP with norm 1 that converges
pointwise to g in such a way that

|An(gk)| = 1

2π

∫
gk(x− u)Dn(u) du

→ 1

2π

∫
g(x− u)Dn(u) du = Kn = Kn||gk||∞.

This implies that ||An|| ≥ Kn and combining our observations, we get ||An|| =
Kn. �

We are now ready to prove the main result.
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Theorem 10.7.2. Assume that x ∈ [−π, π]. The set

{f ∈ CP : the Fourier series of f diverges at x}
is comeager in CP .

Proof. According to the lemma, the sequence {An} is not uniformly bounded
(since ||An|| → ∞), and by Theorem 5.6.7 the set of f ’s for which An(f) diverges, is
comeager in CP . As An(f) = Sn(f)(x) is the n-th partial sum of the Fourier-series
at x, the theorem follows. �

As we usually think of comeager sets as “big sets”, the theorem can be inter-
preted as saying that the normal behavior of a Fourier series is to diverge! I should
add, however, that there are other results pointing in the opposite direction, e.g.,
a famous theorem by the Swedish mathematician Lennart Carleson (1928-) saying
that the Fourier series of a square integrable function converges to the function
“almost everywhere” (in a technical sense), hence indicating that the normal be-
havior of a Fourier series is to converge! There is no contradiction between these
two statements as we are using two quite different measures of what is “normal”,
but they definitely show what a tricky question pointwise convergence of Fourier
series is.

Exercises for Section 10.7

1. Show that the sequence {gn} in the proof of Lemma 10.7.1 really exists.

2. Let Fn be the Fejér kernel. Show that for each x ∈ [−π, π],

Bn(f)(x) =
1

2π

∫
f(x− u)Fn(u) du

defines a bounded, linear operator Bn : CP → C. Show that the sequence of norms
{||Bn||} is bounded.

3. a) Show that the intersection of a countable family of comeager sets is comeager.
b) Let T be a countable subset of [−π, π]. Show that the set

{f ∈ CP : the Fourier series of f diverges at all x ∈ T}
is comeager.

10.8. Termwise operations

In Section 4.3 we saw that power series can be integrated and differentiated term
by term, and we now want to take a quick look at the corresponding questions for
Fourier series. Let us begin by integration which is by far the easiest operation to
deal with.

The first thing we should observe, is that when we integrate a Fourier series∑∞
−∞ αne

inx term by term, we do not get a new Fourier series since the constant
term α0 integrates to α0x, which is not a term in a Fourier series when α0 6= 0.
However, we may, of course, still integrate term by term to get the series

α0x+
∑

n∈Z,n6=0

(
− iαn

n

)
einx.

The question is if this series converges to the integral of f .
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Proposition 10.8.1. Let f ∈ D, and define g(x) =
∫ x

0
f(t) dt. If sn is the partial

sums of the Fourier series of f , then the functions tn(x) =
∫ x

0
sn(t) dt converge

uniformly to g on [−π, π]. Hence

g(x) =

∫ x

0

f(t) dt = α0x+
∑

n∈Z,n6=0

− iαn
n

(
einx − 1

)
where the convergence of the series is uniform.

Proof. By Cauchy-Schwarz’s inequality we have

|g(x)− tn(x)| = |
∫ x

0

(f(t)− sn(t)) dt| ≤
∫ π

−π
|f(t)− sn(t)| dt ≤

≤ 2π

(
1

2π

∫ π

−π
|f(s)− sn(s)| · 1 ds

)
= 2π〈|f − sn|, 1〉 ≤

≤ 2π||f − sn||2||1||2 = 2π||f − sn||2.
By Theorem 10.2.6, we see that ||f − sn||2 → 0, and hence tn converges uniformly
to g(x). �

If we move the term α0x to the other side in the formula above, we get

g(x)− α0x =
∑

n∈Z,n6=0

iαn
n
−

∑
n∈Z,n6=0

iαn
n
einx,

where the series on the right is the Fourier series of g(x)−α0x (the first sum is just
the constant term of the series).

As always, termwise differentiation is a much trickier subject. In Example 1 of
Section 10.1, we showed that the Fourier series of x is

∞∑
n=1

2(−1)n+1

n
sin(nx),

and by what we now know, it is clear that the series converges pointwise to x on
(−π, π). However, if we differentiate term by term, we get the hopelessly divergent
series

∞∑
n=1

2(−1)n+1 cos(nx).

Fortunately, there is more hope when f ∈ CP , i.e. when f is continuous and
f(−π) = f(π):

Proposition 10.8.2. Assume that f ∈ CP and that the derivative f ′ is continuous
on [−π, π]. If

∑∞
n=−∞ αne

inx is the Fourier series of f , then the differentiated

series
∑∞
n=−∞ inαne

inx is the Fourier series of f ′, and it converges pointwise to
f ′ at any point x where f ′′(x) exists.

