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Preface
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the structural changes I would have wished.
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Chapter 1

Preliminaries: Proofs, Sets,
and Functions

Chapters with the word ”preliminaries” in the title are never much fun, but
they are useful — they provide the reader with the background information
necessary to enjoy the main body of the text. This chapter is no exception,
but I have tried to keep it short and to the point; everything you find
here will be needed at some stage, and most of the material will show up
throughout the book. The exception is Section 1.5 which is only needed a
few places, and which you may want to skip on the first reading.

I have put a footnote on the sections that you may want to skip at the
first reading because they will only be required at a few special places.

Mathematical analysis is a continuation of calculus, but it is more ab-
stract and therefore in need of a larger vocabulary and more precisely defined
concepts. You have undoubtedly dealt with proofs, sets, and functions in
your previous mathematics courses, but probably in a rather casual way.
Now they become the centerpiece of the theory; there is no way to under-
stand what is going on if you don’t have a good grasp of these things —
the subject matter is so abstract that you can no longer rely on drawings
and intuition; you simply have to be able to understand the concepts and to
read, make and write proofs. Fortunately, this is not as difficult as it may
sound if you have never tried to take proofs and formal definitions seriously
before.

1.1 Proofs

There is nothing mysterious about mathematical proofs; they are just chains
of logically irrefutable arguments that bring you from things you already
know to whatever you want to prove. Still there are a few tricks of the trade
that are useful to know about.

Many mathematical statements are of the form “If A, then B”. This

3
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simply means that whenever statement A holds, statement B also holds,
but not necessarily vice versa. A typical example is: ”If n ∈ N is divisible
by 14, then n is divisible by 7”. This is a true statement since any natural
number that is divisible by 14, is also divisible by 7. The opposite statement
is not true as there are numbers that are divisible by 7, but not by 14 (e.g.
7 and 21).

Instead of “If A, then B”, we often say that “A implies B” and write
A =⇒ B. As already observed, A =⇒ B and B =⇒ A mean two different
things. If they are both true, A and B hold in exactly the same cases, and
we say that A and B are equivalent. In words, we say “A if and only if B”,
and in symbols we write A ⇐⇒ B. A typical example is:

“A triangle is equilateral if and only if all three angels are 60◦”

When we want to prove that A ⇐⇒ B, it is often convenient to prove
A =⇒ B and B =⇒ A separately.

If you think a little, you will realize that “A =⇒ B” and “not-B =⇒
not-A” mean exactly the same thing — they both say that whenever A
happens, so does B. This means that instead of proving “A =⇒ B”, we
might just a well prove “not-B =⇒ not-A”. This is called a contrapositive
proof, and is convenient when the hypothesis “not-B” gives us more to work
on than the hypothesis “A”. Here is a typical example.

Proposition 1.1.1 If n2 is an even number, so is n.

Proof: We prove the contrapositive statement: ”If n is odd, so is n2”: If n
is odd, it can be written as n = 2k+1 for a nonnegative integer k. But then

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1

which is clearly odd. 2

It should be clear why a contrapositive proof is best in this case: The hy-
pothesis “n is odd” is much easier to work with than the original hypothesis
“n2 is even”.

A related method of proof is proof by contradiction or reductio ad ab-
surdum. In these proofs, we assume the opposite of what we want to show,
and prove that this leads to a contradiction. Hence our assumption must be
false, and the original claim is established. Here is a well-known example.

Proposition 1.1.2
√

2 is an irrational number.

Proof: We assume for contradiction that
√

2 is rational. This means that
√

2 =
m

n
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for natural numbers m and n. By cancelling as much as possible, we may
assume that m and n have no common factors.

If we square the equality above and multiply by n2 on both sides, we get

2n2 = m2

This means that m2 is even, and by the previous proposition, so is m. Hence
m = 2k for some natural number k, and if we substitute this into the last
formula above and cancel a factor 2, we see that

n2 = 2k2

This means that n2 is even, and by the previous proposition n is even. Thus
we have proved that both m and n are even, which is impossible as we as-
sumed that they have no common factors. This means that the assumption
that

√
2 is rational leads to a contradiction, and hence

√
2 must be irra-

tional. 2

Let me end this section by reminding you of a technique you have cer-
tainly seen before, proof by induction. We use this technique when we
want to prove that a certain statement P (n) holds for all natural num-
bers n = 1, 2, 3, . . .. A typical statement one may want to prove in this way,
is

P (n) : 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
The basic observation behind the technique is:

1.1.3 (Induction Principle) Assume that P (n) is a statement about nat-
ural numbers n = 1, 2, 3, . . .. Assume that the following two conditions are
satisfied:

(i) P (1) is true
(ii) If P (k) is true for some natural number k, then so is P (k + 1)

Then P (n) holds for all natural numbers n.

Let us see how we can use the principle to prove that

P (n) : 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2

holds for all natural numbers n.
First we check that the statement holds for n = 1: In this case the

formula says

1 =
1 · (1 + 1)

2
which is obviously true. Assume so that P (k) holds for some natural number
k, i.e.

1 + 2 + 3 + · · ·+ k =
k(k + 1)

2
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We then have

1 + 2 + 3 + · · ·+ k + (k + 1) =
k(k + 1)

2
+ (k + 1) =

(k + 1)(k + 2)
2

which means that P (k + 1) is true. By the Induction Principle, P (n) holds
for all natural numbers n.

Exercises for Section 1.1

1. Assume that the product of two integers x and y is even. Show that at least
one the numbers is even.

2. Assume that the sum of two integers x and y is even. Show that x and y are
either both even or both odd.

3. Show that if n is a natural number such that n2 is divisible by 3, then n is
divisible by 3. Use this to show that

√
3 is irrational.

1.2 Sets and boolean operations

In the systematic development of mathematics, set is usually taken as the
fundamental notion from which all other concepts are developed. We shall
not be so ambitious, we shall just think naively of a set as a collection of
mathematical objects. A set may be finite, such as the set

{1, 2, 3, 4, 5, 6, 7, 8, 9}

of all natural numbers less than 10, or infinite as the set (0, 1) of all real
numbers between 0 and 1.

We shall write x ∈ A to say that x is an element of the set A, and x /∈ A
to say that x is not an element of A. Two sets are equal if they have exactly
the same elements, and we say that A is subset of B (and write A ⊂ B) if
all elements of A are elements of B, but not necessarily vice versa. Note
that there is no requirement that A is strictly included in B, and hence it
is correct to write A ⊂ B when A = B (in fact, a standard technique for
showing that A = B is first to show that A ⊂ B and then that B ⊂ A)1 . By
∅ we shall mean the empty set, i.e. the set with no elements (you may feel
that a set with no elements is a contradiction in terms, but mathematical
life would be much less convenient without the empty set).

Many common sets have a standard name and notation such as

N = {1, 2, 3, . . .}, the set of natural numbers

1Some books use an alternative notation where A ⊂ B means that A is strictly included
in B, and where A ⊆ B is used to denote that A is a subset of B in our sense.



1.2. SETS AND BOOLEAN OPERATIONS 7

Z = {. . .− 3,−2,−1, 0, 1, 2, 3, . . .}, the set of all integers

Q, the set of all rational numbers

R, the set of all real numbers

C, the set of all complex numbers

Rn, the set of all real n-tuples

To specify other sets, we shall often use expressions of the kind

A = {a |P (a)}

which means the set of all objects satisfying condition P . Often it is more
convenient to write

A = {a ∈ B |P (a)}

which means the set of all elements in B satisfýıng the condition P . Exam-
ples of this notation are

[−1, 1] = {x ∈ R | − 1 ≤ x ≤ 1}

and
A = {2n− 1 | n ∈ N}

where A is the set of all odd numbers. To increase readability I shall oc-
casionally replace the vertical bar | by a colon : and write A = {a : P (a)}
and A = {a ∈ B : P (a)} instead of A = {a |P (a)} and A = {a ∈ B |P (a)},
e.g. in expressions like {||αx|| : |α| < 1} where there are lots of vertical bars
already.

If A1, A2, . . . , An are sets, their union and intersection are given by

A1∪A2∪. . .∪An = {a | a belongs to at least one of the sets A1, A2, . . . , An}

and

A1 ∩A2 ∩ . . . ∩An = {a | a belongs to all the sets A1, A2, . . . , An},

respectively. Two sets are called disjoint if they do not have elements in
common, i.e. if A ∩B = ∅.

When we calculate with numbers, the distributive law tells us how to
move common factors in and out of parentheses:

b(a1 + a2 + · · ·+ an) = ba1 + ba2 + · · · ban

Unions and intersections are distributive both ways, i.e. we have:
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Proposition 1.2.1 For all sets B,A1, A2, . . . , An

B ∩ (A1 ∪A2 ∪ . . . ∪An) = (B ∩A1) ∪ (B ∩A2) ∪ . . . ∪ (B ∩An) (1.2.1)

and

B ∪ (A1 ∩A2 ∩ . . . ∩An) = (B ∪A1) ∩ (B ∪A2) ∩ . . . ∩ (B ∪An) (1.2.2)

Proof: We prove the first formula and leave the second as an exercise. The
proof is in two steps: first we prove that the set on the left is a subset of the
one on the right, and then we prove that the set on the right is a subset of
the one on the left.

