
Solutions to deferred exam in MAT2400, 2022

Problem 1. a) By definition of the directional derivative

F ′(x; r) = lim
t→0

F (x+ tr)− F (x)

t

= lim
t→0

∫ 1

0
e−s(x(s) + tr(s))2 ds−

∫ 1

0
e−sx(s)2 ds

t

= lim
t→0

∫ 1

0
e−s

(
x(s)2 + 2tx(s)r(s) + t2r(s)2

)
ds−

∫ 1

0
e−sx(s)2 ds

t

= lim
t→0

∫ 1

0
e−s

(
2tx(s)r(s) + t2r(s)2

)
ds

t

= lim
t→0

∫ 1

0

e−s
(
2x(s)r(s) + tr(s)2

)
ds =

∫ 1

0

e−s2x(s)r(s) ds

b) We know that if F is differentiable, then F ′(x)(r) = F ′(x; r) =
∫ 1

0
e−s2x(s)r(s) ds,

and we only have to check that F ′(x; r) satisfies the conditions of a derivative.
If we write A(r) for F ′(x; r), we first have to check that A is linear:

A(αr + βu) =

∫ 1

0

e−s2x(s)(αr(s) + βu(s)) ds

= α

∫ 1

0

e−s2x(s)r(s) ds+ β

∫ 1

0

e−s2x(s)u(s)) ds = αA(r) + βA(u).

Next we check that A is bounded:

|A(r)| = |
∫ 1

0

e−s2x(s)r(s) ds| ≤
∫ 1

0

e−s2|x(s)||r(s)| ds ≤ ‖r‖
∫ 1

0

e−s2|x(s)| ds = K‖r‖,

where K =
∫ 1

0
e−s2|x(s)| ds is finite since x is bounded.

Finally, we must show that

σ(r) = F (x+ r)− F (x)−A(r)

goes to 0 faster than r. We have

|σ(r)| = |
∫ 1

0

e−s(x(s) + r(s))2 ds−
∫ 1

0

e−sx(s)2 ds−
∫ 1

0

e−s2x(s)r(s) ds|

= |
∫ 1

0

e−sr(s)2 ds| ≤ ‖r‖2
∫ 1

0

e−s ds ≤M‖r‖2.

where M =
∫ 1

0
e−s ds. As this expression clearly goes to 0 faster than r, we

have proved that F is differentiable with

F ′(x)(r) =

∫ 1

0

e−s2x(s)r(s) ds
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Problem 2. a) Note that the series is geometric with first term a0 = 1 and
quotient r = e−x. When x > 0, e−x < 1, and the series converges. Hence

∞∑
n=0

e−nx =
1

1− e−x
=

ex

ex − 1

For x ∈ [a,∞), we have e−nx ≤ e−na, and hence Weierstrass’s M-test with
Mn = e−an shows that the series converges uniformly on [a,∞).

b) From a) we have ∫ b

a

∞∑
n=0

e−nx dx =

∫ b

a

ex

ex − 1
dx (1)

Since the series converges uniformly on [a, b], it can be integrated termwise:∫ b

a

∞∑
n=0

e−nx dx =

∞∑
n=0

∫ b

a

e−nx dx =

∫ b

a

1 dx+

∞∑
n=1

∫ b

a

e−nx dx

= b− a+

∞∑
n=1

[
−e
−nx

n

]b
a

= b− a+

∞∑
n=1

e−na − e−nb

n

On the other hand, the right hand side of (1) can be integrated by the substi-
tution u = ex:∫ b

a

ex

ex − 1
dx =

∫ eb

ea

1

u+ 1
du =

[
ln(u+ 1)

]eb
ea

= ln(eb + 1)− ln(ea + 1).

Combining what we now have, we get

b− a+

∞∑
n=1

e−na − e−nb

n
= ln(eb + 1)− ln(ea + 1),

which is equivalent to

∞∑
n=1

e−na − e−nb

n
= ln(eb − 1)− ln(ea − 1) + a− b.

