UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in:	MAT2400-Real Analysis
Day of examination:	9 June 2021
Examination hours:	15:00-19:00
This problem set consists of 6 pages.	
Appendices:	None
Permitted aids:	Any

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Note: There are in total 10 sub-problems, and you can get up to 10 points for each sub-problem, for a total of 100 points.
Updated 30 June 2021
Problem 1. (10 points)
Let (X, d) be the metric space $X=(0,1], d(x, y)=|x-y|$, and let $T: X \rightarrow X$ be given by $T(x)=x / 2$.
Show that T is a contraction. Does T have a fixed point? Justify your answer.

Solution: $\quad d(T(x), T(y))=|x / 2-y / 2|=|x-y| / 2=d(x, y) / 2$, so T is a contraction with contraction constant $1 / 2$.
T does not have a fixed point. If X were complete then we could apply Banach's fixed point theorem, but X isn't complete. The only solution to $x=T(x)$ is $x=0$, but $0 \notin X$, so T does not have a fixed point.

Problem 2. (10 points)
Let (X, d) be a metric space and let $A \subseteq \mathbb{R}$ be closed. We define the metric space $C_{b}(X, A)=\{$ all continuous, bounded $f: X \rightarrow A\}$, equipped with the supremum metric

$$
\begin{equation*}
\rho(f, g)=\sup _{x \in X}|f(x)-g(x)| \tag{1}
\end{equation*}
$$

(You do not need to show that this is a metric space.) Show that $C_{b}(X, A)$ is a closed subset of $C_{b}(X, \mathbb{R})$.

Solution: Let $\left\{f_{n}\right\}_{n}$ be a sequence in $C_{b}(X, A)$ converging to some $f \in C_{b}(X, \mathbb{R})$. We claim that $f \in C_{b}(X, A)$, that is, that $f(t) \in A$ for every $t \in X$. Indeed, for every $t \in X$, the sequence $\left\{f_{n}(t)\right\}_{n}$ is a convergent sequence in the closed set A, to the limit $f(t)$ also lies in A. This concludes the proof.

Alternatively: Let $f \in \partial C_{b}(X, A)$. We want to show that $f(t) \in A$ for every $t \in X$. Let $t \in X$. Since $f \in \partial C_{b}(X, A)$, there are for every
$\varepsilon>0$ functions $g \in B(f ; \varepsilon) \cap C_{b}(X, A)$ and $h \in B(f ; \varepsilon) \backslash C_{b}(X, A)$. In particular, $g(t) \in A$ and $|f(t)-g(t)| \leqslant \rho(f, g)<\varepsilon$. Hence, for every $\varepsilon>0$, the set $B_{\mathbb{R}}(f(t) ; \varepsilon) \cap A$ is nonempty (since it contains the number $g(t))$, so $f(t) \in \bar{A}$. But A is closed, so $\bar{A}=A$, and $f(t) \in A$.

Problem 3. (20 points)
Let (X, d) be a metric space, and for every nonempty $E \subseteq X$ and $x \in X$, define

$$
\begin{equation*}
\operatorname{dist}(x, E)=\inf \{d(x, y): y \in E\} . \tag{2}
\end{equation*}
$$

(a) Show that if E is compact and nonempty, then there is some $z \in E$ such that $\operatorname{dist}(x, E)=d(x, z)$.
(b) Give an example of a metric space (X, d), a point $x \in X$ and a nonempty subset $E \subseteq X$ for which there is no such point $z \in E$.

