
UNIVERSITY OF OSLO
Faculty of Mathematics and Natural Sciences

Examination in: MAT2400 — Real Analysis

Day of examination: Friday June 01. 2018.

Examination hours: 14.30 – 18.30

This problem set consists of 4 pages.

Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

All problems (1a, 1b, 2a, 2b etc.) count for 10 points each. You have to
explain all answers, and show enough details so that it is easy to follow your
arguments. At the end of this document you will find some definitions that
might be handy. You may answer the exam in either English or Norwegian.

Problem 1
Let X be the space X = C([0, 1],R) of continuous real valued functions

on the interval [0, 1]. We equip X with the sup-norm, i.e., for f ∈ X we set

‖f‖ = sup
x∈[0,1]

{|f(x)|},

and we get the induced metric d(f, g) = ‖f − g‖ for all f, g ∈ X.

(a) Let L : X → X be the map defined by

L(f)(x) =

∫ x

0
f(s)3ds.

Show that L has directional derivatives at each point f ∈ X.

(b) Show that L is differentiable at each point f ∈ X.

Solution:

(a) We have to compute limt→0
L(f+tr)−L(f)

t .

lim
t→0

L(f + tr)(x)− L(f)(x)
t

= lim
t→0

1

t

∫ x

0
(f(s) + tr(s))3 − f(s)3ds

= lim
t→0

1

t

∫ x

0
f(s)3 + 3f(s)2tr(s) + 3f(s)t2r(s)2

+ t3r(s)3 − f(s)3ds

= lim
t→0

∫ x

0
3f(s)2r(s)ds+ lim

t→0

∫ x

0
f(s)tr(s)2 + t2r(s)3ds,

where the last integral converges to zero uniformly in x as t→ 0, and
so the directional derivative is the function

∫ x
0 3f(s)2r(s)ds.

(Continued on page 2.)



Examination in MAT2400, Friday June 01. 2018. Page 2

(b) The answer from (a) suggests that the derivative of L is the map
A : X → X defined by

A(r)(x) =

∫ x

0
3f(s)2r(s)ds.

We have that

A(αr1 + βr2)(x) =

∫ x

0
3f(s)2(αr1(s) + βr2(s))ds

= α

∫ x

0
3f(s)2r1(s)ds+ β

∫ x

0
3f(s)2r2(s)ds

= αA(r1)(x) + βA(r2)(x),

which shows that A is linear. We also have that

|
∫ x

0
3f(s)2r(s)ds| ≤

∫ x

0
3|f(s)|2|r(s)|ds ≤ 3‖f‖2 · ‖r‖,

which shows that A is bounded, since ‖f‖ is a constant. Finally we
have that

|σL(r)(x)| = |L(f + r)(x)− L(f)(x)−A(r)(x)|

= |
∫ x

0
(f(s) + r(s))3 − f(s)3 − 3f(s)2r(s)ds|

= |
∫ x

0
f(s)3 + 3f(s)2r(s) + 3f(s)r(s)2 + r(s)3 − f(s)3 − 3f(s)2r(s)ds|

= |
∫ x

0
3f(s)r(s)2 + r(s)3ds|

≤ |
∫ x

0
|3f(s)r(s)2 + r(s)3|ds ≤ K · ‖r‖2,

for ‖r‖ ≤ 1, for some K > 0. So ‖σL(r)‖ ≤ K · ‖r‖2, which shows that
‖σL(r)‖ → 0 sufficiently fast as ‖r‖ → 0.

Problem 2
We let X be the space from Problem 1, and we define a map T : X → X

by

T (f)(x) =

∫ x

0
cos(

f(s)

2
)ds.

(a) Show that the function g(x) = cos(x2 ) is Lipschitz continuous on R.

(b) Show that T is a continuous mapping from X to X (We will take for
granted that T (f) ∈ X for each f ∈ X, so you don’t have to show
that.)

(c) Show that T : X → X has a unique fixed point.