Assume first that x is an element of the set on the left, i.e. x ∈ B ∩
(A1 ∪A2 ∪ . . . ∪An). Then x must be in B and at least one of the sets Ai.
But then x ∈ B ∩ Ai, and hence x ∈ (B ∩ A1) ∪ (B ∩ A2) ∪ . . . ∪ (B ∩ An).
This proves that

B ∩ (A1 ∪A2 ∪ . . . ∪An) ⊂ (B ∩A1) ∪ (B ∩A2) ∪ . . . ∪ (B ∩An)

To prove the opposite inclusion, assume that x ∈ (B ∩ A1) ∪ (B ∩ A2) ∪
. . . ∪ (B ∩ An). Then x ∈ B ∩ Ai for at least one i, an hence x ∈ B and
x ∈ Ai. But if x ∈ Ai for some i, then x ∈ A1 ∪ A2 ∪ . . . ∪ An, and hence
x ∈ B ∩ (A1 ∪A2 ∪ . . . ∪An). This proves that

B ∩ (A1 ∪A2 ∪ . . . ∪An) ⊃ (B ∩A1) ∪ (B ∩A2) ∪ . . . ∪ (B ∩An)

As we now have inclusion in both directions, (1.2.1) follows. 2

Remark: It is possible to prove formula (1.2.1) in one sweep by noticing
that all steps in the argument are equivalences and not only implications,
but most people are more prone to making mistakes when they work with
chains of equivalences than with chains of implications.

There are also other algebraic rules for unions and intersections, but
most of them are so obvious that we do not need to state them here (an
exception is De Morgan’s laws which we shall return to in a moment).

The set theoretic difference A \B (also written A−B) is defined by

A \B = {a | a ∈ A, a /∈ B}

In many situations we are only interested in subsets of a given set U (often
referred to as the universe). The complement Ac of a set A with respect to
U is defined by

Ac = U \A = {a ∈ U | a /∈ A}

We can now formulate De Morgan’s laws:
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Proposition 1.2.2 (De Morgan’s laws) Assume that A1, A2, . . . , An are
subsets of a universe U . Then

(A1 ∪A2 ∪ . . . ∪An)c = Ac
1 ∩Ac

2 ∩ . . . ∩Ac
n (1.2.3)

and
(A1 ∩A2 ∩ . . . ∩An)c = Ac

1 ∪Ac
2 ∪ . . . ∪Ac

n (1.2.4)

(These rules are easy to remember if you observe that you can distribute
the c outside the parentheses on the individual sets provided you turn all
∪’s into ∩’s and all ∩’s into ∪’s).

Proof of De Morgan’s laws: We prove the first part and leave the second
as an exercise. The strategy is as indicated above; we first show that any
element of the set on the left must also be an elment of the set on the right,
and then vice versa.

Assume that x ∈ (A1 ∪ A2 ∪ . . . ∪ An)c. Then x /∈ A1 ∪ A2 ∪ . . . ∪ An,
and hence for all i, x /∈ Ai. This means that for all i, x ∈ Ac

i , and hence
x ∈ Ac

1 ∩Ac
2 ∩ . . . ∩Ac

n.
Assume next that x ∈ Ac

1 ∩ Ac
2 ∩ . . . ∩ Ac

n. This means that x ∈ Ac
i for

all i, in other words: for all i, x /∈ Ai . Thus x /∈ A1 ∪ A2 ∪ . . . ∪ An which
means that x ∈ (A1 ∪A2 ∪ . . . ∪An)c. 2

We end this section with a brief look at cartesian products. If we have
two sets, A and B, the cartesian product A × B consists of all pairs (a, b)
where a ∈ A and b ∈ B. If we have more sets A1, A2, . . . , An, the cartesian
product A1 × A2 × · · · × An consists of all n-tuples (a1, a2, . . . , an) where
a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An. If all the sets are the same (i.e. Ai = A for
all i), we usually write An instead of A× A× · · · × A. Hence Rn is the set
of all n-tuples of real numbers, just as you are used to, and Cn is the set of
all n-tuples of complex numbers.

Exercises for Section 1.2

1. Show that [0, 2] ∪ [1, 3] = [0, 3] and that [0, 2] ∩ [1, 3] = [1, 2]

2. Let U = R be the universe. Explain that (−∞, 0)c = [0,∞)

3. Show that A \B = A ∩Bc.

4. The symmetric difference A 4 B of two sets A,B consists of the elements
that belong to exactly one of the sets A,B. Show that

A4B = (A \B) ∪ (B \A)

5. Prove formula (1.2.2).

6. Prove formula (1.2.4).

7. Prove that A1 ∪A2 ∪ . . . ∪An = U if and only if Ac
1 ∩Ac

2 ∩ . . . ∩Ac
n = ∅.

8. Prove that (A∪B)×C = (A×C)∪(B×C) and (A∩B)×C = (A×C)∩(B×C).
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1.3 Families of sets

A collection of sets is usually called a family. An example is the family

A = {[a, b] | a, b ∈ R}

of all closed and bounded intervals on the real line. Families may seem
abstract, but you have to get used to them as they appear in all parts of
higher mathematics. We can extend the notions of union and intersection
to families in the following way: If A is a family of sets, we define⋃

A∈A
A = {a | a belongs to at least one set A ∈ A}

and ⋂
A∈A

A = {a | a belongs to all sets A ∈ A}

The distributive laws extend to this case in the obvious way. i.e.,

B ∩ (
⋃

A∈A
A) =

⋃
A∈A

(B ∩A) and B ∪ (
⋂

A∈A
A) =

⋂
A∈A

(B ∪A)

and so do the laws of De Morgan:

(
⋃

A∈A
A)c =

⋂
A∈A

Ac and (
⋂

A∈A
A)c =

⋃
A∈A

Ac

Families are often given as indexed sets. This means we we have a basic
set I, and that the family consists of one set Ai for each element in I. We
then write the family as

A = {Ai | i ∈ I},

and use notation such as⋃
i∈I

Ai and
⋂
i∈I

Ai

or alternatively⋃
{Ai : i ∈ I} and

⋂
{Ai : i ∈ I}

for unions and intersections
A rather typical example of an indexed set is A = {Br | r ∈ [0,∞)}

where Br = {(x, y) ∈ R2 |x2 + y2 = r2}. This is the family of all circles in
the plane with centre at the origin.
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Exercises for Section 1.3

1. Show that
⋃

n∈N[−n, n] = R

2. Show that
⋂

n∈N(− 1
n , 1

n ) = {0}.

3. Show that
⋃

n∈N[ 1
n , 1] = (0, 1]

4. Show that
⋂

n∈N(0, 1
n ] = ∅

5. Prove the distributive laws for families. i.e.,

B ∩ (
⋃

A∈A
A) =

⋃
A∈A

(B ∩A) and B ∪ (
⋂

A∈A
A) =

⋂
A∈A

(B ∪A)

6. Prove De Morgan’s laws for families:

(
⋃

A∈A
A)c =

⋂
A∈A

Ac and (
⋂

A∈A
A)c =

⋃
A∈A

Ac

1.4 Functions

Functions can be defined in terms of sets, but for our purposes it suffices
to think of a function f : X → Y from X to Y as a rule which to each
element x ∈ X assigns an element y = f(x) in Y . If f(x) 6= f(y) whenever
x 6= y, we call the function injective (or one-to-one). If there for each y ∈ Y
is an x ∈ X such that f(x) = y, the function is called surjective (or onto).
A function which is both injective and surjective, is called bijective — it
establishes a one-to-one correspondence between the elements of X and Y .

If A is subset of X, the set f(A) ⊂ Y defined by

f(A) = {f(a) | a ∈ A}

is called the image of A under f . If B is subset of Y , the set f−1(B) ⊂ X
defined by

f−1(B) = {x ∈ X | f(x) ∈ B}

is called the inverse image of B under f . In analysis, images and inverse
images of sets play important parts, and it is useful to know how these
operations relate to the boolean operations of union and intersection. Let
us begin with the good news.

