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Problem 1. (10 points)
Let (X, d) be the metric space X = (0, 1], d(x, y) = |x − y|, and let
T : X → X be given by T (x) = x/2.

Show that T is a contraction. Does T have a fixed point? Justify your
answer.

Solution: d(T (x), T (y)) = |x/2 − y/2| = |x − y|/2 = d(x, y)/2, so T
is a contraction with contraction constant 1/2.

T does not have a fixed point. If X were complete then we could
apply Banach’s fixed point theorem, but X isn’t complete. The only
solution to x = T (x) is x = 0, but 0 /∈ X, so T does not have a fixed
point.

Problem 2. (10 points)
Let (X, d) be a metric space and let A ⊆ R be closed. We define the metric
space Cb(X,A) =

{
all continuous, bounded f : X → A

}
, equipped with the

supremum metric
ρ(f, g) = sup

x∈X
|f(x)− g(x)|. (1)

(You do not need to show that this is a metric space.) Show that Cb(X,A)
is a closed subset of Cb(X,R).

Solution: Let {fn}n be a sequence in Cb(X,A) converging to some
f ∈ Cb(X,R). We claim that f ∈ Cb(X,A), that is, that f(t) ∈ A
for every t ∈ X. Indeed, for every t ∈ X, the sequence {fn(t)}n is a
convergent sequence in the closed set A, to the limit f(t) also lies in A.
This concludes the proof.

Alternatively: Let f ∈ ∂Cb(X,A). We want to show that f(t) ∈ A
for every t ∈ X. Let t ∈ X. Since f ∈ ∂Cb(X,A), there are for every
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ε > 0 functions g ∈ B(f ; ε) ∩ Cb(X,A) and h ∈ B(f ; ε) \ Cb(X,A). In
particular, g(t) ∈ A and |f(t) − g(t)| ⩽ ρ(f, g) < ε. Hence, for every
ε > 0, the set BR(f(t); ε)∩A is nonempty (since it contains the number
g(t)), so f(t) ∈ Ā. But A is closed, so Ā = A, and f(t) ∈ A.

Problem 3. (20 points)
Let (X, d) be a metric space, and for every nonempty E ⊆ X and x ∈ X,
define

dist(x,E) = inf{d(x, y) : y ∈ E}. (2)

(a) Show that if E is compact and nonempty, then there is some z ∈ E such
that dist(x,E) = d(x, z).

(b) Give an example of a metric space (X, d), a point x ∈ X and a nonempty
subset E ⊆ X for which there is no such point z ∈ E.

Solution:

(a) Let {yn}n∈N ⊆ E be a minimizing sequence: d(x, yn) → dist(x,E)
as n → ∞. Since E is compact, there is some z ∈ E and a subsequence
{yn(k)}k∈N such that yn(k) → z as k → ∞. But then

dist(x,E) = lim
n→∞

d(x, yn)

(if a sequence converges, then so does any subsequence)

= lim
k→∞

d(x, yn(k))

(if a sequence converges, then so does its distance from a fixed point)

= d(x, z)

Alternatively: Let f : E → R be the function f(y) = d(x, y).
Then f is a continuous function on a compact set, so by the extreme
value theorem it attains a minimum: there is a point z ∈ E where
d(x, z) ⩽ d(x, y) for all y ∈ E, so d(x, z) = inf{d(x, y) : y ∈ E}.

(b) Let X = R, E = (0, 1) and x = 2. Then dist(x,E) =
limy→1 d(x, y) = 1, but d(x, z) > 1 for every z ∈ E.

Problem 4. (20 points)
For this problem, recall that a bounded linear operator A is invertible if it
is bijective and its inverse A−1 is bounded.

Let (X, ∥ · ∥) be a normed vector space and let A : X → X be an invertible
bounded linear operator. Define ∥x∥A = ∥Ax∥ for every x ∈ X.

(a) Show that ∥ · ∥A is a norm on X.

(b) Show that a sequence {xn}n in X converges in the norm ∥ ·∥ if and only
if it converges in the norm ∥ · ∥A.

(Continued on page 3.)
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Solution:

(a) Denote C = ∥A∥L, so that ∥Ax∥ ⩽ C∥x∥ for all x ∈ X.

Well-defined ∥x∥A = ∥Ax∥ is a well-defined number for every x ∈ X,
so the function ∥ · ∥A is well-defined.

Positivity It is clear that ∥x∥A = ∥Ax∥ ⩾ 0 for all x ∈ X, and that
∥0∥A = 0 (since A is linear). If ∥x∥A = 0 then ∥Ax∥ = 0,
so Ax = 0. Since A is bijective and A−1 is linear, we get
x = A−10 = 0.

Homogeneity If α ∈ R then ∥αx∥A = ∥A(αx)∥ = ∥αAx∥ =
|α|∥Ax∥ = |α|∥x∥A, where we first used homogeneity of A and
then homogeneity of ∥ · ∥.

Triangle inequality If x, y ∈ X then ∥x + y∥A = ∥A(x + y)∥ =
∥Ax + Ay∥ ⩽ ∥Ax∥ + ∥Ay∥ = ∥x∥A + ∥y∥A, where we used
additivity of A and then the triangle inequality for ∥ · ∥.

(b) If ∥xn − x∥ → 0 as n → ∞ then

∥xn − x∥A = ∥A(xn − x)∥ ⩽ ∥A∥L∥xn − x∥ → 0

as n → ∞. Conversely, if ∥xn − x∥A → 0 as n → ∞ then

∥xn − x∥ = ∥A−1(A(xn − x))∥ ⩽ ∥A−1∥L∥A(xn − x)∥
= ∥A−1∥L∥xn − x∥A → 0

as n → ∞.
Alternatively: If the two norms are equivalent then convergence

in one norm is equivalent to convergence in the other. We have for every
x ∈ X that

∥x∥A = ∥Ax∥ ⩽ ∥A∥L∥x∥

and
∥x∥ = ∥A−1Ax∥ ⩽ ∥A−1∥L∥Ax∥ = ∥A−1∥L∥x∥A.