Solution:

(a) We have that |g′(x)| = (1/2) sin(x2 ), which implies that |g(x)− g(y)| ≤
(1/2)|x− y| for all x, y ∈ R.

(Continued on page 3.)
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(b) For u, v ∈ X we have that

|T (u)(x)− T (v)(x)| = |
∫ x

0
cos(

u(s)

2
)− cos(

v(s)

2
)ds|

≤
∫ x

0
| cos(u(s)

2
)− cos(

v(s)

2
)|ds

≤
∫ x

0
(1/2)|u(s)− v(s)|ds

≤ (1/2)‖u− v‖.

This shows that ‖T (u)− T (v)‖ ≤ (1/2)‖u− v‖, which shows that T is
even Lipschitz continuous.

(c) From (b) we have that T is a contraction mapping, so this follows from
Banach’s Fixed Point Theorem.

Problem 3
Let Y be a non-empty set, and let d1 and d2 be metrics on Y . We let

d : Y × Y → R be the function

d(x, y) = sup{d1(x, y), d2(x, y)},

for all x, y ∈ Y .

(a) Show that d is a metric.

(b) Let E = {yj}j∈N ⊂ Y be a sequence of points, which is a Cauchy
sequence with respect to both d1 and d2. Show that E is a Cauchy
sequence with respect to d.

Solution:

(a) It is easy to see that d(x, y) ≥ 0, d(x, y) = 0 if and only if x = y,
and d(x, y) = d(y, x). We have to check the triangle inequality, so we
fix x, y, z ∈ Y . Then d(x, z) = di(x, z) for i = 1 or i = 2 (or both).
Assume that i = 1. Then

d(x, z) = d1(x, z) ≤ d1(x, y) + d1(y, z)

≤ sup{d1(x, y), d2(x, y)}+ sup{d1(y, z), d2(y, z)}
= d(x, y) + d(y, z).

Repeat for i = 2.

(b) Fix ε > 0. Then there exist Ni ∈ N, i = 1, 2, such that

di(yk, yl) < ε,

whenever k, l ≥ Ni. Set N = max{N1, N2}. Then

d(yk, yl) = sup{d1(yk, yl), d2(yk, yl)} < ε

whenever k, l ≥ N , which shows that we indeed have a Cauchy
sequence with respect to d.

(Continued on page 4.)
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Problem 4
For n ∈ N let fn : [0, π2 ]→ R denote the function

fn(x) = cos(
π

2
(1− π − 2x

π
)n).

(a) Show that fn converges pointwise to a function f as n→∞.

(b) Does fn converge uniformly to f , i.e., in sup-norm?

Solution:

(a) Note that fn(x) = cos((π2 )(
2x
π )n). So if 2x

π < 1, i.e., if x < π
2 , we see

that fn(x)→ cos(0) = 1 is n→∞. On the other hand, if x = π
2 then

fn(x) = cos(π2 ) = 0 for all n. This shows pointwise convergence.

(b) We have that fn does not converge uniformly. This is because the
uniform limit of a sequence of continuous functions is continuous, but
we have just seen that the pointwise limit is discontinuous.

Problem 5
Let X be the space from Problem 1. Let F : X → R be a continuous

map, and assume that F (f) = 0 whenever f ∈ X is a polynomial. Show
that F (f) = 0 for all f ∈ X.

Solution: Let f ∈ X be an arbitrary function. By Weierstrass
Approximation Theorem, there exists a sequence pn of polynomials such
that pn → f uniformly as n→∞. Since F is continuous we have that

lim
n→∞

F (pn) = F (f),

and since F (pn) = 0 for all n, we have that F (f) = 0.

The End

Some facts: Recall that if L : X → Y is a map between linear spaces,
then the directional derivative L′(f ; r) at a point f ∈ X in the direction
r ∈ X is given by

L′(f ; r) = lim
t→0

L(f + tr)− L(f)
t

,

provided that the limit exists.
Recall that a function g : R→ R is Lipschitz continuous if there exists a

constant K ≥ 0 such that |g(x)− g(y)| ≤ K · |x− y| for all x, y ∈ R.