Solution:

(a) Let $\left\{y_{n}\right\}_{n \in \mathbb{N}} \subseteq E$ be a minimizing sequence: $d\left(x, y_{n}\right) \rightarrow \operatorname{dist}(x, E)$ as $n \rightarrow \infty$. Since E is compact, there is some $z \in E$ and a subsequence $\left\{y_{n(k)}\right\}_{k \in \mathbb{N}}$ such that $y_{n(k)} \rightarrow z$ as $k \rightarrow \infty$. But then

$$
\operatorname{dist}(x, E)=\lim _{n \rightarrow \infty} d\left(x, y_{n}\right)
$$

(if a sequence converges, then so does any subsequence)

$$
=\lim _{k \rightarrow \infty} d\left(x, y_{n(k)}\right)
$$

(if a sequence converges, then so does its distance from a fixed point)

$$
=d(x, z)
$$

Alternatively: Let $f: E \rightarrow \mathbb{R}$ be the function $f(y)=d(x, y)$. Then f is a continuous function on a compact set, so by the extreme value theorem it attains a minimum: there is a point $z \in E$ where $d(x, z) \leqslant d(x, y)$ for all $y \in E$, so $d(x, z)=\inf \{d(x, y): y \in E\}$.
(b) Let $X=\mathbb{R}, E=(0,1)$ and $x=2$. Then $\operatorname{dist}(x, E)=$ $\lim _{y \rightarrow 1} d(x, y)=1$, but $d(x, z)>1$ for every $z \in E$.

Problem 4. (20 points)
For this problem, recall that a bounded linear operator A is invertible if it is bijective and its inverse A^{-1} is bounded.
Let $(X,\|\cdot\|)$ be a normed vector space and let $A: X \rightarrow X$ be an invertible bounded linear operator. Define $\|x\|_{A}=\|A x\|$ for every $x \in X$.
(a) Show that $\|\cdot\|_{A}$ is a norm on X.
(b) Show that a sequence $\left\{x_{n}\right\}_{n}$ in X converges in the norm $\|\cdot\|$ if and only if it converges in the norm $\|\cdot\|_{A}$.

Solution:

(a) Denote $C=\|A\|_{\mathcal{L}}$, so that $\|A x\| \leqslant C\|x\|$ for all $x \in X$.

Well-defined $\|x\|_{A}=\|A x\|$ is a well-defined number for every $x \in X$, so the function $\|\cdot\|_{A}$ is well-defined.

Positivity It is clear that $\|x\|_{A}=\|A x\| \geqslant 0$ for all $x \in X$, and that $\|0\|_{A}=0$ (since A is linear). If $\|x\|_{A}=0$ then $\|A x\|=0$, so $A x=0$. Since A is bijective and A^{-1} is linear, we get $x=A^{-1} 0=0$.

Homogeneity If $\alpha \in \mathbb{R}$ then $\|\alpha x\|_{A}=\|A(\alpha x)\|=\|\alpha A x\|=$ $|\alpha|\|A x\|=|\alpha|\|x\|_{A}$, where we first used homogeneity of A and then homogeneity of $\|\cdot\|$.

Triangle inequality If $x, y \in X$ then $\|x+y\|_{A}=\|A(x+y)\|=$ $\|A x+A y\| \leqslant\|A x\|+\|A y\|=\|x\|_{A}+\|y\|_{A}$, where we used additivity of A and then the triangle inequality for $\|\cdot\|$.
(b) If $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$ then

$$
\left\|x_{n}-x\right\|_{A}=\left\|A\left(x_{n}-x\right)\right\| \leqslant\|A\|_{\mathcal{L}}\left\|x_{n}-x\right\| \rightarrow 0
$$

as $n \rightarrow \infty$. Conversely, if $\left\|x_{n}-x\right\|_{A} \rightarrow 0$ as $n \rightarrow \infty$ then

$$
\begin{aligned}
\left\|x_{n}-x\right\| & =\left\|A^{-1}\left(A\left(x_{n}-x\right)\right)\right\| \leqslant\left\|A^{-1}\right\|_{\mathcal{L}}\left\|A\left(x_{n}-x\right)\right\| \\
& =\left\|A^{-1}\right\|_{\mathcal{L}}\left\|x_{n}-x\right\|_{A} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$.
Alternatively: If the two norms are equivalent then convergence in one norm is equivalent to convergence in the other. We have for every $x \in X$ that

$$
\|x\|_{A}=\|A x\| \leqslant\|A\|_{\mathcal{L}}\|x\|
$$

and

$$
\|x\|=\left\|A^{-1} A x\right\| \leqslant\left\|A^{-1}\right\|_{\mathcal{L}}\|A x\|=\left\|A^{-1}\right\|_{\mathcal{L}}\|x\|_{A} .
$$

In other words, there are constants $c, C>0$ such that $c\|x\| \leqslant\|x\|_{A} \leqslant$ $C\|x\|$, so the norms are equivalent.

