MAT2400: Solutions Spring 2010

Problem 1
a) Since dj, dy are metrics, we get that
d(z,y) =0 & di(z,y) = da(z,y) =0z =1y,

Moreover it also follows that d(z,y) = d(y,z). Let x,y,z € X. We may assume
that d(z,y) = di(z,y). Then

d(l’,y) = dl(xvy) < dl(x7 Z) + d1(27y) < d(l’, Z) + d(za y)7
All together, this proves that d is a metric on X.

b) If f is not uniformly continuous, there exists ¢ > 0 such that for any § > 0,
we may find z = x(d),y = y(J) such that d(x,y) < 4, but |f(z) — f(y)| > e
Putting 6 = %, Ty = x(%),yn = y(%), n=12..., we get d(zn,yn) < %, hence
d(xp,yn) — 0 as n — oo, but |f(x,) — flyn)| > €.

¢) Let us suppose that f is continuous but not uniformly continuous. By b) above,
we may find € > 0 and sequences x,,y, such that d(x,,y,) — 0 as n — oo, but
|f(zn) — f(yn)| > € for each n. Since X satisfies the Bolzano-Weierstrass condition,
we may find a subsequence z,,(;) of x, which converges to a point z € X. Let
Yn(j) be the induced subsequence of y,. Then d(z,;y, Yn(j)) — 0 as j — oo. Since,
d(2, Yn(j)) < d(@,Tp(j)) + d(Zn), Yn(g)), and d(z, T,j)) — 0 as j — oo, we must
also have that y,y — x as j — oo. Since f is continuous, we thus get that
F@ais) = F@)] £ (9n(i)) — F(@)] = 0 as j — so. Since

|f(xn(j)) - f(yn(j))| < |f(xn(j)) - f(x)| + |f($) - f(yn(j))‘v

we get that | f(z,(;)) — f(Un()| — 0 as j — co. Now, our assumption that
|f(zn) — f(yn)| > € for each n, implies that |f(2y;)) — f(yn(;))| > € for each j,

contradicting that |f(z,,;)) — f(¥n(;))| — 0 . So f must be uniformly continuous.
Problem 2

a) Assume that M = sup A. Then M is an upper bound for A, hence a < M
for each a € A. Since A is the least upper bound for A, M — % is not an upper
bound for A for any n = 1,2,.... So for each n, we can find a, in A such that

M — % < a, < M. This gives us a sequence a,, € A such that a,, — M as n — oo.

Assume that a < M for each a € A and that we have a sequence a,, € A such that
a, — M as n — oco. Since a < M for each a € A, M is an upper bound for A. Let
N < M. Then, if n is big enough, we must have that N < a,, < M, showing that
N cannot be an upper bound for A. It follows that M is the least upper bound, i.e.
M =sup A.

t - 0ast— oco. Let e > 0.

b) We know that ¢t — e~* is decreasing in [0, c0) and e~

Then we can find a positive integer N such that e V' <€ Let n> N and |z| > n.

Then 0 < f(x) = e < e’ < eV < e, and 0 < f,(z) < fo(£n) = e <

e~N? < e. This implies that |f(z) — fn(x)] < € when n > N and || > n. When
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|z| < n, we get that |f(x) — fn(x)] = 0. So for any x, and n > N, we get that
|f(z) — fn(z)| < €, proving that f, converges uniformly to f.

c) Let f € Ckx(R), and consider a = a(f),b = b(f). We know that a continuous
function defined on a closed bounded interval is bounded. Therefore, the restriction
of f to [a,b] is bounded. Now f = 0 outside [a, b], and f must therefore be bounded
on R. That is, f € B¢(R).

We know that convergence in the uniform metric is the same as uniform conver-
gence. Now, the sequence in b) above is a sequence of functions in Ckx(R) which
is converging uniformly (hence converging in the uniform metric) to a function in
Be(R) — Ck(R). This proves that Ck (R) is not a closed subspace of Be(R).

d) If f vanishes outside an interval [a,b], gf must vanish outside [a,b]. Also gf is
continuous if f and g are continuous. So T,(f) € Ck(R) if f € Cx(R). It is also
obvious that Ty(f1 + f2) = g(f1 + f2) = gf1 + gf2 = T4(f1) + T4(f2), and that
Ty(Af) = Agf = ATy(f). so

Ty : Ck(R) — Ck (R)
is a linear map. Moreover, we have that

lg(x) f(2)] < sup{lg(y)| : y € Rysup{[f(y)| : ¥ € R} = [|glloo||fl]oo-

This proves that ||Tg(f)|loc < ||g]loo||f]lo0, and from this inequality follows that T}, is
continuous. Also, since ||Ty|| = HfT\liop<1HTg(f)Hw and ||Ty(f)lleo < [lgllool[flo0 <
[19lloo, when [|f[loc <1, we get that ||Ty[| < lg]|ec-

To prove that, ||Ty|| > ||g|/sc, let € > 0. We may find € R such that ||g||cc >
lg(z)| > ||g]leo — € (this follows from a) above). Let [a, ] be a closed interval such
that © € (a,b). Let f be a continuous function such that f(¢t) = 0 outside [a, b],
0 < f(t) <1foralltand f(z) =1 (we may choose such f beeing linear on [a, z]
and [z,b]). Then ||f|lec = f(2) = 1, and ||Ty(f)llec = |g.f(2)| = [9(x)[ = [|glloc — €.
From the definition of ||Ty|| we get that ||Ty|| > [|T4(f)]lco > ||gllec — €. It follows
that [|Ty|| > [|9lloc, hence |[Ty[| = [[g] oo

Problem 3

a) Let z =rcosf, y =rsind. When (z,y) # (0,0), we get that

r3 cos @ sin® 6
|flz,y)=|——F5—I<m

r

and we see that |f(x,y)] — 0 as r — 0. This shows that f is continuous at (0,0).

We have f(x,0) = f(0,y) = 0, and this gives immediately that % and %5 exist

at (0,0) and are both equal 0. From this follows that if f is differentiable at
(0,0), the derivative of f at this point must be the zero-mapping. Assume that
f is differentiable at (0,0). Then, writing f(z,y) = e(z,y)||(x,y)||, we get that

— _ay’
6(.%'7y) - (ac2+y2)%
however that e(t,t) = ﬁ — 0 as t — 0. This shows that f is not differentiable at
(0,0).

and we must have that e(z,y) — 0 as ||(z,y)|| — 0. We see



b) The Jacobian matrix of f is given by

ety  —etTY 2z

DF(z,y,2) = | ety emtv 22,
0 0 1

F is obviously continuously differentiable at R®. We see that det DF(z,y,z) =
2e2 £ (0. Especially we get that DF(0,0,0) is invertible. It follows from the in-
verse function theorem that there exist open sets B and V', with (0,0,0) € B and
F(0,0,0) = (1,1,0) € V such that F|B : B — V is a differentiable bijection with dif-
ferentiable inverse G : V' — B. Writing G(u, v,w) = (f(u,v,w), g(u, v, w), h(u,v,w)),
we get that (u,v,w) = F(G(u,v,w)) = (...,..., h(u,v,w)) so h(u,v,w) = w.

We see from above that

1 -1 0
DF(0,0,00=[1 1 0
0 0
By inspection, we see that

1 1
2 2
DG(1,1,0) = DF(0,0,0)"! = _% %
0 O



