UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	MAT2400 — Real Analysis
Day of examination:	9 June 2021
Examination hours:	15:00-19:00
This problem set consists of 6 pages.	
Appendices:	None
Permitted aids:	Any

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Note: There are in total 10 sub-problems, and you can get up to 10 points for each sub-problem, for a total of 100 points.

Updated 30 June 2021

Problem 1. (10 points)

Let (X, d) be the metric space X = (0, 1], d(x, y) = |x - y|, and let $T: X \to X$ be given by T(x) = x/2.

Show that T is a contraction. Does T have a fixed point? Justify your answer.

Solution: d(T(x), T(y)) = |x/2 - y/2| = |x - y|/2 = d(x, y)/2, so T is a contraction with contraction constant 1/2.

T does not have a fixed point. If X were complete then we could apply Banach's fixed point theorem, but X isn't complete. The only solution to x = T(x) is x = 0, but $0 \notin X$, so T does not have a fixed point.

Problem 2. (10 points)

Let (X, d) be a metric space and let $A \subseteq \mathbb{R}$ be closed. We define the metric space $C_b(X, A) = \{ \text{all continuous, bounded } f \colon X \to A \}$, equipped with the supremum metric

$$\rho(f,g) = \sup_{x \in X} |f(x) - g(x)|.$$
(1)

(You do not need to show that this is a metric space.) Show that $C_b(X, A)$ is a closed subset of $C_b(X, \mathbb{R})$.

Solution: Let $\{f_n\}_n$ be a sequence in $C_b(X, A)$ converging to some $f \in C_b(X, \mathbb{R})$. We claim that $f \in C_b(X, A)$, that is, that $f(t) \in A$ for every $t \in X$. Indeed, for every $t \in X$, the sequence $\{f_n(t)\}_n$ is a convergent sequence in the closed set A, to the limit f(t) also lies in A. This concludes the proof.

Alternatively: Let $f \in \partial C_b(X, A)$. We want to show that $f(t) \in A$ for every $t \in X$. Let $t \in X$. Since $f \in \partial C_b(X, A)$, there are for every

 $\varepsilon > 0$ functions $g \in B(f; \varepsilon) \cap C_b(X, A)$ and $h \in B(f; \varepsilon) \setminus C_b(X, A)$. In particular, $g(t) \in A$ and $|f(t) - g(t)| \leq \rho(f, g) < \varepsilon$. Hence, for every $\varepsilon > 0$, the set $B_{\mathbb{R}}(f(t); \varepsilon) \cap A$ is nonempty (since it contains the number g(t)), so $f(t) \in \overline{A}$. But A is closed, so $\overline{A} = A$, and $f(t) \in A$.

Problem 3. (20 points)

Let (X, d) be a metric space, and for every nonempty $E \subseteq X$ and $x \in X$, define

$$\operatorname{dist}(x, E) = \inf\{d(x, y) : y \in E\}.$$
(2)

(a) Show that if E is compact and nonempty, then there is some $z \in E$ such that dist(x, E) = d(x, z).

(b) Give an example of a metric space (X, d), a point $x \in X$ and a nonempty subset $E \subseteq X$ for which there is no such point $z \in E$.

Solution:

(a) Let $\{y_n\}_{n\in\mathbb{N}} \subseteq E$ be a minimizing sequence: $d(x, y_n) \to \operatorname{dist}(x, E)$ as $n \to \infty$. Since E is compact, there is some $z \in E$ and a subsequence $\{y_{n(k)}\}_{k\in\mathbb{N}}$ such that $y_{n(k)} \to z$ as $k \to \infty$. But then

$$\operatorname{dist}(x, E) = \lim_{n \to \infty} d(x, y_n)$$

(if a sequence converges, then so does any subsequence)

$$=\lim_{k\to\infty}d(x,y_{n(k)})$$

(if a sequence converges, then so does its distance from a fixed point)

= d(x, z)

Alternatively: Let $f: E \to \mathbb{R}$ be the function f(y) = d(x, y). Then f is a continuous function on a compact set, so by the extreme value theorem it attains a minimum: there is a point $z \in E$ where $d(x, z) \leq d(x, y)$ for all $y \in E$, so $d(x, z) = \inf\{d(x, y) : y \in E\}$.

(b) Let $X = \mathbb{R}$, E = (0,1) and x = 2. Then $dist(x, E) = \lim_{y \to 1} d(x, y) = 1$, but d(x, z) > 1 for every $z \in E$.

Problem 4. (20 points)

For this problem, recall that a bounded linear operator A is *invertible* if it is bijective and its inverse A^{-1} is bounded.