In other words, there are constants c, C > 0 such that c∥x∥ ⩽ ∥x∥A ⩽
C∥x∥, so the norms are equivalent.

Problem 5. (10 points)
Let f be given by the series

f(x) =

∞∑
n=1

n(x− 1)n, x ∈ R. (3)

Determine the set D = {x ∈ R : f(x) converges}. Compute the derivative
f ′, and determine the corresponding set D′ of points where the series for f ′

converges.

(Continued on page 4.)
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Solution: We compute the series’ radius of convergence:

R−1 = lim sup
n→∞

n1/n = lim sup
n→∞

elogn/n = 1.

Hence, the series converges pointwise at all x ∈ (1−R, 1 +R) = (0, 2).
At x = 2 the series diverges: f(2) =

∑∞
n=1 n = ∞. At x = 0 we get

f(0) =
∞∑
n=1

n(−1)n.

The partial sums of this series is

N∑
n=1

n(−1)n =

{
N/2 if N is even

(−N − 1)/2 if N is odd,

which clearly does not converge. Hence,

D = (0, 2).

By the theory of power series, f is real analytic in (0, 2), so in
particular the series consisting of derivatives of each summand converges
for all x ∈ (0, 2), and

f ′(x) =

∞∑
n=1

n2(x− 1)n−1 = 1 +

∞∑
n=1

(n+ 1)2(x− 1)n.

In particular, the set D′ certainly contains (0, 2) as a subset. If x = 0
then the series reads

∑∞
n=1(−1)n−1n2, which does not converge, and if

x = 2 then we get
∑∞

n=1 n
2 = ∞. Hence,

D′ = (0, 2).

Problem 6. (10 points)
Let f, g : [−π, π] → C be continuous functions satisfying∫ π

−π
f(x)einx dx =

∫ π

−π
g(x)einx dx ∀ n ∈ Z. (4)

Show that f = g.

Solution: Let h = f − g, so that
∫
h(x)einx dx = 0 for all n ∈ N,

that is, the Fourier coefficients of h are all 0. Since h is continuous on
[−π, π], it follows from Féjer’s theorem that the partial Fourier series
of h converges to h uniformly in Césaro mean. But the partial Fourier
series of h is 0, so h must be 0, that is, f = g.

Alternatively: Let h = f − g, so that
∫
h(x)einx dx = 0 for all

n ∈ N, that is, the Fourier coefficients of h are all 0. Since h is continuous
on [−π, π], it follows the theory of Fourier series that the partial Fourier
series converges to h in L2. But the partial Fourier series of h is 0, so h

(Continued on page 5.)
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must be 0, that is, f = g.

Problem 7. (20 points)
LetX = Cb(R,R), equipped with the supremum norm ∥f∥∞ = supt∈R |f(t)|.
Define

F : X → X, F (f)(t) = 2f(t)2 − ef(t)−t2 ∀ t ∈ R. (5)

(a) Prove that F is Fréchet differentiable and show that F ′(f) = A for
f ∈ X, where A : X → X is given by

A(r)(t) = 4r(t)f(t)− r(t)ef(t)−t2 ∀ t ∈ R, r ∈ X. (6)

Hint: You might need the fact that |es − 1 − s| ⩽ e
2s

2 for every number
|s| ⩽ 1. This follows from Taylor expansion of the exponential function.

(b) Let 1 : R → R be the constant function 1(t) = 1 for all t ∈ R. Prove
that F is bijective in a neighbourhood of 1. Compute

(
F−1

)′
(F (1)).

Solution:

(a) It is clear that A is linear. Moreover,

∥A(r)∥∞ ⩽ 4∥r∥∞∥f∥∞ + ∥r∥∞e∥f∥∞ < ∞.

It is bounded by the above estimate, with ∥A∥L ⩽ 4∥f∥2∞ + e∥f∥∞ .
We have, for every f, r ∈ X with ∥r∥∞ ⩽ 1, that∣∣(F (f + r)− F (f)−A(r)

)
(t)

∣∣ = ∣∣∣2r(t)2 − ef(t)−t2
(
er(t) − 1− r(t)

)∣∣∣
⩽ 2|r(t)|2 + ef(t)

∣∣er(t) − 1− r(t)
∣∣∣∣∣

⩽ 2∥r∥2∞ + e∥f∥∞
e

2
∥r∥2∞.

Hence,

∥F (f + r)− F (f)−A(r)∥∞
∥r∥∞

⩽ ∥r∥∞
(
2 + 1

2e
1+∥f∥∞)

→ 0

as r → 0. This proves the claim.

(b) The Fréchet derivative F ′ is continuous everywhere and
F ′(1)(r)(t) = r(t)

(
4− e1−t2

)
. If s ∈ X then F ′(1)(r) = s if and only if

r(t) = s(t)

4−e1−t2
, which is a continuous, bounded function. Hence, F ′(1)

is bijective, and

∥F ′(1)−1(s)∥∞ = sup
t∈R

|s(t)|
|4− e1−t2 |

⩽
1

4− e
∥s∥∞,

so F ′(1)−1 is also bounded, with ∥F ′(1)−1∥L ⩽ 1
4−e < ∞. Hence, by

the inverse function theorem, there are neighbourhoods U of 1 and V
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of F (1) such that F : U → V is bijective. Moreover,

(F−1)′(F (1))(s)(t) = F ′(1)−1(s)(t) =
s(t)

4− e1−t2
∀ t ∈ R, s ∈ X.