Proposition 1.4.1 Let B be a family of subset of Y . Then for all functions
f : X → Y we have

f−1(
⋃

B∈B
B) =

⋃
B∈B

f−1(B) and f−1(
⋂

B∈B
B) =

⋂
B∈B

f−1(B)

We say that inverse images commute with arbitrary unions and intersec-
tions.
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Proof: I prove the first part; the second part is proved similarly. Assume first
that x ∈ f−1(

⋃
B∈B B). This means that f(x) ∈

⋃
B∈B B, and consequently

there must be at least one B ∈ B such that f(x) ∈ B. But then x ∈
f−1(B), and hence x ∈

⋃
B∈B f−1(B). This proves that f−1(

⋃
B∈B B) ⊂⋃

B∈B f−1(B).
To prove the opposite inclusion, assume that x ∈

⋃
B∈B f−1(B). There

must be at least one B ∈ B such that x ∈ f−1(B), and hence f(x) ∈ B.
This implies that f(x) ∈

⋃
B∈B B, and hence x ∈ f−1(

⋃
B∈B B). 2

For forward images the situation is more complicated:

Proposition 1.4.2 Let A be a family of subset of X. Then for all functions
f : X → Y we have

f(
⋃

A∈A
A) =

⋃
A∈A

f(A) and f(
⋂

A∈A
A) ⊂

⋂
A∈A

f(A)

In general, we do not have equality in the last case. Hence forward images
commute with unions, but not always with intersections.

Proof: To prove the statement about unions, we first observe that since
A ⊂

⋃
A∈A A for all A ∈ A, we have f(A) ⊂ f(

⋃
A∈A)A for all such A. Since

this inclusion holds for all A, we must also have
⋃

A∈A f(A) ⊂ f(
⋃

A∈A). To
prove the opposite inclusion, assume that y ∈ f(

⋃
A∈A A). This means that

there exists an x ∈
⋃

A∈A A such that f(x) = y. This x has to belong to at
least one A ∈ A, and hence y ∈ f(A) ⊂

⋃
A∈A f(A).

To prove the inclusion for intersections, just observe that since
⋂

A∈A A ⊂
A for all A ∈ A, we must have f(

⋂
A∈A A) ⊂ f(A) for all such A. Since

this inclusion holds for all A, it follows that f(
⋂

A∈A A) ⊂
⋂

A∈A f(A). The
example below shows that the opposite inclusion does not always hold. 2

Example 1: Let X = {x1, x2} and Y = {y}. Define f : X → Y by
f(x1) = f(x2) = y, and let A1 = {x1}, A2 = {x2}. Then A1 ∩ A2 = ∅ and
consequently f(A1∩A2) = ∅. On the other hand f(A1) = f(A2) = {y}, and
hence f(A1)∩f(A2) = {y}. This means that f(A1∩A2) 6= f(A1)∩f(A2).♣.

The problem in this example stems from the fact that y belongs to both
f(A1) and f(A2), but only as the image of two different elements x1 ∈ A1

og x2 ∈ A2; there is no common element x ∈ A1 ∩ A2 which is mapped to
y. This problem disappears if f is injective:

Corollary 1.4.3 Let A be a family of subset of X. Then for all injective
functions f : X → Y we have

f(
⋂

A∈A
A) =

⋂
A∈A

f(A)
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Proof: The easiest way to show this is probably to apply Proposition 2 to
the inverse function of f , but I choose instead to prove the missing inclusion
f(
⋂

A∈A A) ⊃
⋂

A∈A f(A) directly.
Assume y ∈

⋂
A∈A f(A). For each A ∈ A there must be an element

xA ∈ A such that f(xA) = y. Since f is injective, all these xA ∈ A must
be the same element x, and hence x ∈ A for all A ∈ A. This means that
x ∈

⋂
A∈A A, and since y = f(x), we have proved that y ∈ f(

⋂
A∈A A). 2

Taking complements is another operation that commutes with inverse
images, but not (in general) with forward images.

Proposition 1.4.4 Assume that f : X → Y is a function and that B ⊂
Y . Then f−1(Bc)) = (f−1(B))c. (Here, of course, Bc = Y \ B is the
complement with respect to the universe Y , while (f−1(B))c = X \ f−1(B)
is the complemet with respect to the universe X).

Proof: An element x ∈ X belongs to f−1(Bc) if and only if f(x) ∈ Bc.
On the other hand, it belongs to (f−1(B))c if and only if f(x) /∈ B, i.e. iff
f(x) ∈ Bc. 2

Finally, let us just observe that being disjoint is also a property that
is conserved under inverse images; if A ∩ B = ∅, then f−1(A) ∩ f−1(B) =
∅. Again the corresponding property for forward images does not hold in
general.

Exercises for Section 1.4

1. Let f : R → R be the function f(x) = x2. Find f([−1, 2]) and f−1([−1, 2]).

2. Let g : R2 → R be the function g(x, y) = x2 + y2. Find f([−1, 1] × [−1, 1])
and f−1([0, 4]).

3. Show that a strictly increasing function f : R → R is injective. Does it have
to be surjective?

4. Prove the second part of Proposition 1.4.1.

5. Find a function f : X → Y and a set A ⊂ X such that we have neither
f(Ac) ⊂ f(A)c nor f(A)c ⊂ f(Ac).

6. Show that if f : X → Y and g : Y → Z are injective, then g ◦ f : X → Z is
injective.

7. Show that if f : X → Y and g : Y → Z are surjective, then g ◦ f : X → Z is
surjective.
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1.5 Relations and partitions
As the material in this
section is only used a
few places in the book,
you may want to skip it
at the first reading. I
shall tell you when it is
needed.

In mathematics there are lots of relations between objects; numbers may be
equal, lines parallell, vectors orthogonal and so on. Sometimes it convenient
to have an abstract definition of what we mean by a relation.

Definition 1.5.1 By a relation on a set A, we mean a subset R of the
cartesian product A × A. We usually write xRy instead of (x, y) ∈ R to
denote that x and y are related. The symbols ∼ and ≡ are often used to
denote relations, and we then write x ∼ y and x ≡ y.

At first glance this definition may seem strange as very few people think
of relations at subsets of A×A, but a little thought will convince you that
it gives us a convenient starting point, especially if I add that in practice,
relations are rarely arbitrary subsets of A×A, but have much more structure
than the definition indicates. We shall take a look at one such class of rela-
tions, the equivalence relations. Equivalence relations are used to partition
sets into subsets, and from a pedagogical point of view, it is probably better
to start with the related notion of a partition.

Informally, a partition is what we get if we divide a set into non-overlapping
pieces. Mote precisely, If A is a set, a partition P of A is a family of subset
of A such that

(i)
⋃

P∈P P = A

(ii) any two subsets of P are disjoint,

Given a partition of A, we may introduce a relation ∼ on A by

x ∼ y ⇐⇒ x and y belong to the same set P ∈ P,

it is easy to check that ∼ has the following three properties:

(i) x ∼ x for all x ∈ X,

(ii) If x ∼ y, then y ∼ x,

(iii) If x ∼ y and y ∼ z, then x ∼ z.

We say that ∼ is the relation induced by the partition P.
Let us now turn the tables around and start with a relation on X satis-

fying conditions (i)-(iii). Any such relation is called an equivalence relation.
For each x ∈ X, define the equivalence class [x] of x by:

[x] = {y ∈ X |x ∼ y}

The following result tells us that there is a one-to-one correspondence be-
tween partitions and equivalence relations — all partitions induce an equiv-
alence relation, and all equivalence relations define a partition
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Proposition 1.5.2 If ∼ is an equivalence relation on A, the collection of
equivalence classes

P = {[x] : x ∈ X}

is a partition of X.

Proof: We have to prove that each x in A belongs to exactly one equivalence
class. We first observe that since x ∼ x by (i), x ∈ [x] and hence belongs to
at least one equivalence class. To finish the proof, we have to show that if
x ∈ [y] for some other element y ∈ A, then [x] = [y].

We first prove that [y] ⊂ [x]. To this end assume that z ∈ [y]. By
definition, this means that y ∼ z. On the other hand, the assumption that
x ∈ [y] means that y ∼ x, which by (ii) implies that x ∼ y. We thus have
x ∼ y and y ∼ z, which by (iii) means that x ∼ z. Thus z ∈ [x], and hence
we have proved that [y] ⊂ [x].

The opposite inclusion [x] ⊂ [y] is proved similarly: Assume that z ∈ [x].
By definition, this means that x ∼ z. On the other hand, the assumption
that x ∈ [y] means that y ∼ x. We thus have y ∼ x and x ∼ z, which by
(iii) implies that y ∼ z. Thus z ∈ [y], and we have proved that [x] ⊂ [y]. 2

Let us take a look at example of how equivalence classes are used to
define partitions. It assumes that you remember a little linear algebra:

Example 1.5.3: Let V be a vector space and U a subspace. Define a
relation on V by

x ∼ y ⇐⇒ x− y ∈ U

Let us show that∼ is an equivalence relation by checking the three conditions
(i)-(iii) in the definition:

(i) Since x− x = 0 ∈ U , we see that x ∼ x for all x ∈ V .
(ii) Assume that x ∼ y. This means that x− y ∈ U , and hence y − x =

−(x − y) ∈ U since subspaces are closed under multiplication by scalars.
This means that y ∼ x.

(iii) If x ∼ y and y ∼ z, then x− y ∈ U and y − z ∈ U . Since subspaces
are closed under addition, this means that x − z = (x − y) + (y − z) ∈ U ,
and hence x ∼ z.

