MAT2400: Solutions Spring 2010

Problem 1

a) Since d_{1}, d_{2} are metrics, we get that

$$
d(x, y)=0 \Leftrightarrow d_{1}(x, y)=d_{2}(x, y)=0 \Leftrightarrow x=y
$$

Moreover it also follows that $d(x, y)=d(y, x)$. Let $x, y, z \in X$. We may assume that $d(x, y)=d_{1}(x, y)$. Then

$$
d(x, y)=d_{1}(x, y) \leq d_{1}(x, z)+d_{1}(z, y) \leq d(x, z)+d(z, y)
$$

All together, this proves that d is a metric on X.
b) If f is not uniformly continuous, there exists $\epsilon>0$ such that for any $\delta>0$, we may find $x=x(\delta), y=y(\delta)$ such that $d(x, y)<\delta$, but $|f(x)-f(y)| \geq \epsilon$. Putting $\delta=\frac{1}{n}, x_{n}=x\left(\frac{1}{n}\right), y_{n}=y\left(\frac{1}{n}\right), n=1,2 \ldots$, we get $d\left(x_{n}, y_{n}\right)<\frac{1}{n}$, hence $d\left(x_{n}, y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, but $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon$.
c) Let us suppose that f is continuous but not uniformly continuous. By b) above, we may find $\epsilon>0$ and sequences x_{n}, y_{n} such that $d\left(x_{n}, y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, but $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon$ for each n. Since X satisfies the Bolzano-Weierstrass condition, we may find a subsequence $x_{n(j)}$ of x_{n} which converges to a point $x \in X$. Let $y_{n(j)}$ be the induced subsequence of y_{n}. Then $d\left(x_{n(j)}, y_{n(j)}\right) \rightarrow 0$ as $j \rightarrow \infty$. Since, $d\left(x, y_{n(j)}\right) \leq d\left(x, x_{n(j)}\right)+d\left(x_{n(j)}, y_{n(j)}\right)$, and $d\left(x, x_{n(j)}\right) \rightarrow 0$ as $j \rightarrow \infty$, we must also have that $y_{n(j)} \rightarrow x$ as $j \rightarrow \infty$. Since f is continuous, we thus get that $\left|f\left(x_{n(j)}\right)-f(x)\right|,\left|f\left(y_{n(j)}\right)-f(x)\right| \rightarrow 0$ as $j \rightarrow \infty$. Since

$$
\mid f\left(x_{n(j)}\right)-f\left(y _ { n (j)) } \left|\leq\left|f\left(x_{n(j)}\right)-f(x)\right|+\left|f(x)-f\left(y_{n(j)}\right)\right|\right.\right.
$$

we get that $\mid f\left(x_{n(j)}\right)-f\left(y_{n(j)} \mid \rightarrow 0\right.$ as $j \rightarrow \infty$. Now, our assumption that $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon$ for each n, implies that $\left|f\left(x_{n(j)}\right)-f\left(y_{n(j)}\right)\right| \geq \epsilon$ for each j, contradicting that $\left|f\left(x_{n(j)}\right)-f\left(y_{n(j)}\right)\right| \rightarrow 0$. So f must be uniformly continuous.

Problem 2

a) Assume that $M=\sup A$. Then M is an upper bound for A, hence $a \leq M$ for each $a \in A$. Since A is the least upper bound for $A, M-\frac{1}{n}$ is not an upper bound for A for any $n=1,2, \ldots$. So for each n, we can find a_{n} in A such that $M-\frac{1}{n}<a_{n} \leq M$. This gives us a sequence $a_{n} \in A$ such that $a_{n} \rightarrow M$ as $n \rightarrow \infty$.

Assume that $a \leq M$ for each $a \in A$ and that we have a sequence $a_{n} \in A$ such that $a_{n} \rightarrow M$ as $n \rightarrow \infty$. Since $a \leq M$ for each $a \in A, M$ is an upper bound for A. Let $N<M$. Then, if n is big enough, we must have that $N<a_{n} \leq M$, showing that N cannot be an upper bound for A. It follows that M is the least upper bound, i.e. $M=\sup A$.
b) We know that $t \rightarrow e^{-t}$ is decreasing in $[0, \infty)$ and $e^{-t} \rightarrow 0$ as $t \rightarrow \infty$. Let $\epsilon>0$. Then we can find a positive integer N such that $e^{-N^{2}}<\epsilon$. Let $n \geq N$ and $|x| \geq n$. Then $0 \leq f(x)=e^{-x^{2}} \leq e^{-n^{2}} \leq e^{-N^{2}}<\epsilon$, and $0 \leq f_{n}(x) \leq f_{n}(\pm n)=e^{-n^{2}} \leq$ $e^{-N^{2}}<\epsilon$. This implies that $\left|f(x)-f_{n}(x)\right|<\epsilon$ when $n \geq N$ and $|x| \geq n$. When
$|x|<n$, we get that $\left|f(x)-f_{n}(x)\right|=0$. So for any x, and $n \geq N$, we get that $\left|f(x)-f_{n}(x)\right|<\epsilon$, proving that f_{n} converges uniformly to f.
c) Let $f \in C_{K}(\mathbb{R})$, and consider $a=a(f), b=b(f)$. We know that a continuous function defined on a closed bounded interval is bounded. Therefore, the restriction of f to $[a, b]$ is bounded. Now $f \equiv 0$ outside $[a, b]$, and f must therefore be bounded on \mathbb{R}. That is, $f \in B_{C}(\mathbb{R})$.

