MAT2400: Solutions Spring 2010

Problem 1

a) Since d_1 , d_2 are metrics, we get that

$$d(x,y) = 0 \Leftrightarrow d_1(x,y) = d_2(x,y) = 0 \Leftrightarrow x = y,$$

Moreover it also follows that d(x, y) = d(y, x). Let $x, y, z \in X$. We may assume that $d(x, y) = d_1(x, y)$. Then

$$d(x,y) = d_1(x,y) \le d_1(x,z) + d_1(z,y) \le d(x,z) + d(z,y),$$

All together, this proves that d is a metric on X.

b) If f is not uniformly continuous, there exists $\epsilon > 0$ such that for any $\delta > 0$, we may find $x = x(\delta), y = y(\delta)$ such that $d(x, y) < \delta$, but $|f(x) - f(y)| \ge \epsilon$. Putting $\delta = \frac{1}{n}, x_n = x(\frac{1}{n}), y_n = y(\frac{1}{n}), n = 1, 2...,$ we get $d(x_n, y_n) < \frac{1}{n}$, hence $d(x_n, y_n) \to 0$ as $n \to \infty$, but $|f(x_n) - f(y_n)| \ge \epsilon$.

c) Let us suppose that f is continuous but not uniformly continuous. By b) above, we may find $\epsilon > 0$ and sequences x_n, y_n such that $d(x_n, y_n) \to 0$ as $n \to \infty$, but $|f(x_n) - f(y_n)| \ge \epsilon$ for each n. Since X satisfies the Bolzano-Weierstrass condition, we may find a subsequence $x_{n(j)}$ of x_n which converges to a point $x \in X$. Let $y_{n(j)}$ be the induced subsequence of y_n . Then $d(x_{n(j)}, y_{n(j)}) \to 0$ as $j \to \infty$. Since, $d(x, y_{n(j)}) \le d(x, x_{n(j)}) + d(x_{n(j)}, y_{n(j)})$, and $d(x, x_{n(j)}) \to 0$ as $j \to \infty$, we must also have that $y_{n(j)} \to x$ as $j \to \infty$. Since f is continuous, we thus get that $|f(x_{n(j)}) - f(x)|, |f(y_{n(j)}) - f(x)| \to 0$ as $j \to \infty$. Since

$$|f(x_{n(j)}) - f(y_{n(j)})| \le |f(x_{n(j)}) - f(x)| + |f(x) - f(y_{n(j)})|,$$

we get that $|f(x_{n(j)}) - f(y_{n(j)}| \to 0 \text{ as } j \to \infty$. Now, our assumption that $|f(x_n) - f(y_n)| \ge \epsilon$ for each n, implies that $|f(x_{n(j)}) - f(y_{n(j)})| \ge \epsilon$ for each j, contradicting that $|f(x_{n(j)}) - f(y_{n(j)})| \to 0$. So f must be uniformly continuous.

Problem 2

a) Assume that $M = \sup A$. Then M is an upper bound for A, hence $a \leq M$ for each $a \in A$. Since A is the least upper bound for A, $M - \frac{1}{n}$ is not an upper bound for A for any $n = 1, 2, \ldots$ So for each n, we can find a_n in A such that $M - \frac{1}{n} < a_n \leq M$. This gives us a sequence $a_n \in A$ such that $a_n \to M$ as $n \to \infty$.

Assume that $a \leq M$ for each $a \in A$ and that we have a sequence $a_n \in A$ such that $a_n \to M$ as $n \to \infty$. Since $a \leq M$ for each $a \in A$, M is an upper bound for A. Let N < M. Then, if n is big enough, we must have that $N < a_n \leq M$, showing that N cannot be an upper bound for A. It follows that M is the least upper bound, i.e. $M = \sup A$.

b) We know that $t \to e^{-t}$ is decreasing in $[0, \infty)$ and $e^{-t} \to 0$ as $t \to \infty$. Let $\epsilon > 0$. Then we can find a positive integer N such that $e^{-N^2} < \epsilon$. Let $n \ge N$ and $|x| \ge n$. Then $0 \le f(x) = e^{-x^2} \le e^{-n^2} \le e^{-N^2} < \epsilon$, and $0 \le f_n(x) \le f_n(\pm n) = e^{-n^2} \le e^{-N^2} < \epsilon$. This implies that $|f(x) - f_n(x)| < \epsilon$ when $n \ge N$ and $|x| \ge n$. When |x| < n, we get that $|f(x) - f_n(x)| = 0$. So for any x, and $n \ge N$, we get that $|f(x) - f_n(x)| < \epsilon$, proving that f_n converges uniformly to f.

c) Let $f \in C_K(\mathbb{R})$, and consider a = a(f), b = b(f). We know that a continuous function defined on a closed bounded interval is bounded. Therefore, the restriction of f to [a, b] is bounded. Now $f \equiv 0$ outside [a, b], and f must therefore be bounded on \mathbb{R} . That is, $f \in B_C(\mathbb{R})$.