As we have now proved that ∼ is an equivalence relation, the equivalence
classes of ∼ form a partition of V . ♣
.

If ∼ is an equivalence relation on X, we let X/∼ denote the set of all
equivalence classes of ∼. Such quotient constructions are common in all
parts of mathematics, and you will see a few examples in this book.



16CHAPTER 1. PRELIMINARIES: PROOFS, SETS, AND FUNCTIONS

Exercises to Section 1.5

1. Let P be a partition of a set A, and define a relation ∼ on A by

x ∼ y ⇐⇒ x and y belong to the same set P ∈ P

Show that ∼ is an equivalence relation.

2. Let L be the collection of all lines in the plane. Define a relation on L by
saying that two lines are equivalent if and only if they are parallel. Show
that this an quivalence relation on L.

3. Define a relation on C by

z ∼ y ⇐⇒ |z| = |w|

Show that ∼ is an equivalence relation. What does the equivalence classes
look like?

4. Let m be a natural number. Define a relation ≡ on Z by

x ≡ y ⇐⇒ x− y is divisible by m

Show that ≡ is an equivalence relation on Z. How many partition classes are
there, and what do they look like?

5. Let M be the set of all n× n matrices. Define a relation on ∼ on M by

A ∼ B ⇐⇒ if there exists an invertible matrix P such that A = P−1BP

Show that ∼ is an equivalence relation.

1.6 Countability

A set A is called countable if it possible to make a list a1, a2, . . . , an, . . . which
contains all elements of A. This is the same as saying that A is countable if
there exists a surjective function f : N → A. Finite sets A = {a1, a2, . . . , am}
are obviously countable2 as they can be listed

a1, a2, . . . , am, am, am, . . .

(you may list the same elements many times). The set N of all natural
numbers is also countable as it is automatically listed by

1, 2, 3, . . .

It is a little less obvious that the set Z of all integers is countable, but we
may use the list

0, 1,−1, 2,−2, 3,−3 . . .

It is also easy to see that a subset of a countable set must be countable, and
that the image f(A) of a countable set is countable (if {an} is a listing of
A, then {f(an)} is a listing of f(A)).

The next result is perhaps more surprising:
2Some books exclude the finite sets from the countable and treat them as a separate

category, but that would be impractical for our purposes.
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Proposition 1.6.1 If the sets A,B are countable, so is the cartesian prod-
uct A×B.

Proof: Since A and B are countable, there are lists {an}, {bn} containing
all the elements of A and B, respectively. But then

{(a1, b1), (a2, b1), (a1, b2), (a3, b1), (a2, b2), (a1, b3), (a4, b1), (a3, b2), . . . , }

is a list containing all elements of A×B (observe how the list is made; first
we list the (only) element (a1, b1) where the indicies sum to 2, then we list
the elements (a2, b1), (a1, b2) where the indicies sum to 3, then the elements
(a3, b1), (a2, b2), (a1, b3) where the indicies sum to 4 etc.) 2

Remark If A1, A2, . . . , An is a finite collection of countable sets, then the
cartesian product A1 × A2 × · · · × An is countable. This can be proved by
induction from the Proposition above, using that A1 × · · · × Ak × Ak+1 is
essentially the same set as (A1 × · · · ×Ak)×Ak+1.

The same trick we used to prove Proposition 1.6.1, can also be used to
prove the next result:

Proposition 1.6.2 If the sets A1, A2, . . . , An, . . . are countable, so is their
union

⋃
n∈N An. Hence a countable union of countable sets is itself countable.

Proof: Let Ai = {ai1, ai2, . . . , ain, . . .} be a listing of the i-th set. Then

{a11, a21, a12, a31, a22, a13, a41, a32, . . .}

is a listing of
⋃

i∈N Ai. 2

Proposition 1.6.1 can also be used to prove that the rational numbers
are countable:

Proposition 1.6.3 The set Q of all rational numbers is countable.

Proof: According to Proposition 9, the set Z × N is countable and can be
listed (a1, b1), (a2, b2), (a3, b3), . . .. But then a1

b1
, a2

b2
, a3

b3
, . . . is a list of all the

elements in Q (due to cancellations, all rational numbers will appear in-
finitely many times in this list, but that doesn’t matter). 2

Finally, we prove an important result in the opposite direction:

Theorem 1.6.4 The set R of all real numbers is not countable.
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Proof: (Cantor’s diagonal argument) Assume for contradiction that R is
countable and can be listed r1, r2, r3, . . .. Let us write down the decimal
expansions of the numbers on the list:

r1 = w1.a11a12a13a14 . . .

r2 = w2.a21a22a23a24 . . .

r3 = w3.a31a32a33a34 . . .

r4 = w4.a41a42a43a44 . . .
...

...
...

(wi is the integer part of ri, and ai1, ai2, ai3, . . . are the decimals). To get our
contradiction, we introduce a new decimal number c = 0.c1c2c3c4 . . . where
the decimals are defined by:

ci =


1 if aii 6= 1

2 if aii = 1

This number has to be different from the i-th number ri on the list as the
decimal expansions disagree on the i-th place (as c has only 1 and 2 as
decimals, there are no problems with nonuniqueness of decimal expansions).
This is a contradiction as we assumed that all real numbers were on the list.2

Exercises to Section 1.6

1. Show that a subset of a countable set is countable.

2. Show that if A1, A2, . . . An are countable, then A1×A2×· · ·An is countable.

3. Show that the set of all finite sequences (q1, q2, . . . , qk), k ∈ N, of rational
numbers is countable.

4. Show that if A is an infinite, countable set, then there is a list a1, a2, a3, . . .
which only contains elements in A and where each element in A appears
only once. Show that if A and B are two infinite, countable sets, there is a
bijection (i.e. an injective and surjective function) f : A → B.

5. Show that the set of all subsets of N is not countable (Hint: Try to modify
the proof of Theorem 1.6.4.)



Chapter 2

Metric Spaces

Many of the arguments you have seen in several variable calculus are almost
identical to the corresponding arguments in one variable calculus, especially
arguments concerning convergence and continuity. The reason is that the
notions of convergence and continuity can be formulated in terms of distance,
and that the notion of distance between numbers that you need in the one
variable theory, is very similar to the notion of distance between points or
vectors that you need in the theory of functions of severable variables. In
more advanced mathematics, we need to find the distance between more
complicated objects than numbers and vectors, e.g. between sequences, sets
and functions. These new notions of distance leads to new notions of con-
vergence and continuity, and these again lead to new arguments suprisingly
similar to those we have already seen in one and several variable calculus.

After a while it becomes quite boring to perform almost the same argu-
ments over and over again in new settings, and one begins to wonder if there
is general theory that covers all these examples — is it possible to develop
a general theory of distance where we can prove the results we need once
and for all? The answer is yes, and the theory is called the theory of metric
spaces.

A metric space is just a set X equipped with a function d of two variables
which measures the distance between points: d(x, y) is the distance between
two points x and y in X. It turns out that if we put mild and natural
conditions on the function d, we can develop a general notion of distance
that covers distances between number, vectors, sequences, functions, sets
and much more. Within this theory we can formulate and prove results
about convergence and continuity once and for all. The purpose of this
chapter is to develop the basic theory of metric spaces. In later chapters we
shall meet some of the applications of the theory.

19
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2.1 Definitions and examples

As already mentioned, a metric space is just a set X equipped with a function
d : X×X → R which measures the distance d(x, y) beween points x, y ∈ X.
For the theory to work, we need the function d to have properties similar
to the distance functions we are familiar with. So what properties do we
expect from a measure of distance?

First of all, the distance d(x, y) should be a nonnegative number, and it
should only be equal to zero if x = y. Second, the distance d(x, y) from x to
y should equal the distance d(y, x) from y to x. Note that this is not always
a reasonable assumption — if we, e.g., measure the distance from x to y by
the time it takes to walk from x to y, d(x, y) and d(y, x) may be different —
but we shall restrict ourselves to situations where the condition is satisfied.
The third condition we shall need, says that the distance obtained by going
directly from x to y, should always be less than or equal to the distance we
get when we stop at a third pont z along the way, i.e.

d(x, y) ≤ d(x, z) + d(z, x)

It turns out that these conditions are the only ones we need, and we sum
them up in a formal definition.

Definition 2.1.1 A metric space (X, d) consists of a non-empty set X and
a function d : X ×X → [0,∞) such that:

(i) (Positivity) For all x, y ∈ X, d(x, y) ≥ 0 with equality if and only if
x = y.

(ii) (Symmetry) For all x, y ∈ X, d(x, y) = d(y, x).

(iii) (Triangle Inequality) For all x, y, z ∈ X

d(x, y) ≤ d(x, z) + d(z, y)

A function d satisfying conditions (i)-(iii), is called a metric on X.

Comment: When it is clear – or irrelevant – which metric d we have in
mind, we shall often refer to “the metric space X” rather than “the metric
space (X, d)”.

