Solutions to deferred exam in M AT2400, 2022
Problem 1. a) By definition of the directional derivative
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=lim [ e * (2z(s)r(s) +tr(s)?) ds = /0 e *2x(s)r(s)ds
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b) We know that if F is differentiable, then F'(z)(r) = F'(x;7r) fo —52x(s)r(s) ds,
and we only have to check that F’(x;r) satisfies the conditions of a derlvatlve
If we write A(r) for F’'(x;r), we first have to check that A is linear:

Alar + pu) = /0 e "2x(s)(ar(s) + fu(s)) ds

= a/ e *2x(s)r(s)ds + ﬁ/ e *2x(s)u(s)) ds = aA(r) + BA(u).
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Next we check that A is bounded:
1 1
"l =| / ~59(s)r(s) ds| < / e=*2/a(s)||r(s)| ds < || / e=*2/x(s)| ds = K|r])
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where K = fol e *2|x(s)| ds is finite since z is bounded.
Finally, we must show that

o(r)y=F(z+7r)—F(z) — A(r)

goes to 0 faster than r. We have

r)| = |/ r(s))?ds — /01 e *x(s)?ds — /01 e *2z(s)r(s) ds|
= / sl < rf? [ e s < Ml

where M = fo e *ds. As this expression clearly goes to 0 faster than r, we
have proved that F is differentiable with

F’(J:)(r)z/ e *2x(s)r(s)ds
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Problem 2. a) Note that the series is geometric with first term ag = 1 and
quotient r = e~*. When x > 0, e=* < 1, and the series converges. Hence
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For z € [a,00), we have e™™* < e ™% and hence Weierstrass’s M-test with
M,, = e~ shows that the series converges uniformly on [a, 00).

b) From a) we have

b o b
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Since the series converges uniformly on [a, b], it can be integrated termwise:
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On the other hand, the right hand side of (1) can be integrated by the substi-
tution u = e*:
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/a 6:7 1 dx = /ea —— du = {ln(u—i— 1)La =1In(e’ 4+ 1) — In(e® + 1).

Combining what we now have, we get

b—a+iw =In(e® +1) — In(e® + 1)
n - K
n=1

which is equivalent to
e e—na _ e—nb
ZT =In(e’ —1)—In(e* —1) +a —b.
n=1

Problem 3. a) We need to show that the three axioms for norms are satisfied:
(i) |f] > 0 with equality if and only if f = 0.
(i) Jafl = laflf]-
(i) [f + gl <[f1+ lgl-



We have:

(i) By definition, ||f|| > 0 and ||0]] = 0. If f # 0, there is an a such that
f(a) # 0, and hence

1A =" 1fm)| = |£(a)] > 0.

m=0
(ii) We have

lafll = laf(m)l =lal Y If(m)] = lall £II
m=0

m=0

(iii) We have

Lf+ gl =D 1f(m) +g(m)] < Y (1f(m)] + lg(m)])
m=0 m=0

= |f(m |+Z\g ) =1£1+ lgl-
m=0
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b) Note that if n > k, then (summing a geometric series)
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As we can clearly get 2% as small as we want by choosing k large enough, {f,}
is a Cauchy sequence.

To show that X isn’t complete, it suffices to show that the Cauchy sequence
{fn} doesn’t converge. Assume for contradiction that {f,} converges to an
element f € X. Since f only has finitely many nonzero values, there is a largest
number & such that f(k) # 0. This means that for any n > k, we have
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= £l =D falm) = f(m)| = | fulk + 1) = f(k + 1) =27 FFD,
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and hence {f,} cannot converge to f.

Problem 4. a) The function f: K — R defined by f(x) = ||x — a|| is continu-
ous. Since K is compact by the Bolzano-Weierstrass Theorem, f has a minimum
point x by the the Extreme Value Theorem.

b) Since K is nonempty, there must be an element b in K. Let r = ||b — a|
and let B(a;7r) be the closed ball of radius r around a. The set K N B(a;r) is
nonempty as it contains b, and it is compact by the Bolzano-Weierstrass Theo-
rem. By part a) there is an element x in K N B(a;r) that is nearest to a. As all



points in K \ B(a,r) are more than a distance r away from a, this point must
also be the nearest point to a in K.

Problem 5. a) The figure shows the graph of f,.
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As ||fall = 1 for all n, the set is obviously bounded. To prove that it is
closed, it suffices to show that if g isn’t one of the f,,’s, then there is an € > 0
such that B(g,€) doesn’t contain any f,. First note that if g is constant 1, then
llg — full = 1 for all n, and hence we can take e = 1. If g is not constant 1,
there is an @ > 0 such that g(a) # 1. This means that if n is so large than
1 < a, then ||g — fu|| > |g(a) — 1|. As there are only finitely many n’s that
do not satisfy % < a, there is an € > 0 such that B(g,e€) doesn’t contain any

of these. If we also make sure that € < |g(a)—1|, we have obtained what we want.

b) By Arzela-Ascoli’s Theorem, A is compact if and only if it is bounded, closed
and equicontinuous. As we have checked that A is closed and bounded, equicon-
tinuity is the crucial property. To see that the sequence {f,} isn’t equicontinu-
ous, choose € = % and note that no matter how small § > 0 is, there will be an
n such that L <4, and then |f, (1) — f,,(0)] = 1 > € even though |+ — 0] < 6.
Hence there is no ¢ that works for all n, and hence {f,} isn’t equicontinuous.
By Arzela-Ascoli’s Theorem, A isn’t compact.