We know that convergence in the uniform metric is the same as uniform convergence. Now, the sequence in b) above is a sequence of functions in $C_{K}(\mathbb{R})$ which is converging uniformly (hence converging in the uniform metric) to a function in $B_{C}(\mathbb{R})-C_{K}(\mathbb{R})$. This proves that $C_{K}(\mathbb{R})$ is not a closed subspace of $B_{C}(\mathbb{R})$.
d) If f vanishes outside an interval $[a, b], g f$ must vanish outside $[a, b]$. Also $g f$ is continuous if f and g are continuous. So $T_{g}(f) \in C_{K}(\mathbb{R})$ if $f \in C_{K}(\mathbb{R})$. It is also obvious that $T_{g}\left(f_{1}+f_{2}\right)=g\left(f_{1}+f_{2}\right)=g f_{1}+g f_{2}=T_{g}\left(f_{1}\right)+T_{g}\left(f_{2}\right)$, and that $T_{g}(\lambda f)=\lambda g f=\lambda T_{g}(f)$. so

$$
T_{g}: C_{K}(\mathbb{R}) \rightarrow C_{K}(\mathbb{R})
$$

is a linear map. Moreover, we have that

$$
|g(x) f(x)| \leq \sup \{|g(y)|: y \in \mathbb{R}\} \sup \{|f(y)|: y \in \mathbb{R}\}=\|g\|_{\infty}\|f\|_{\infty}
$$

This proves that $\left\|T_{g}(f)\right\|_{\infty} \leq\|g\|_{\infty}\|f\|_{\infty}$, and from this inequality follows that T_{g} is continuous. Also, since $\left\|T_{g}\right\|=\sup _{\|f\|_{\infty}<1}\left\|T_{g}(f)\right\|_{\infty}$, and $\left\|T_{g}(f)\right\|_{\infty} \leq\|g\|_{\infty}\|f\|_{\infty} \leq$ $\|g\|_{\infty}$, when $\|f\|_{\infty} \leq 1$, we get that $\left\|T_{g}\right\| \leq\|g\|_{\infty}$.

To prove that, $\left\|T_{g}\right\| \geq\|g\|_{\infty}$, let $\epsilon>0$. We may find $x \in \mathbb{R}$ such that $\|g\|_{\infty} \geq$ $|g(x)|>\|g\|_{\infty}-\epsilon$ (this follows from a) above). Let $[a, b]$ be a closed interval such that $x \in(a, b)$. Let f be a continuous function such that $f(t)=0$ outside $[a, b]$, $0 \leq f(t) \leq 1$ for all t and $f(x)=1$ (we may choose such f beeing linear on $[a, x]$ and $[x, b]$). Then $\|f\|_{\infty}=f(x)=1$, and $\left\|T_{g}(f)\right\|_{\infty} \geq|g f(x)|=|g(x)| \geq\|g\|_{\infty}-\epsilon$. From the definition of $\left\|T_{g}\right\|$ we get that $\left\|T_{g}\right\| \geq\left\|T_{g}(f)\right\|_{\infty} \geq\|g\|_{\infty}-\epsilon$. It follows that $\left\|T_{g}\right\| \geq\|g\|_{\infty}$, hence $\left\|T_{g}\right\|=\|g\|_{\infty}$.

Problem 3

a) Let $x=r \cos \theta, y=r \sin \theta$. When $(x, y) \neq(0,0)$, we get that

$$
|f(x, y)|=\left|\frac{r^{3} \cos \theta \sin ^{2} \theta}{r^{2}}\right| \leq r
$$

and we see that $|f(x, y)| \rightarrow 0$ as $r \rightarrow 0$. This shows that f is continuous at $(0,0)$.
We have $f(x, 0)=f(0, y)=0$, and this gives immediately that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at $(0,0)$ and are both equal 0 . From this follows that if f is differentiable at $(0,0)$, the derivative of f at this point must be the zero-mapping. Assume that f is differentiable at $(0,0)$. Then, writing $f(x, y)=\epsilon(x, y)\|(x, y)\|$, we get that $\epsilon(x, y)=\frac{x y^{2}}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}$ and we must have that $\epsilon(x, y) \rightarrow 0$ as $\|(x, y)\| \rightarrow 0$. We see however that $\epsilon(t, t)=\frac{1}{2 \sqrt{2}} \nrightarrow 0$ as $t \rightarrow 0$. This shows that f is not differentiable at $(0,0)$.
b) The Jacobian matrix of f is given by

$$
D F(x, y, z)=\left(\begin{array}{ccc}
e^{x-y} & -e^{x-y} & 2 z \\
e^{x+y} & e^{x+y} & \frac{2 z}{1+z^{2}} \\
0 & 0 & 1
\end{array}\right)
$$

F is obviously continuously differentiable at \mathbb{R}^{3}. We see that $\operatorname{det} D F(x, y, z)=$ $2 e^{2 x} \neq 0$. Especially we get that $D F(0,0,0)$ is invertible. It follows from the inverse function theorem that there exist open sets B and V, with $(0,0,0) \in B$ and $F(0,0,0)=(1,1,0) \in V$ such that $F \mid B: B \rightarrow V$ is a differentiable bijection with differentiable inverse $G: V \rightarrow B$. Writing $G(u, v, w)=(f(u, v, w), g(u, v, w), h(u, v, w))$, we get that $(u, v, w)=F(G(u, v, w))=(\ldots, \ldots, h(u, v, w))$ so $h(u, v, w)=w$.

We see from above that

$$
D F(0,0,0)=\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

By inspection, we see that

$$
D G(1,1,0)=D F(0,0,0)^{-1}=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
-\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