Let us take a look at some examples of metric spaces.

Example 1: If we let d(x, y) = |x−y|, (R, d) is a metric space. The first two
conditions are obviously satisfied, and the third follows from the ordinary
triangle inequality for real numbers:

d(x, y) = |x− y| = |(x− z) + (z − y)| ≤ |x− z|+ |z − y| = d(x, z) + d(z, y)
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Example 2: If we let d(x,y) = |x−y|, then (Rn, d) is a metric space. The
first two conditions are obviously satisfied, and the third follows from the
triangle inequality for vectors the same way as above :

d(x,y) = |x− y| = |(x− z) + (z− y)| ≤ |x− z|+ |z− y| = d(x, z) + d(z,y)

Example 3: Assume that we want to move from one point x = (x1, x2)
in the plane to another y = (y1, y2), but that we are only allowed to move
horizontally and vertically. If we first move horizontally from (x1, x2) to
(y1, x2) and then vertically from (y1, x2) to (y1, y2), the total distance is

d(x,y) = |y1 − x1|+ |y2 − x2|

This gives us a metric on R2 which is different from the usual metric in
Example 2. It is ofte referred to as the Manhattan metric or the taxi cab
metric.

Also in this cas the first two conditions of a metric space are obviously
satisfied. To prove the triangle inequality, observe that for any third point
z = (z1, z2), we have

d(x,y) = |y1 − x1|+ |y2 − x1| =

= |(y1 − z1) + (z1 − x1)|+ |(y2 − z2) + (z2 − x2)| ≤

≤ |y1 − z1|+ |z1 − x1|+ |y2 − z2|+ |z2 − x2| =

= |z1 − x1|+ |z2 − x2|+ |y1 − z1|+ |y2 − z2| =

= d(x, z) + d(z, y)

where we have used the ordinary triangle inequality for real numbers to get
from the second to the third line.

Example 4: We shall now take a look at an example of a different kind.
Assume that we want to send messages in a language of N symbols (letters,
numbers, punctuation marks, space, etc.) We assume that all messages have
the same length K (if they are too short or too long, we either fill them out
or break them into pieces). We let X be the set of all messages, i.e. all
sequences of symbols from the language of length K. If x = (x1, x2, . . . , xK)
and y = (y1, y2, . . . , yK) are two messages, we define

d(x,y) = the number of indices n such that xn 6= yn

It is not hard to check that d is a metric. It is usually referred to as the
Hamming-metric, and is much used in coding theory where it serves as a
measure of how much a message gets distorted during transmission.
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Example 5: There are many ways to measure the distance between func-
tions, and in this example we shall look at some. Let X be the set of all
continuous functions f : [a, b] → R. Then

d1(f, g) = sup{|f(x)− g(x)| : x ∈ [a, b]}

is a metric on X. This metric determines the distance beween two functions
by measuring the distance at the x-value where the graphs are most apart.
This means that the distance between two functions may be large even if
the functions in average are quite close. The metric

d2(f, g) =
∫ b

a
|f(x)− g(x)| dx

instead sums up the distance between f(x) og g(x) at all points. A third
popular metric is

d3(f, g) =
(∫ b

a
|f(x)− g(x)|2 dx

) 1
2

This metric is a generalization of the usual (euclidean) metric in Rn:

d(x,y) =

√√√√ n∑
i=1

(xi − yi)2 =

(
n∑

i=1

(xi − yi)2
) 1

2

(think of the integral as a generalized sum). That we have more than
one metric on X, doesn’t mean that one of them is “right” and the oth-
ers “wrong”, but that they are useful for different purposes.

Eksempel 6: The metrics in this example may seem rather strange. Al-
though they are not very useful in applications, they are handy to know
about as they are totally different from the metrics we are used to from Rn

and may help sharpen our intuition of how a metric can be. Let X be any
non-empty set, and define:

d(x, y) =


0 if x = y

1 if x 6= y

It is not hard to check that d is a metric on X, usually referred to as the
discrete metric.

Eksempel 7: There are many ways to make new metric spaces from old.
The simplest is the subspace metric: If (X, d) is a metric space and A
is a non-empty subset of X, we can make a metric dA on A by putting
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dA(x, y) = d(x, y) for all x, y ∈ A — we simply restrict the metric to A. It
is trivial to check that dA is a metric on A. In practice, we rarely bother to
change the name of the metric and refer to dA simply as d, but remember
in the back of our head that d is now restricted to A.

There are many more types of metric spaces than we have seen so far, but
the hope is that the examples above will give you a certain impression of the
variety of the concept. In the next section we shall see how we can define
convergence and continuity for sequences and functions in metric spaces.
When we prove theorems about these concepts, they automatically hold in
all metric spaces, saving us the labor of having to prove them over and over
again each time we introduce a new class of spaces.

Let us end this section by an immediate consequence of the triangle
inequality.

Proposition 2.1.2 (Inverse Triangle Inequality) For all elements x, y, z
in a metric space (X, d), we have

|d(x, y)− d(x, z)| ≤ d(y, z)

Proof: Since the absolute value |d(x, y) − d(x, z)| is the largest of the two
numbers d(x, y)− d(x, z) and d(x, z)− d(x, y), it suffices to show that they
are both less than or equal to d(y, z). By the triangle inequality

d(x, y) ≤ d(x, z) + d(z, y)

and hence d(x, y) − d(x, z) ≤ d(z, y) = d(y, z). To get the other inequality,
we use the triangle inequality again,

d(x, z) ≤ d(x, y) + d(y, z)

and hence d(x, z)− d(x, y) ≤ d(y, z). 2

Problems for Section 2.1

1. Show that (X, d) in Example 4 is a metric space.

2. Show that (X, d1) in Example 5 is a metric space.

3. Show that (X, d2) in Example 5 is a metric space.

4. Show that (X, d) in Example 6 is a metric space.

5. A sequence {xn}n∈N of real numbers is called bounded if there is a number
M ∈ R such that |xn| ≤ M for all n ∈ N. Let X be the set of all bounded
sequences. Show that

d({xn}, {yn}) = sup |xn − yn| : n ∈ N}

is a metric on X.
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6. If V is a (real) vector space, a function | · | : V → R is called a norm if the
following conditions are satisfied:

(i) For all x ∈ V , |x| ≥ 0 with equality if and only if x = 0.

(ii) |αx| = |α||x| for all α ∈ R and all x ∈ V .

(iii) |x + y| ≤ |x|+ |y| for all x, y ∈ V .

Show that if | · | is a norm, then d(x, y) = |x− y| defines a metric on V .

7. Show that for vectors x,y, z ∈ Rm,

| |x− y| − |x− z| | ≤ |y − z|

8. Assume that d1 og d2 are two metrics on X. Show that

d(x, y) = d1(x, y) + d2(x, y)

is a metric on X.

9. Assume that (X, dX) and (Y, dY ) are two metric spaces. Define a function

d : (X × Y )× (X × Y ) → R

by
d((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2)

Show that d is a metric on X × Y .

10. Let X be a non-empty set, and let ρ : X ×X → R be a function satisfying:

(i) ρ(x, y) ≥ 0 with equality if and only if x = y.

(ii) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all x, y, z ∈ X.

Define d : X ×X → R by

d(x, y) = max{ρ(x, y), ρ(y, x)}

Show that d is a metric on X.

2.2 Convergence and continuity

We begin our study of metric spaces by defining convergence of sequences. A
sequence {xn} in a metric space X is just an ordered collection {x1, x2, x3, . . . , xn, . . .}
of elements in X enumerated by the natural numbers.

Definition 2.2.1 Let (X, d) be a metric space. A sequencee {xn} in X
converges to a point a ∈ X if there for every ε > 0 exists an N ∈ N such
that d(xn, a) < ε for all n ≥ N . We write limn→∞ xn = a or xn → a.

Note that this definition exactly mimics the definition of convergence in
R og Rn. Here is an alternative formulation.
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Lemma 2.2.2 A sequence {xn} in a metric space (X, d) converges to a if
and only if limn→∞ d(xn, a) = 0.

Proof: The distances {d(xn, a)} form a sequence of nonnegative numbers.
This sequence converges to 0 if and only if there for every ε > 0 exists an
N ∈ N such that d(xn, a) < ε when n ≥ N . But this is exactly what the
definition above says. 2

May a sequence converge to more than one point? We know that it
cannot in Rn, but some of these new metric spaces are so strange that we
can not be certain without a proof.

Proposition 2.2.3 A sequence in a metric point can not converge to more
than one point.

Proof: Assume that limn→∞ xn = a and limn→∞ xn = b. We must show
that this is only possible if a = b. According to the triangle inequality

d(a, b) ≤ d(a, xn) + d(xn, b)

Taking limits, we get

d(a, b) ≤ lim
n→∞

d(a, xn) + lim
n→∞

d(xn, b) = 0 + 0 = 0

Consequently, d(a, b) = 0, and according to point (i) (positivity) in the def-
inition of metric spaces, a = b. 2

Note how we use the conditions in Definition 2.1.1 in the proof above. So
far this is all we know about metric spaces. As the theory develops, we shall
get more and more tools to work with.