Let $(X, \|\cdot\|)$ be a normed vector space and let $A: X \to X$ be an invertible bounded linear operator. Define $\|x\|_A = \|Ax\|$ for every $x \in X$.

(a) Show that $\|\cdot\|_A$ is a norm on X.

(b) Show that a sequence $\{x_n\}_n$ in X converges in the norm $\|\cdot\|$ if and only if it converges in the norm $\|\cdot\|_A$.

- (a) Denote $C = ||A||_{\mathcal{L}}$, so that $||Ax|| \leq C ||x||$ for all $x \in X$.
- Well-defined $||x||_A = ||Ax||$ is a well-defined number for every $x \in X$, so the function $|| \cdot ||_A$ is well-defined.

Positivity It is clear that $||x||_A = ||Ax|| \ge 0$ for all $x \in X$, and that $||0||_A = 0$ (since A is linear). If $||x||_A = 0$ then ||Ax|| = 0, so Ax = 0. Since A is bijective and A^{-1} is linear, we get $x = A^{-1}0 = 0$.

Homogeneity If $\alpha \in \mathbb{R}$ then $\|\alpha x\|_A = \|A(\alpha x)\| = \|\alpha A x\| = \|\alpha\|\|Ax\| = \|\alpha\|\|x\|_A$, where we first used homogeneity of A and then homogeneity of $\|\cdot\|$.

Triangle inequality If $x, y \in X$ then $||x + y||_A = ||A(x + y)|| = ||Ax + Ay|| \leq ||Ax|| + ||Ay|| = ||x||_A + ||y||_A$, where we used additivity of A and then the triangle inequality for $|| \cdot ||$.

(b) If $||x_n - x|| \to 0$ as $n \to \infty$ then

$$||x_n - x||_A = ||A(x_n - x)|| \le ||A||_{\mathcal{L}} ||x_n - x|| \to 0$$

as $n \to \infty$. Conversely, if $||x_n - x||_A \to 0$ as $n \to \infty$ then

$$||x_n - x|| = ||A^{-1}(A(x_n - x))|| \le ||A^{-1}||_{\mathcal{L}} ||A(x_n - x)||$$

= $||A^{-1}||_{\mathcal{L}} ||x_n - x||_A \to 0$

as $n \to \infty$.

Alternatively: If the two norms are equivalent then convergence in one norm is equivalent to convergence in the other. We have for every $x \in X$ that

$$||x||_A = ||Ax|| \le ||A||_{\mathcal{L}} ||x||$$

and

$$|x|| = ||A^{-1}Ax|| \le ||A^{-1}||_{\mathcal{L}} ||Ax|| = ||A^{-1}||_{\mathcal{L}} ||x||_A$$

In other words, there are constants c, C > 0 such that $c ||x|| \leq ||x||_A \leq C ||x||$, so the norms are equivalent.

Problem 5. (10 points)

Let f be given by the series

$$f(x) = \sum_{n=1}^{\infty} n(x-1)^n, \qquad x \in \mathbb{R}.$$
(3)

Determine the set $D = \{x \in \mathbb{R} : f(x) \text{ converges}\}$. Compute the derivative f', and determine the corresponding set D' of points where the series for f' converges.

Solution: We compute the series' radius of convergence:

$$R^{-1} = \limsup_{n \to \infty} n^{1/n} = \limsup_{n \to \infty} e^{\log n/n} = 1.$$

Hence, the series converges pointwise at all $x \in (1 - R, 1 + R) = (0, 2)$. At x = 2 the series diverges: $f(2) = \sum_{n=1}^{\infty} n = \infty$. At x = 0 we get

$$f(0) = \sum_{n=1}^{\infty} n(-1)^n.$$

The partial sums of this series is

$$\sum_{n=1}^{N} n(-1)^n = \begin{cases} N/2 & \text{if } N \text{ is even} \\ (-N-1)/2 & \text{if } N \text{ is odd,} \end{cases}$$

which clearly does not converge. Hence,

$$D = (0, 2)$$

By the theory of power series, f is real analytic in (0, 2), so in particular the series consisting of derivatives of each summand converges for all $x \in (0, 2)$, and

$$f'(x) = \sum_{n=1}^{\infty} n^2 (x-1)^{n-1} = 1 + \sum_{n=1}^{\infty} (n+1)^2 (x-1)^n.$$

In particular, the set D' certainly contains (0,2) as a subset. If x = 0 then the series reads $\sum_{n=1}^{\infty} (-1)^{n-1} n^2$, which does not converge, and if x = 2 then we get $\sum_{n=1}^{\infty} n^2 = \infty$. Hence,

$$D' = (0, 2)$$

Problem 6. (10 points)

Let $f, g: [-\pi, \pi] \to \mathbb{C}$ be continuous functions satisfying

$$\int_{-\pi}^{\pi} f(x)e^{inx} dx = \int_{-\pi}^{\pi} g(x)e^{inx} dx \qquad \forall \ n \in \mathbb{Z}.$$
 (4)

Show that f = g.

