
MAT2400: Solutions Spring 2010

Problem 1

a) Since d1, d2 are metrics, we get that

d(x, y) = 0⇔ d1(x, y) = d2(x, y) = 0⇔ x = y,

Moreover it also follows that d(x, y) = d(y, x). Let x, y, z ∈ X. We may assume
that d(x, y) = d1(x, y). Then

d(x, y) = d1(x, y) ≤ d1(x, z) + d1(z, y) ≤ d(x, z) + d(z, y),

All together, this proves that d is a metric on X.

b) If f is not uniformly continuous, there exists ε > 0 such that for any δ > 0,
we may find x = x(δ), y = y(δ) such that d(x, y) < δ, but |f(x) − f(y)| ≥ ε.
Putting δ = 1

n , xn = x( 1
n ), yn = y( 1

n ), n = 1, 2 . . . , we get d(xn, yn) < 1
n , hence

d(xn, yn)→ 0 as n→∞, but |f(xn)− f(yn)| ≥ ε.

c) Let us suppose that f is continuous but not uniformly continuous. By b) above,
we may find ε > 0 and sequences xn, yn such that d(xn, yn) → 0 as n → ∞, but
|f(xn)− f(yn)| ≥ ε for each n. Since X satisfies the Bolzano-Weierstrass condition,
we may find a subsequence xn(j) of xn which converges to a point x ∈ X. Let
yn(j) be the induced subsequence of yn. Then d(xn(j), yn(j))→ 0 as j →∞. Since,
d(x, yn(j)) ≤ d(x, xn(j)) + d(xn(j), yn(j)), and d(x, xn(j)) → 0 as j → ∞, we must
also have that yn(j) → x as j → ∞. Since f is continuous, we thus get that
|f(xn(j))− f(x)|, |f(yn(j))− f(x)| → 0 as j →∞. Since

|f(xn(j))− f(yn(j))| ≤ |f(xn(j))− f(x)|+ |f(x)− f(yn(j))|,

we get that |f(xn(j))− f(yn(j)| → 0 as j →∞. Now, our assumption that
|f(xn) − f(yn)| ≥ ε for each n, implies that |f(xn(j)) − f(yn(j))| ≥ ε for each j,
contradicting that |f(xn(j))− f(yn(j))| → 0 . So f must be uniformly continuous.

Problem 2

a) Assume that M = supA. Then M is an upper bound for A, hence a ≤ M

for each a ∈ A. Since A is the least upper bound for A, M − 1
n is not an upper

bound for A for any n = 1, 2, . . . . So for each n, we can find an in A such that
M − 1

n < an ≤M . This gives us a sequence an ∈ A such that an →M as n→∞.

Assume that a ≤M for each a ∈ A and that we have a sequence an ∈ A such that
an →M as n→∞. Since a ≤M for each a ∈ A , M is an upper bound for A. Let
N < M . Then, if n is big enough, we must have that N < an ≤ M , showing that
N cannot be an upper bound for A. It follows that M is the least upper bound, i.e.
M = supA.

b) We know that t→ e−t is decreasing in [0,∞) and e−t → 0 as t→∞. Let ε > 0.
Then we can find a positive integer N such that e−N2

< ε. Let n ≥ N and |x| ≥ n.
Then 0 ≤ f(x) = e−x2 ≤ e−n2 ≤ e−N2

< ε, and 0 ≤ fn(x) ≤ fn(±n) = e−n2 ≤
e−N2

< ε. This implies that |f(x) − fn(x)| < ε when n ≥ N and |x| ≥ n. When
1



2

|x| < n, we get that |f(x) − fn(x)| = 0. So for any x, and n ≥ N , we get that
|f(x)− fn(x)| < ε, proving that fn converges uniformly to f .

c) Let f ∈ CK(R), and consider a = a(f), b = b(f). We know that a continuous
function defined on a closed bounded interval is bounded. Therefore, the restriction
of f to [a, b] is bounded. Now f ≡ 0 outside [a, b], and f must therefore be bounded
on R. That is, f ∈ BC(R).