Problem 3. a) We need to show that the three axioms for norms are satisfied:

(i) ||f || ≥ 0 with equality if and only if f = 0.

(ii) ||αf || = |α|||f ||.

(iii) ||f + g|| ≤ ||f ||+ ||g||.
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We have:

(i) By definition, ‖f‖ ≥ 0 and ‖0‖ = 0. If f 6= 0, there is an a such that
f(a) 6= 0, and hence

‖f‖ =

∞∑
m=0

|f(m)| ≥ |f(a)| > 0.

(ii) We have

‖αf‖ =

∞∑
m=0

|αf(m)| = |α|
∞∑

m=0

|f(m)| = |α|‖f‖.

(iii) We have

||f + g|| =
∞∑

m=0

|f(m) + g(m)| ≤
∞∑

m=0

(|f(m)|+ |g(m)|)

=

∞∑
m=0

|f(m)|+
∞∑

m=0

|g(m)| = ||f ||+ ||g||.

b) Note that if n > k, then (summing a geometric series)

‖fn − fk‖ =

∞∑
m=0

|fn(m)− fk(m)| =
n∑

k+1

2−m <

∞∑
k+1

2−m =
2−(k+1)

1− 1
2

= 2−k

As we can clearly get 2−k as small as we want by choosing k large enough, {fn}
is a Cauchy sequence.

To show that X isn’t complete, it suffices to show that the Cauchy sequence
{fn} doesn’t converge. Assume for contradiction that {fn} converges to an
element f ∈ X. Since f only has finitely many nonzero values, there is a largest
number k such that f(k) 6= 0. This means that for any n > k, we have

‖fn − f‖ =

∞∑
m=0

|fn(m)− f(m)| ≥ |fn(k + 1)− f(k + 1)| = 2−(k+1),

and hence {fn} cannot converge to f .

Problem 4. a) The function f : K → R defined by f(x) = ‖x− a‖ is continu-
ous. Since K is compact by the Bolzano-Weierstrass Theorem, f has a minimum
point x by the the Extreme Value Theorem.

b) Since K is nonempty, there must be an element b in K. Let r = ‖b − a‖
and let B(a; r) be the closed ball of radius r around a. The set K ∩ B(a; r) is
nonempty as it contains b, and it is compact by the Bolzano-Weierstrass Theo-
rem. By part a) there is an element x in K ∩B(a; r) that is nearest to a. As all
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points in K \ B(a, r) are more than a distance r away from a, this point must
also be the nearest point to a in K.

Problem 5. a) The figure shows the graph of fn.

x

y

1
n

1

1

As ‖fn‖ = 1 for all n, the set is obviously bounded. To prove that it is
closed, it suffices to show that if g isn’t one of the fn’s, then there is an ε > 0
such that B(g, ε) doesn’t contain any fn. First note that if g is constant 1, then
‖g − fn‖ = 1 for all n, and hence we can take ε = 1. If g is not constant 1,
there is an a > 0 such that g(a) 6= 1. This means that if n is so large than
1
n < a, then ‖g − fn‖ ≥ |g(a) − 1|. As there are only finitely many n’s that
do not satisfy 1

n < a, there is an ε > 0 such that B(g, ε) doesn’t contain any
of these. If we also make sure that ε < |g(a)−1|, we have obtained what we want.

b) By Arzela-Ascoli’s Theorem, A is compact if and only if it is bounded, closed
and equicontinuous. As we have checked that A is closed and bounded, equicon-
tinuity is the crucial property. To see that the sequence {fn} isn’t equicontinu-
ous, choose ε = 1

2 and note that no matter how small δ > 0 is, there will be an
n such that 1

n < δ, and then |fn( 1
n ) − fn(0)| = 1 > ε even though | 1n − 0| < δ.

Hence there is no δ that works for all n, and hence {fn} isn’t equicontinuous.
By Arzela-Ascoli’s Theorem, A isn’t compact.
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