Solution: Let h = f - g, so that $\int h(x)e^{inx} dx = 0$ for all $n \in \mathbb{N}$, that is, the Fourier coefficients of h are all 0. Since h is continuous on $[-\pi,\pi]$, it follows from Féjer's theorem that the partial Fourier series of h converges to h uniformly in Césaro mean. But the partial Fourier series series of h is 0, so h must be 0, that is, f = g.

Alternatively: Let h = f - g, so that $\int h(x)e^{inx} dx = 0$ for all $n \in \mathbb{N}$, that is, the Fourier coefficients of h are all 0. Since h is continuous on $[-\pi, \pi]$, it follows the theory of Fourier series that the partial Fourier series converges to h in L^2 . But the partial Fourier series of h is 0, so h

must be 0, that is, f = g.

Problem 7. (20 points)

Let $X = C_b(\mathbb{R}, \mathbb{R})$, equipped with the supremum norm $||f||_{\infty} = \sup_{t \in \mathbb{R}} |f(t)|$. Define

$$F: X \to X, \qquad F(f)(t) = 2f(t)^2 - e^{f(t) - t^2} \qquad \forall \ t \in \mathbb{R}.$$
(5)

(a) Prove that F is Fréchet differentiable and show that F'(f) = A for $f \in X$, where $A: X \to X$ is given by

$$A(r)(t) = 4r(t)f(t) - r(t)e^{f(t) - t^2} \qquad \forall \ t \in \mathbb{R}, \ r \in X.$$
(6)

Hint: You might need the fact that $|e^s - 1 - s| \leq \frac{e}{2}s^2$ for every number $|s| \leq 1$. This follows from Taylor expansion of the exponential function.

(b) Let $1: \mathbb{R} \to \mathbb{R}$ be the constant function 1(t) = 1 for all $t \in \mathbb{R}$. Prove that F is bijective in a neighbourhood of 1. Compute $(F^{-1})'(F(1))$.

Solution:

(a) It is clear that A is linear. Moreover,

$$||A(r)||_{\infty} \leq 4||r||_{\infty}||f||_{\infty} + ||r||_{\infty}e^{||f||_{\infty}} < \infty.$$

It is bounded by the above estimate, with $||A||_{\mathcal{L}} \leq 4||f||_{\infty}^2 + e^{||f||_{\infty}}$. We have, for every $f, r \in X$ with $||r||_{\infty} \leq 1$, that

$$\begin{split} \left| \left(F(f+r) - F(f) - A(r) \right)(t) \right| &= \left| 2r(t)^2 - e^{f(t) - t^2} \left(e^{r(t)} - 1 - r(t) \right) \right| \\ &\leq 2|r(t)|^2 + e^{f(t)} \left| e^{r(t)} - 1 - r(t) \right| \\ &\leq 2||r||_{\infty}^2 + e^{||f||_{\infty}} \frac{e}{2} ||r||_{\infty}^2. \end{split}$$

Hence,

$$\frac{\|F(f+r) - F(f) - A(r)\|_{\infty}}{\|r\|_{\infty}} \leq \|r\|_{\infty} \left(2 + \frac{1}{2}e^{1 + \|f\|_{\infty}}\right) \to 0$$

as $r \to 0$. This proves the claim.

(b) The Fréchet derivative F' is continuous everywhere and $F'(1)(r)(t) = r(t)(4 - e^{1-t^2})$. If $s \in X$ then F'(1)(r) = s if and only if $r(t) = \frac{s(t)}{4-e^{1-t^2}}$, which is a continuous, bounded function. Hence, F'(1) is bijective, and

$$||F'(1)^{-1}(s)||_{\infty} = \sup_{t \in \mathbb{R}} \frac{|s(t)|}{|4 - e^{1 - t^2}|} \le \frac{1}{4 - e} ||s||_{\infty},$$

so $F'(1)^{-1}$ is also bounded, with $||F'(1)^{-1}||_{\mathcal{L}} \leq \frac{1}{4-e} < \infty$. Hence, by the inverse function theorem, there are neighbourhoods U of 1 and V

(Continued on page 6.)

of F(1) such that $F: U \to V$ is bijective. Moreover,

$$(F^{-1})'(F(1))(s)(t) = F'(1)^{-1}(s)(t) = \frac{s(t)}{4 - e^{1 - t^2}} \quad \forall t \in \mathbb{R}, s \in X.$$