Problem 5. (10 points)
Let f be given by the series

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} n(x-1)^{n}, \quad x \in \mathbb{R} . \tag{3}
\end{equation*}
$$

Determine the set $D=\{x \in \mathbb{R}: f(x)$ converges $\}$. Compute the derivative f^{\prime}, and determine the corresponding set D^{\prime} of points where the series for f^{\prime} converges.

Solution: We compute the series' radius of convergence:

$$
R^{-1}=\limsup _{n \rightarrow \infty} n^{1 / n}=\limsup _{n \rightarrow \infty} e^{\log n / n}=1
$$

Hence, the series converges pointwise at all $x \in(1-R, 1+R)=(0,2)$. At $x=2$ the series diverges: $f(2)=\sum_{n=1}^{\infty} n=\infty$. At $x=0$ we get

$$
f(0)=\sum_{n=1}^{\infty} n(-1)^{n} .
$$

The partial sums of this series is

$$
\sum_{n=1}^{N} n(-1)^{n}= \begin{cases}N / 2 & \text { if } N \text { is even } \\ (-N-1) / 2 & \text { if } N \text { is odd }\end{cases}
$$

which clearly does not converge. Hence,

$$
D=(0,2)
$$

By the theory of power series, f is real analytic in $(0,2)$, so in particular the series consisting of derivatives of each summand converges for all $x \in(0,2)$, and

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} n^{2}(x-1)^{n-1}=1+\sum_{n=1}^{\infty}(n+1)^{2}(x-1)^{n} .
$$

In particular, the set D^{\prime} certainly contains $(0,2)$ as a subset. If $x=0$ then the series reads $\sum_{n=1}^{\infty}(-1)^{n-1} n^{2}$, which does not converge, and if $x=2$ then we get $\sum_{n=1}^{\infty} n^{2}=\infty$. Hence,

$$
D^{\prime}=(0,2) .
$$

Problem 6. (10 points)
Let $f, g:[-\pi, \pi] \rightarrow \mathbb{C}$ be continuous functions satisfying

$$
\begin{equation*}
\int_{-\pi}^{\pi} f(x) e^{i n x} d x=\int_{-\pi}^{\pi} g(x) e^{i n x} d x \quad \forall n \in \mathbb{Z} . \tag{4}
\end{equation*}
$$

Show that $f=g$.
Solution: Let $h=f-g$, so that $\int h(x) e^{i n x} d x=0$ for all $n \in \mathbb{N}$, that is, the Fourier coefficients of h are all 0 . Since h is continuous on $[-\pi, \pi]$, it follows from Féjer's theorem that the partial Fourier series of h converges to h uniformly in Césaro mean. But the partial Fourier series of h is 0 , so h must be 0 , that is, $f=g$.

Alternatively: Let $h=f-g$, so that $\int h(x) e^{i n x} d x=0$ for all $n \in \mathbb{N}$, that is, the Fourier coefficients of h are all 0 . Since h is continuous on $[-\pi, \pi]$, it follows the theory of Fourier series that the partial Fourier series converges to h in L^{2}. But the partial Fourier series of h is 0 , so h
must be 0 , that is, $f=g$.