We can also phrase the notion of convergence in more geometric terms.
If a is an element of a metric space X, and r is a positive number, the (open)
ball centered at a with radius r is the set

B(a; r) = {x ∈ X | d(x, a) < r}

As the terminology suggests, we think of B(a; r) as a ball around a with
radius r. Note that x ∈ B(a; r) means exactly the same as d(x, a) < r.

The definition of convergence can now be rephrased by saying that {xn}
converges to a if the terms of the sequence {xn} eventually end up inside
any ball B(a; ε) around a.

Let us now see how we can define continuity in metric spaces.

Definition 2.2.4 Assume that (X, dX), (Y, dY ) are two metric spaces. A
function f : X → Y is continuous at a point a ∈ X if for every ε > 0 there
is a δ > 0 such that dY (f(x), f(a)) < ε whenever dX(x, a) < δ.



26 CHAPTER 2. METRIC SPACES

This definition says exactly the same as as the usual definitions of continuity
for functions of one or several variables; we can get the distance between
f(x) and f(a) smaller than ε by choosing x such that the distance between
x and a is smaller than δ. The only difference is that we are now using the
metrics dX og dY to measure the distances.

A more geometric formulation of the definition is to say that for any open
ball B(f(a); ε) around f(a), there is an open ball B(a, δ) around a such that
f(B(a; δ)) ⊂ B(f(a); ε) (make a drawing!).

There is a close connection between continuity and convergence which
reflects our intuitive feeling that f is continuous at a point a if f(x) ap-
proaches f(a) whenever x approaches a.

Proposition 2.2.5 The following are equivalent for a function f : X → Y
between metric spaces:

(i) f is continuous at a point a ∈ X.

(ii) For all sequences {xn} converging to a, the sequence {f(xn)} converges
to f(a).

Proof: (i) =⇒ (ii): We must show that for any ε > 0, there is an N ∈ N
such that dY (f(xn), f(a)) < ε when n ≥ N . Since f is continuous at a,
there is a δ > 0 such that dY (f(xn), f(a)) < ε whenever dX(x, a) < δ. Since
xn converges to a, there is an N ∈ N such that dX(xn, a) < δ when n ≥ N .
But then dY (f(xn), f(a)) < ε for all n ≥ N .

(ii) =⇒ (i) We argue contrapositively: Assume that f is not continuous
at a. We shall show that there is a sequence {xn} converging to a such that
{f(xn)} does not converge to f(a). That f is not continuous at a, means
that there is an ε > 0 such that no matter how small we choose δ > 0, there
is an x such that dX(x, a) < δ, but dY (f(x), f(a)) ≥ ε. In particular, we can
for each n ∈ N find an xn such that dX(xn, a) < 1

n , but dY (f(xn), f(a)) ≥ ε.
Then {xn} converges to a, but {f(xn)} does not converge to f(a). 2

The composition of two continuous functions is continuous.

Proposition 2.2.6 Let (X, dX), (Y, dY ), (Z, dZ) be three metric spaces.
Assume that f : X → Y and g : Y → Z are two functions, and let h : X → Z
be the composition h(x) = g(f(x)). If f is continuous at the point a ∈ X
and g is continuous at the point b = f(a), then h is continuous at a.

Proof: Assume that {xn} converges to a. Since f is continuous at a, the
sequence {f(xn)} converges to f(a), and since g is continuous at b = f(a),
the sequence {g(f(xn))} converges to g(f(a)), i.e {h(xn)} converges to h(a).
By the proposition above, h is continuous at a. 2
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As in calculus, a function is called continuous if it is continuous at all
points:

Definition 2.2.7 A function f : X → Y between two metrics spaces is
called continuous if it continuous at all points x in X.

Problems to Section 2.2

1. Assume that (X, d) is a discrete metric space (recall Example 6 in Section
2.1). Show that the sequence {xn} converges to a if and only if there is an
N ∈ N such that xn = a for all n ≥ N .

2. Prove Proposition 2.2.6 without using Proposition 2.2.5, i.e. use only the
definition of continuity.

3. Assume that (X, d) is a metric space, and let R have the usual metric
dR(x, y) = |x− y|. Assume that f, g : X → R are continuous functions.

a) Show that cf is continuous for all constants c ∈ R.

b) Show that f + g is continuous.

c) Show that fg is continuous.

4. Let (X, d) be a metric space and choose a point a ∈ X. Show that the
function f : X → R given by f(x) = d(x, a) is continuous (we are using the
usual metric dR(x.y) = |x− y[ on R).

5. Let (X, dX) and (Y, dY ) be two metric spaces. A function f : X → Y
is said to be a Lipschitz function if there is a constant K ∈ R such that
dY (f(u), f(v)) ≤ KdX(u, v) for all u, v ∈ X. Show that all Lipschitz func-
tions are continuous.

6. Let dR be the usual metric on R and let ddisc be the discrete metric on R.
Let id : R → R be the identity function id(x) = x. Show that

id : (R, ddisc) → (R, dR)

is continuous, but that

id : (R, dR) → (R, ddisc)

is not continuous. Note that this shows that the inverse of a bijective, con-
tinuous function is not necessarily continuous.

7. Assume that d1 and d2 are two metrics on the same space X. We say that
d1 and d2 are equivalent if there are constants K and M such that d1(x, y) ≤
Kd2(x, y) and d2(x, y) ≤ Md1(x, y) for all x, y ∈ X.

a) Assume that d1 and d2 are equivalent metrics on X. Show that if {xn}
converges to a in one of the metrics, it also converges to a in the other
metric.

b) Assume that d1 and d2 are equivalent metrics on X, and that (Y, d) is
a metric space. Show that if f : X → Y is continuous when we use the
d1-metric on X, it is also continuous when we use the d2-metric.
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c) We are in the same setting as i part b), but this time we have a function
g : Y → X. Show that if g is continuous when we use the d1-metric on
X, it is also continuous when we use the d2-metric.

d Assume that d1, d2 and d3 are three metrics on X. Show that if d1

and d2 are equivalent, and d2 and d3 are equivalent, then d1 and d3 are
equivalent.

e) Show that

d1(x,y) = |x1 − y1|+ |x2 − y2|+ . . . + |xn − yn|

d2(x,y) = max{|x1 − y1|, |x2 − y2|, . . . , |xn − yn[}

d3(x,y) =
√
|x1 − y1|2 + |x2 − y2|2 + . . . + |xn − yn|2

are equivalent metrics on Rn.

2.3 Open and closed sets

In this and the following sections, we shall study some of the most important
classes of subsets of metric spaces. We begin by recalling and extending the
definition of balls in a metric space:

Definition 2.3.1 Let a be a point in a metric space (X, d), and assume that
r is a positive, real number. The (open) ball centered at a with radius r is
the set

B(a; r) = {x ∈ X : d(x, a) < r}

The closed ball centered ar a with radius r is the set

B(a; r) = {x ∈ X : d(x, a) ≤ r}

In many ways, balls in metric spaces behave just the way we are used to, but
geometrically they may look quite different from ordinary balls. A ball in the
Manhattan metric (Example 3 in Section 2.1) looks like an ace of diamonds,
while a ball in the discrete metric (Example 6 i Section 2.1) consists either
of only one point or the entire space X.

If A is a subset of X and x is a point in X, there are three possibilities:

(i) There is a ball B(x; r) around x which is contained in A. In this case
x is called an interior point of A.

(ii) There is a ball B(x; r) around x which is contained in the complement
Ac. In this case x is called an exterior point of A.

(iii) All balls B(x; r) around x contains points in A as well as points in the
complement Ac. In this case x is a boundary point of A.
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Note that an interior point always belongs to A, while an exterior point
never belongs to A. A boundary point will some times belong to A, and
some times to Ac.

We now define the important concepts of open and closed sets:

Definition 2.3.2 A subset A of a metric space is open if it does not contain
any of its boundary points, and it is closed if it contains all its boundary
points.

Most sets contain some, but not all of their boundary points, and are
hence neither open nor closed. The empty set ∅ and the entire space X are
both open and closed as they do not have any boundary points. Here is an
obvious, but useful reformulation of the definition of an open set.

Proposition 2.3.3 A subset A of a metric space X is open if and only if
it only consists of interior points, i.e. for all a ∈ A, there is a ball B(a; r)
around a which is contained in A.

Observe that a set A and its complement Ac have exactly the same
boundary points. This leads to the following useful result.

Proposition 2.3.4 A subset A of a metric space X is open if and only if
its complement Ac is closed.

Proof: If A is open, it does not contain any of the (common) boundary
points. Hence they all belong to Ac, and Ac must be closed.