We know that convergence in the uniform metric is the same as uniform convergence. Now, the sequence in b) above is a sequence of functions in $C_K(\mathbb{R})$ which is converging uniformly (hence converging in the uniform metric) to a function in $B_C(\mathbb{R}) - C_K(\mathbb{R})$. This proves that $C_K(\mathbb{R})$ is not a closed subspace of $B_C(\mathbb{R})$.

d) If f vanishes outside an interval [a, b], gf must vanish outside [a, b]. Also gf is continuous if f and g are continuous. So $T_g(f) \in C_K(\mathbb{R})$ if $f \in C_K(\mathbb{R})$. It is also obvious that $T_g(f_1 + f_2) = g(f_1 + f_2) = gf_1 + gf_2 = T_g(f_1) + T_g(f_2)$, and that $T_g(\lambda f) = \lambda gf = \lambda T_g(f)$. so

$$T_g: C_K(\mathbb{R}) \to C_K(\mathbb{R})$$

is a linear map. Moreover, we have that

$$|g(x)f(x)| \le \sup\{|g(y)| \, : \, y \in \mathbb{R}\} \sup\{|f(y)| \, : \, y \in \mathbb{R}\} = ||g||_{\infty} ||f||_{\infty}.$$

This proves that $||T_g(f)||_{\infty} \leq ||g||_{\infty}||f||_{\infty}$, and from this inequality follows that T_g is continuous. Also, since $||T_g|| = \sup_{\substack{||f||_{\infty} \leq 1 \\ ||f||_{\infty} \leq 1}} ||T_g(f)||_{\infty}$, and $||T_g(f)||_{\infty} \leq ||g||_{\infty}||f||_{\infty} \leq ||g||_{\infty}$.

To prove that, $||T_g|| \ge ||g||_{\infty}$, let $\epsilon > 0$. We may find $x \in \mathbb{R}$ such that $||g||_{\infty} \ge |g(x)| > ||g||_{\infty} - \epsilon$ (this follows from a) above). Let [a, b] be a closed interval such that $x \in (a, b)$. Let f be a continuous function such that f(t) = 0 outside [a, b], $0 \le f(t) \le 1$ for all t and f(x) = 1 (we may choose such f beeing linear on [a, x] and [x, b]). Then $||f||_{\infty} = f(x) = 1$, and $||T_g(f)||_{\infty} \ge |gf(x)| = |g(x)| \ge ||g||_{\infty} - \epsilon$. From the definition of $||T_g||$ we get that $||T_g|| \ge ||T_g(f)||_{\infty} \ge ||g||_{\infty} - \epsilon$. It follows that $||T_g|| \ge ||g||_{\infty}$, hence $||T_g|| = ||g||_{\infty}$.

Problem 3

a) Let $x = r \cos \theta$, $y = r \sin \theta$. When $(x, y) \neq (0, 0)$, we get that

$$|f(x,y)| = |\frac{r^3 \cos \theta \sin^2 \theta}{r^2}| \le r$$

and we see that $|f(x,y)| \to 0$ as $r \to 0$. This shows that f is continuous at (0,0).

We have f(x,0) = f(0,y) = 0, and this gives immediately that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at (0,0) and are both equal 0. From this follows that if f is differentiable at (0,0), the derivative of f at this point must be the zero-mapping. Assume that f is differentiable at (0,0). Then, writing $f(x,y) = \epsilon(x,y)||(x,y)||$, we get that $\epsilon(x,y) = \frac{xy^2}{(x^2+y^2)^{\frac{3}{2}}}$ and we must have that $\epsilon(x,y) \to 0$ as $||(x,y)|| \to 0$. We see however that $\epsilon(t,t) = \frac{1}{2\sqrt{2}} \to 0$ as $t \to 0$. This shows that f is not differentiable at (0,0). b) The Jacobian matrix of f is given by

$$DF(x, y, z) = \begin{pmatrix} e^{x-y} & -e^{x-y} & 2z \\ e^{x+y} & e^{x+y} & \frac{2z}{1+z^2} \\ 0 & 0 & 1 \end{pmatrix}.$$

F is obviously continuously differentiable at \mathbb{R}^3 . We see that det $DF(x, y, z) = 2e^{2x} \neq 0$. Especially we get that DF(0, 0, 0) is invertible. It follows from the inverse function theorem that there exist open sets *B* and *V*, with $(0, 0, 0) \in B$ and $F(0, 0, 0) = (1, 1, 0) \in V$ such that $F|B : B \to V$ is a differentiable bijection with differentiable inverse $G : V \to B$. Writing G(u, v, w) = (f(u, v, w), g(u, v, w), h(u, v, w)), we get that $(u, v, w) = F(G(u, v, w)) = (\dots, \dots, h(u, v, w))$ so h(u, v, w) = w.

We see from above that

$$DF(0,0,0) = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

By inspection, we see that

$$DG(1,1,0) = DF(0,0,0)^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ -\frac{1}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{pmatrix}.$$