Solutions to exam in M AT2400, Spring 2016
Problem 1: a) Since |arctanu| < & for all u € R, we have
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converges, and hence by Weierstrass’ M-test, the original series > - %r;(m)

converges uniformly on all of R. As f is the uniform limit of a sequence of
continuous functions, it must be continuous.

b) Differentiating the series term by term, we get
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If this series converges uniformly in a neighborhood of =, we know by Corollary
4.3.6 that f is differentiable at = with
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Given an z > 0, we choose an a such that 0 < a < . Then for u € [a, ),
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As the series > °° A= L5 L converges, Weierstrass’ M-test tells us

n=1 a2 n3 a? n=1n
that >0 | F(TFnZa7) converges unlformly on [a, o), and hence f is differentiable
at x with
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(By the way, a totally similar argument applies to z < 0; we just have to choose
a such that z < a < 0 and work with the interval (—oo,a]. On the other hand,
one may show that the function is not differentiable at 0.)

Problem 2: a) As any bounded, closed set in R™ is compact, all closed balls
B(a;r) in R™ are compact.

b) If a € X, choose < |a|l. Then B(a;r) is compact as the set and the
metric are the same as in R, and the closed and bounded set B(a;r) is compact
in R. X is not complete as the Cauchy sequence {%} does not converge in X.



Problem 3. a) Assume first that 2 € A. Then every ball B(z, ) contains an
element a,, from A, and clearly the sequence {a,} converges to . On the other
hand, if there is a sequence {a,} from A converging to x, every ball B(z,r)
contains an element a,, € A, and hence x cannot be an exterior point of A. This
means that x is either an interior point or a boundary point, and in either case
x € A.

b) Observe first that if z € A, then there is a sequence {a,} from A con-
verging to x. As this sequence is also in AU B, we see that x € AU B. Hence
A C AUB. A totally similar argument shows that B ¢ AU B, and hence
AUBC AUB.

To prove the opposite inclusion, assume that z € AU B. By a), there is
a sequence {c,} from A U B converging to x. This sequence must either have
infinitely many terms from A or infinitely many terms from B (or both), say
infinitely many from A. Let {c,, } be the subsequence consisting of the terms
that lie in A. As this is a sequence from A converging to z, we see that z € A. A
similar argument shows that = € B if infinitely many terms of {c,} belong to B.
This means that if z € AU B, then x € A or x € B, and hence AUB C AU B.
As we now have both inclusions, we see that

AUB=AUB

To find an example of ANB # A 0737 we may let X = R and choose A =
(—00,0), B=(0,00). Then ANB =0 =0 while ANB = {0} #0

Problem 4: a) Substituting y = v — x, we get dy = —dx and
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where we have used the periodicity of the functions to get back to [—m, 7] as
the interval of integration.
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b) We have
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Introducing the new variable © = x + y in the innermost integral, we get
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Changing the order of integration, we have
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c¢) Assume that there is a function k as in the problem, and let a, be the
n-th Fourier coefficients of k. Applying b) to k and e,, we get

a,-1=1

i.e. a, =1 for all n. This is impossible as a,, — co by the Riemann-Lebesgue
lemma (or by Parseval’s identity if you prefer).

Problem 5: a) We must show that ||| satisfies the three conditions for a norm:
(i) |x| > 0 with equality if and only if x = 0.

(i) Jax| = |a||x| for all « € R, x € X.

(i) Jx+y] < Ix] + Iyl for all x,y € X.
As | (z,y)| = max{|z|, |y|} = 0 if and only if both 2 and y are 0, (i) is obvious.
For (ii), note that if |z| > |y|, then |a||z| > |a||y|, and similarly that if |y| > |z,
then |a||y| > |a||z|. In either case,

loax| = max{laz], ally[} = || max{|z], [y|} = [of|x]
For (iii), let x = (21,22), y = (y1,y2). Then
21+ 1] < o] + |y < Ix] + 1yl

and
|22 + Y| < [z2] + [y2| < [x] + [yl



Hence
Ix +y| = max{|z1 + y1], [z2 + v2|} < [x] + [y]

b) Note that for ¢ > 0,
la+tr] =1+t 1+2t)| =1+2¢t
and hence F(a + tr) = (1+ 2t)2. On the other hand, if ¢ < 0, then
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and hence F(a+tr) = (1 +t)2. If we try to compute the directional derivative

F'(a;r) = lim;_ w by taking one-sided limits, we get
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As the one-sided limits are unequal, the directional derivative F'(a,r) does not
exist. Differentiable functions have directional derivatives, and hence F can not
be differentiable at a.

¢) We first compute the directional derivatives to find a candidate for the
derivative:
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This shows that F’(a)(r) = 2(a,r) is a promising candidate for the derivative.
This function is obviously linear in r, and since by Schwarz’ inequality |2(a,r)| <
2||a]|x|, it is a bounded, linear operator. It remains to show that

o(r)=F(a+r)—F(a) —2(a,r)
goes to zero faster than r. As
o(r)=(a+r,a+r)— (a,a) —2(a,r) = (r,r) = Hr”2

this is clearly the case, and hence F is differentiable with F/(a)(r) = 2(a, r).