Conversely, if Ac is closed, it contains all boundary points, and hence A
can not have any. This means that A is open. 2

The following observation may seem obvious, but needs to be proved:

Lemma 2.3.5 All open balls B(a; r) are open sets, while all closed balls
B(a; r) are closed sets.

Proof: We prove the statement about open balls and leave the other as an
exercise. Assume that x ∈ B(a; r); we must show that there is a ball B(x; ε)
around x which is contained in B(a; r). If we choose ε = r − d(x, a), we see
that if y ∈ B(x; ε) then by the triangle inequality

d(y, a) ≤ d(y, x) + d(x, a) < ε + d(x, a) = (r − d(x, a)) + d(x, a) = r

Thus d(y, a) < r, and hence B(x; ε) ⊂ B(a; r) 2

The next result shows that closed sets are indeed closed as far as se-
quences are concerned:
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Proposition 2.3.6 Assume that F is a subset of a metric space X. The
following are equivalent:

(i) F is closed.

(ii) If {xn} is a convergent sequence of elements in F , then the limit a =
limn→∞ xn always belongs to F .

Proof: Assume that F is closed and that a does not belong to F . We
must show that a sequence from F cannot converge to a. Since F is closed
and contains all its boundary points, a has to be an exterior point, and
hence there is a ball B(a; ε) around a which only contains points from the
complement of F . But then a sequence from F can never get inside B(a, ε),
and hence cannot converge to a.

Assume now that that F is not closed. We shall construct a sequence
from F that converges to a point outside F . Since F is not closed, there is a
boundary point a that does not belong to F . For each n ∈ N, we can find a
point xn from F in B(a; 1

n). Then {xn} is a sequence from F that converges
to a point a which is not in F . 2

An open set containing x is called a neighborhood of x1. The next result
is rather silly, but also quite useful.

Lemma 2.3.7 Let U be a subset of the metric space X, and assume that
each x0 ∈ U has a neighborhood Ux0 ⊂ U . Then U is open.

Proof: We must show that any x0 ∈ U is an interior point. Since Ux0 is
open, there is an r > 0 such that B(x0, r) ⊂ Ux0 . But then B(x0, r) ⊂ U ,
which shows that x0 is an interior point of U . 2

In Proposition 2.2.5 we gave a characterization of continuity in terms of
sequences. We shall now prove three characterizations in terms of open and
closed sets. The first one characterizes continuity at a point.

Proposition 2.3.8 Let f : X → Y be a function between metric spaces,
and let x0 be a point in X. Then the following are equivalent:

(i) f is continuous at x0.

(ii) For all neighborhoods V of f(x0), there is a neighborhood U of x0 such
that f(U) ⊂ V .

1In some books, a neighborhood of x is not necessarily open, but does contain a ball
centered at x. What we have defined, is the then referred to as an open neighborhood
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Proof: (i) =⇒ (ii): Assume that f is continuous at x0. If V is a neighbor-
hood of f(x0), there is a ball BY (f(x0), ε) centered at f(x0) and contained in
V . Since f is continuous at x0, there is a δ > 0 such that dY (f(x), f(x0)) < ε
whenever dX(x, x0) < δ. But this means that f(BX(x0, δ)) ⊂ BY (f(x0), ε) ⊂
V . Hence (ii) is satisfied if we choose U = B(x0, δ).

(ii) =⇒ (i) We must show that for any given ε > 0, there is a δ > 0 such
that dY (f(x), f(x0)) < ε whenever dX(x, x0) < δ. Since V = BY (f(x0), ε)
is a neighbohood of f(x0), there must be a neighborhood U of x0 such that
f(U) ⊂ V . Since U is open, there is a ball B(x0, δ) centered at x0 and
contained in U . Assume that dX(x, x0) < δ. Then x ∈ BX(x0, δ) ⊂ U ,
and hence f(x) ∈ V = BY (f(x0), ε), which means that dY (f(x), f(x0)) < ε.
Hence we have found a δ > 0 such that dY (f(x), f(x0)) < ε whenever
dX(x, x0) < δ, and hence f is continuous at x0. 2

We can also use open sets to characterize global continuity of functions:

Proposition 2.3.9 The following are equivalent for a function f : X → Y
between two metric spaces:

(i) f is continuous.

(ii) Whenever V is an open subset of Y , the inverse image f−1(V ) is an
open set in X.

Proof: (i) =⇒ (ii): Assume that f is continuous and that V ⊂ Y is open.
We shall prove that f−1(V ) is open. For any x0 ∈ f−1(V ), f(x0) ∈ V , and
we know from the previous theorem that there is a neighborhood Ux0 of
x0 such that f(Ux0) ⊂ V . But then Ux0 ⊂ f−1(V ), and by Lemma 2.3.7,
f−1(V ) is open.

(ii) =⇒ (i) Assume that the inverse images of open sets are open. To
prove that f is continuous at an arbitrary point x0, Proposition 2.3.6 tells
us that it suffices to show that for any neighborhood U of f(x0), there is a
neighborhood V of x0 such that f(V ) ⊂ U . But this easy: Since the inverse
image of an open set is open, we can simply shoose U = f−1(V ). 2

The description above is useful in many situations. Using that inverse
images commute with complements, and that closed sets are the comple-
ments of open, we can translate it into a statement about closed sets:

Proposition 2.3.10 The following are equivalent for a function f : X → Y
between two metric spaces:

(i) f is continuous.

(ii) Whenever F is a closed subset of Y , the inverse image f−1(F ) is a
closed set in X.
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Proof: (i) =⇒ (ii): Assume that f is continuous and that F ⊂ Y is closed.
Then F c is open, and by the previous proposition, f−1(F c) is open. Since
inverse images commute with complements, (f−1(F ))c = f−1(F c). This
means that f−1(F ) has an open complement and hence is closed.

(ii) =⇒ (i) Assume that the inverse images of closed sets are closed.
According to the previous proposition, it suffices to show that the inverse
image of any open set V ⊂ Y is open. But if V is open, the complement V c

is closed, and hence by assumption f−1(V c) is closed. Since inverse images
commute with complements, (f−1(V ))c = f−1(V c). This means that the
complement of f−1(V ) is closed, and hence f−1(V ) is open. 2

Mathematicians usually sum up the last two theorems by saying that
openness and closedness are preserved under inverse, continuous images. Be
aware that these properties are not preserved under continuous, direct im-
ages; even if f is continuous, the image f(U) of an open set U need not be
open, and the image f(F ) of a closed F need not be closed:

Eksempel 1: Let f, g : R → R be the continuous functions defined by

f(x) = x2 and g(x) = arctanx

The set R is both open and closed, but f(R) equals [0,∞) which is not open,
and g(R) equals (−π

2 , π
2 ) which is not closed. Hence the continuous image

of an open set need not be open, and the continuous image of a closed set
need not be closed. ♣

We end this section with two simple but useful observations on open and
closed sets.

Proposition 2.3.11 Let (X, d) be a metric space.

a) If G is a (finite or infinite) collection of open sets, then the union⋃
G∈G G is open.

b) If G1, G2, . . . , Gn is a finite collection of open sets, then the intersec-
tion G1 ∩G2 ∩ . . . ∩Gn is open.

Proof: Left to the reader (see Exercise 11, where you are also asked to show
that the intersection of infinitely many open sets is not necessarily open).

Proposition 2.3.12 Let (X, d) be a metric space.

a) If F is a (finite or infinite) collection of closed sets, then the intersec-
tion

⋂
F∈F F is closed.

b) If F1, F2, . . . , Fn is a finite collection of closed sets, then the union
F1 ∪ F2 ∪ . . . ∪ Fn is closed.
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Proof: Left to the reader (see Exercise 12, where you are also asked to show
that the union of infinitely many closed sets is not necessarily closed).

Problems to Section 2.3

1. Assume that (X, d) is a discrete metric space.

a) Show that an open ball in X is either a set with only one element (a
singleton) or all of X.

b) Show that all subsets of X are both open and closed.

c) Assume that (Y, dY ) is another metric space. Show that all functions
f : X → Y are continuous.

2. Give a geometric description of the ball B(a; r) in the Manhattan metric (see
Example 3 in Section 2.1). Make a drawing of a typical ball. Show that the
Manhattan metric and the usual metric in R2 have exactly the same open
sets.

3. Prove the second part of Lemma 2.3.5, i.e. prove that a closed ball B(a; r) is
always a closed set.

4. Assume that f : X → Y and g : Y → Z are continuous functions. Use
Proposition 2.3.9 to show that the composition g ◦ f : X → Z is continuous.

5. Assume that A is a subset of a metric space (X, d). Show that the interior
points of A are the exterior points of Ac, and that the exterior points of A
are the interior points of Ac.. Check that the boundary points of A are the
boundary points of Ac.

6. Assume that A is a subset of a metric space X. The interior A◦ of A is the
set consisting of all interior points of A. Show that A◦ is open.

7. Assume that A is a subset of a metric space X. The closure A of A is the
set consisting of all interior points plus all boundary points of A.

a) Show that A is closed.

b) Let {an} be a sequence from A converging to a point a. Show that
a ∈ A.