Proof. Let βn be the Fourier coefficient of f ′. By integration by parts

βn =
1

2π

∫ π

−π
f ′(t)e−int dt =

1

2π

[
f(t)e−int

]π
−π −

1

2π

∫ π

−π
f(t)(−ine−int) dt =

= 0 + in
1

2π

∫ π

−π
f(t)e−int dt = inαn,
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which shows that
∑∞
n=−∞ inαne

inx is the Fourier series of f ′. The convergence
follows from Corollary 10.6.3. �

Final remark: In this chapter we have developed Fourier analysis over the interval
[−π, π]. If we want to study Fourier series over another interval [a − r, a + r], all
we have to do is to move and rescale the functions: The basis now consists of the
functions

en(x) = e
inπ
r (x−a),

the inner product is defined by

〈f, g〉 =
1

2r

∫ a+r

a−r
f(x)g(x) dx,

and the Fourier series becomes
∞∑

n=−∞
αne

inπ
r (x−a).

Note that when the length r of the interval increases, the frequencies inπ
r of the

basis functions e
inπ
r (x−a) get closer and closer. In the limit, one might imagine that

the sum
∑∞
n=−∞ αne

inπ
r (x−a) turns into an integral (think of the case a = 0):∫ ∞

−∞
α(t)eixt dt.

This leads to the theory of Fourier integrals and Fourier transforms, but we shall
not look into these topics here.

Exercises for Section 10.8.

1. Use integration by parts to check that
∑
n∈Z,n6=0

iαn
n
−
∑
n∈Z,n6=0

iαn
n
einx is the

Fourier series of g(x)− α0x (see the passage after the proof of Proposition 10.8.1).

2. Show that
∑n
k=1 cos((2k − 1)x) = sin 2nx

2 sin x
.

3. In this problem we shall study a feature of Fourier series known as Gibbs’s phenom-
enon. Let f : [−π, π]→ R be given by

f(x) =


−1 for x < 0

0 for x = 0

1 for x > 1

Figure 10.8.1 shows the partial sums sn(x) of order n = 5, 11, 17, 23. We see that
although the approximation in general seems to get better and better, the maximal
distance between f and sn remains more or less constant — it seems that the partial
sums have “bumps” of more or less constant height near the jump in function values.
We shall take a closer look at this phenomenon. Along the way you will need the
solution of problem 2.

a) Show that the partial sums can be expressed as

s2n−1(x) =
4

π

n∑
k=1

sin((2k − 1)x)

2k − 1

(we did this calculation in Example 2 of section 10.1).
b) Use problem 2 to find a short expression for s′2n−1(x).
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Figure 10.8.1. The Gibbs phenomenon

c) Show that the local minimum and maxima of s2n−1 closest to 0 are x− = − π
2n

and x+ = π
2n

.
d) Show that

s2n−1(± π

2n
) = ± 4

π

n∑
k=1

sin (2k−1)π
2n

2k − 1
.

e) Show that s2n−1(± π
2n

) → ± 2
π

∫ π
0

sin x
x

dx by recognizing the sum above as a
Riemann sum.

f) Use a calculator or a computer or whatever you want to show that 2
π

∫ π
0

sin x
x

dx ≈
1.18.

These calculations show that the size of the “bumps” is 9% of the size of the jump
in the function value. Gibbs showed that this number holds in general for functions
in D.

Notes and references to Chapter 10

There is an excellent account of the discussion of the vibrating string in Katz’
book [20]. It influenced not only the development of Fourier analysis, but also the
understanding of the function concept.

Jean Baptiste Joseph Fourier (1768-1830) published his first treatise on heat
propagation in 1807 and a second one in 1822. Although Fourier himself was mainly
interested in applications in physics, his theory was soon brought to bear on prob-
lems in pure mathematics, and in 1837 Johann Peter Gustav Lejeune Dirichlet
(1805-1859) used it to prove that any sequence {an + b}n∈N where a, b ∈ N are
relatively prime, contains infinitely many primes. The Fejér kernel is named after
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the Hungarian mathematician Lipót Fejér (1880-1959) who proved the Cesàro con-
vergence of Fourier series at the age of 20. Dini’s Test was proved by Ulisse Dini
(1845-1918) in 1880.

Körner’s book [22] contains a wealth of material on Fourier analysis and appli-
cations. The text by Stein and Shakarchi [37] is more geared toward applications in
other parts of mathematics – it it’s the first part of a four volume series (Princeton
Lectures in Analysis) that is highly recommended. Montgomery’s book [28] is a
little slower and more elementary, but contains lots of interesting examples and
applications, and the old book by Tolstov [41] is still eminently readable.
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