Problem 7. (20 points)
Let $X=C_{b}(\mathbb{R}, \mathbb{R})$, equipped with the supremum norm $\|f\|_{\infty}=\sup _{t \in \mathbb{R}}|f(t)|$.
Define

$$
\begin{equation*}
F: X \rightarrow X, \quad F(f)(t)=2 f(t)^{2}-e^{f(t)-t^{2}} \quad \forall t \in \mathbb{R} . \tag{5}
\end{equation*}
$$

(a) Prove that F is Fréchet differentiable and show that $F^{\prime}(f)=A$ for $f \in X$, where $A: X \rightarrow X$ is given by

$$
\begin{equation*}
A(r)(t)=4 r(t) f(t)-r(t) e^{f(t)-t^{2}} \quad \forall t \in \mathbb{R}, r \in X \tag{6}
\end{equation*}
$$

Hint: You might need the fact that $\left|e^{s}-1-s\right| \leqslant \frac{e}{2} s^{2}$ for every number $|s| \leqslant 1$. This follows from Taylor expansion of the exponential function.
(b) Let $\mathbb{1}: \mathbb{R} \rightarrow \mathbb{R}$ be the constant function $\mathbb{1}(t)=1$ for all $t \in \mathbb{R}$. Prove that F is bijective in a neighbourhood of $\mathbb{1}$. Compute $\left(F^{-1}\right)^{\prime}(F(\mathbb{1}))$.

Solution:

(a) It is clear that A is linear. Moreover,

$$
\|A(r)\|_{\infty} \leqslant 4\|r\|_{\infty}\|f\|_{\infty}+\|r\|_{\infty} e^{\|f\|_{\infty}}<\infty
$$

It is bounded by the above estimate, with $\|A\|_{\mathcal{L}} \leqslant 4\|f\|_{\infty}^{2}+e^{\|f\|_{\infty}}$.
We have, for every $f, r \in X$ with $\|r\|_{\infty} \leqslant 1$, that

$$
\begin{aligned}
|(F(f+r)-F(f)-A(r))(t)| & =\left|2 r(t)^{2}-e^{f(t)-t^{2}}\left(e^{r(t)}-1-r(t)\right)\right| \\
& \leqslant 2|r(t)|^{2}+e^{f(t)}\left|e^{r(t)}-1-r(t)\right| \mid \\
& \leqslant 2\|r\|_{\infty}^{2}+e^{\|f\|_{\infty}} \frac{e}{2}\|r\|_{\infty}^{2} .
\end{aligned}
$$

Hence,

$$
\frac{\|F(f+r)-F(f)-A(r)\|_{\infty}}{\|r\|_{\infty}} \leqslant\|r\|_{\infty}\left(2+\frac{1}{2} e^{1+\|f\|_{\infty}}\right) \rightarrow 0
$$

as $r \rightarrow 0$. This proves the claim.
(b) The Fréchet derivative F^{\prime} is continuous everywhere and $F^{\prime}(\mathbb{1})(r)(t)=r(t)\left(4-e^{1-t^{2}}\right)$. If $s \in X$ then $F^{\prime}(\mathbb{1})(r)=s$ if and only if $r(t)=\frac{s(t)}{4-e^{1-t^{2}}}$, which is a continuous, bounded function. Hence, $F^{\prime}(\mathbb{1})$ is bijective, and

$$
\left\|F^{\prime}(\mathbb{1})^{-1}(s)\right\|_{\infty}=\sup _{t \in \mathbb{R}} \frac{|s(t)|}{\left|4-e^{1-t^{2}}\right|} \leqslant \frac{1}{4-e}\|s\|_{\infty},
$$

so $F^{\prime}(\mathbb{1})^{-1}$ is also bounded, with $\left\|F^{\prime}(\mathbb{1})^{-1}\right\|_{\mathcal{L}} \leqslant \frac{1}{4-e}<\infty$. Hence, by the inverse function theorem, there are neighbourhoods U of $\mathbb{1}$ and V
of $F(\mathbb{1})$ such that $F: U \rightarrow V$ is bijective. Moreover,

$$
\left(F^{-1}\right)^{\prime}(F(\mathbb{1}))(s)(t)=F^{\prime}(\mathbb{1})^{-1}(s)(t)=\frac{s(t)}{4-e^{1-t^{2}}} \quad \forall t \in \mathbb{R}, s \in X
$$