We know that convergence in the uniform metric is the same as uniform conver-
gence. Now, the sequence in b) above is a sequence of functions in CK(R) which
is converging uniformly (hence converging in the uniform metric) to a function in
BC(R)− CK(R). This proves that CK(R) is not a closed subspace of BC(R).

d) If f vanishes outside an interval [a, b], gf must vanish outside [a, b]. Also gf is
continuous if f and g are continuous. So Tg(f) ∈ CK(R) if f ∈ CK(R). It is also
obvious that Tg(f1 + f2) = g(f1 + f2) = gf1 + gf2 = Tg(f1) + Tg(f2), and that
Tg(λf) = λgf = λTg(f). so

Tg : CK(R)→ CK(R)

is a linear map. Moreover, we have that

|g(x)f(x)| ≤ sup{|g(y)| : y ∈ R} sup{|f(y)| : y ∈ R} = ||g||∞||f ||∞.

This proves that ||Tg(f)||∞ ≤ ||g||∞||f ||∞, and from this inequality follows that Tg is
continuous. Also, since ||Tg|| = sup

||f ||∞≤1

||Tg(f)||∞, and ||Tg(f)||∞ ≤ ||g||∞||f ||∞ ≤

||g||∞, when ||f ||∞ ≤ 1, we get that ||Tg|| ≤ ||g||∞.

To prove that, ||Tg|| ≥ ||g||∞, let ε > 0. We may find x ∈ R such that ||g||∞ ≥
|g(x)| > ||g||∞ − ε (this follows from a) above). Let [a, b] be a closed interval such
that x ∈ (a, b). Let f be a continuous function such that f(t) = 0 outside [a, b],
0 ≤ f(t) ≤ 1 for all t and f(x) = 1 (we may choose such f beeing linear on [a, x]
and [x, b]). Then ||f ||∞ = f(x) = 1, and ||Tg(f)||∞ ≥ |gf(x)| = |g(x)| ≥ ||g||∞ − ε.
From the definition of ||Tg|| we get that ||Tg|| ≥ ||Tg(f)||∞ ≥ ||g||∞ − ε. It follows
that ||Tg|| ≥ ||g||∞, hence ||Tg|| = ||g||∞.

Problem 3

a) Let x = r cos θ, y = r sin θ. When (x, y) 6= (0, 0), we get that

|f(x, y)| = |r
3 cos θ sin2 θ

r2
| ≤ r,

and we see that |f(x, y)| → 0 as r → 0. This shows that f is continuous at (0, 0).

We have f(x, 0) = f(0, y) = 0, and this gives immediately that ∂f
∂x and ∂f

∂y exist
at (0, 0) and are both equal 0. From this follows that if f is differentiable at
(0, 0), the derivative of f at this point must be the zero-mapping. Assume that
f is differentiable at (0, 0). Then, writing f(x, y) = ε(x, y)||(x, y)||, we get that
ε(x, y) = xy2

(x2+y2)
3
2

and we must have that ε(x, y) → 0 as ||(x, y)|| → 0. We see

however that ε(t, t) = 1
2
√

2
9 0 as t→ 0. This shows that f is not differentiable at

(0, 0).
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b) The Jacobian matrix of f is given by

DF (x, y, z) =

e
x−y −ex−y 2z
ex+y ex+y 2z

1+z2

0 0 1

 .

F is obviously continuously differentiable at R3. We see that detDF (x, y, z) =
2e2x 6= 0. Especially we get that DF (0, 0, 0) is invertible. It follows from the in-
verse function theorem that there exist open sets B and V , with (0, 0, 0) ∈ B and
F (0, 0, 0) = (1, 1, 0) ∈ V such that F |B : B → V is a differentiable bijection with dif-
ferentiable inverseG : V → B. WritingG(u, v, w) = (f(u, v, w), g(u, v, w), h(u, v, w)),
we get that (u, v, w) = F (G(u, v, w)) = (. . . , . . . , h(u, v, w)) so h(u, v, w) = w.

We see from above that

DF (0, 0, 0) =

1 −1 0
1 1 0
0 0 1

 .

By inspection, we see that

DG(1, 1, 0) = DF (0, 0, 0)−1 =


1
2

1
2 0

− 1
2

1
2 0

0 0 1

 .