8. Let (X, d) be a metric space, and let A be a subset of X. We shall consider
A with the subset metric dA.

a) Assume that G ⊂ A is open in (X, d). Show that G is open in (A, dA).

b) Find an example which shows that although G ⊂ A is open in (A, dA)
it need not be open in (X, dX).

c) Show that if A is an open set in (X, dX), then a subset G of A is open
in (A, dA) if and only if it is open in (X, dX)

8. Let (X, d) be a metric space, and let A be a subset of X. We shall consider
A with the subset metric dA.

a) Assume that F ⊂ A is closed in (X, d). Show that F is closed in (A, dA).
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b) Find an example which shows that although F ⊂ A is closed in (A, dA)
it need not be closed in (X, dX).

c) Show that if A is a closed set in (X, dX), then a subset F of A is open
in (A, dA) if and only if it is closed in (X, dX)

10. Let (X, d) be a metric space and give R the usual metric. Assume that
f : X → R is continuous.

a) Show that the set
{x ∈ X | f(x) < a}

is open for all a ∈ R.

a) Show that the set
{x ∈ X | f(x) ≤ a}

is closed for all a ∈ R.

11. Prove Proposition 2.3.12. Find an example of an infinite collection of open
sets G1, G2, . . . whose intersection is not open.

12. Prove Proposition 2.3.12. Find an example of an infinite collection of closed
sets F1, F2, . . . whose union is not closed.

2.4 Complete spaces

One of the reasons why calculus in Rn is so successful, is that Rn is a
complete space. We shall now generalize this notion to metric spaces. The
key concept is that of a Cauchy sequence:

Definition 2.4.1 A sequence {xn} in a metric space (X, d) is a Cauchy
sequence if for each ε > 0 there is an N ∈ N such that d(xn, xm) < ε
whenever n, m ≥ N .

We begin by a simple observation:

Proposition 2.4.2 Every convergent sequence is a Cauchy sequence.

Proof: If a is the limit of the sequence, there is for any ε > 0 a number
N ∈ N such that d(xn, a) < ε

2 whenever n ≥ N . If n, m ≥ N , the triangle
inequality tells us that

d(xn, xm) ≤ d(xn, a) + d(a, xm) <
ε

2
+

ε

2
= ε

and consequently {xn} is a Cauchy sequence. 2

The converse of the proposition above does not hold in all metric spaces,
and we make the following definition:
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Definition 2.4.3 A metric space is called complete if all Cauchy sequences
converge.

We know from MAT1110 that Rn is complete, but that Q is not when we
use the usual metric d(x, y) = |x − y|. The complete spaces are in many
ways the “nice” metric spaces, and we shall spend much time studying their
properties. We shall also spend some time showing how we can make non-
complete spaces complete. Example 5 in Section 2.1 (where X is the space
of all continuous f : [a, b] → R) shows some interesting cases; X with the
metric d1 is complete, but not X with the metrics d2 and d3. By introducing
a stronger notion of integral (the Lebesgue integral) we can extend d2 and
d3 to complete metrics by making them act on richer space of functions.

The following proposition is quite useful. Remember that if A is a subset
of X, then dA is the subspace metric obtained by restricting d to A (see
Example 7 in Section 2.1).

Proposition 2.4.4 Assume that (X, d) is a complete metric space. If A is
a subset of X, (A, dA) is complete if and only if A is closed.

Proof: Assume first that A is closed. If {an} is a Cauchy sequence in A, {an}
is also a Cauchy sequence in X, and since X is complete, {an} converges to
a point a ∈ X. Since A is closed, Proposition 2.3.6 tells us that a ∈ A. But
then {an} converges to a in (A, dA), and hence (A, dA) is complete.

If A is not closed, there is a boundary point a that does not belong to A.
Each ball B(a, 1

n) must contain an element an from A. In X, the sequence
{an} converges to a, and must be a Cauchy sequence. However, since a /∈ A,
the sequence {an} does not converge to a point in A. Hence we have found
a Cauchy sequence in (A, dA) that does not converge to a point in A, and
hence (A, dA) is incomplete. 2

The nice thing about complete spaces is that we can prove that sequences
converge to a limit without actually constructing or specifying the limit —
all we need is to prove that the sequence is a Cauchy sequence. To prove
that a sequence has the Cauchy property, we only need to work with the
given terms of the sequence and not the unknown limit, and this often makes
the arguments much easier. As an example of this technique, we shall now
prove an important theorem that will be useful later in the course, but first
we need some definitions.

A function f : X → X is called a contraction if there is a positive number
s < 1 such that

d(f(x), f(y)) ≤ s d(x, y) for all x, y ∈ X

We call s a contraction factor for f . All contractions are continuous (prove
this!), and by induction it is easy to see that

d(f◦n(x), f◦n(y)) ≤ snd(x, y)
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where f◦n(x) = f(f(f(. . . f(x)))) is the result of iterating f exactly n times.
If f(a) = a, we say that a is a fixed point for f .

Theorem 2.4.5 (Banach’s Fixed Point Theorem) Assume that (X, d)
is a complete metric space and that f : X → X is a contraction. Then f
has a unique fixed point a, and no matter which starting point x0 ∈ X we
choose, the sequence

x0, x1 = f(x0), x2 = f◦2(x0), . . . , xn = f◦n(x0), . . .

converges to a.

Proof: Let us first show that f can not have more than one fixed point. If
a and b are two fixed points, and s is a contraction factor for f , we have

d(a, b) = d(f(a), f(b)) ≤ s d(a, b)

Since 0 < s < 1, this is only possible if d(a, b) = 0, i.e. if a = b.
To show that f has a fixed point, choose a starting point x0 in X and

consider the sequence

x0, x1 = f(x0), x2 = f◦2(x0), . . . , xn = f◦n(x0), . . .

Assume, for the moment, that we can prove that this is a Cauchy sequence.
Since (X, d) is complete, the sequence must converge to a point a. To prove
that a is a fixed point, observe that we have xn+1 = f(xn) for all n, and
taking the limit as n → ∞, we get a = f(a). Hence a is a fixed point of f ,
and the theorem must hold. Thus it suffices to prove that our assumption
that {xn} is a Cauchy sequence, really holds.

Choose two elements xn og xn+k of the sequence. By repeated use of the
triangle inequality, we get

d(xn, xn+k) ≤ d(xn, xn+1) + d(xn+1, xn+2) + . . . + d(xn+k−1, xn+k) =

= d(f◦n(x0), f◦n(x1)) + d(f◦(n+1)(x0), f◦(n+1)(x1)) + . . .

. . . + d(f◦(n+k−1)(x0), f◦(n+k−1)(x1)) ≤
≤ snd(x0, x1) + sn+1d(x0, x1) + . . . + sn+k−1d(x0, x1) =

=
sn(1− sk)

1− s
d(x0, x1) ≤

sn

1− s
d(x0, x1)

where we have summed a geometric series to get to the last line. Since
s < 1, we can get the last expression as small as we want by choosing n
large enough. Given an ε > 0, we can in particular find an N such that
sN

1−s d(x0, x1) < ε. For n, m = n + k larger than or equal to N , we thus have

d(xn, xm) ≤ sn

1− s
d(x0, x1) < ε

and hence {xn} is a Cauchy sequence. 2
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Problems to Section 2.4

1. Show that the discrete metric is always complete.

2. Assume that (X, dX) and (Y, dY ) are complete spaces, and give X × Y the
metric d defined by

d((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2)

Show that (X × Y, d) is complete.

3. If A is a subset of a metric space (X, d), the diameter diam(A) of A is defined
by

diam(A) = sup{d(x, y) | x, y ∈ A}

Let {An} be a collection of subsets of X such that An+1 ⊂ An and diam(An) →
0, and assume that {an} is a sequence such that an ∈ An for each n ∈ N.
Show that if X is complete, the sequence {an} converges.

4. Assume that d1 and d2 are two metrics on the same space X. We say that
d1 and d2 are equivalent if there are constants K and M such that d1(x, y) ≤
Kd2(x, y) and d2(x, y) ≤ Md1(x, y) for all x, y ∈ X. Show that if d1 and d2

are equivalent, and one of the spaces (X, d1), (X, d2) is complete, then so is
the other.

5. Assume that f : [0, 1] → [0, 1] is a differentiable function and that there is
a number s < 1 such that |f ′(x)| < s for all x ∈ (0, 1). Show that there is
exactly one point a ∈ [0, 1] such that f(a) = a.

6. You are standing with a map in your hand inside the area depicted on the
map. Explain that there is exactly one point on the map that is vertically
above the point it depicts.

7. Assume that (X, d) is a complete metric space, and that f : X → X is a
function such that f◦n is a contraction for some n ∈ N. Show that f has a
unique fixed point.

2.5 Compact sets

We now turn to the study of compact sets. These sets are related both to
closed sets and the notion of completeness, and they are extremely useful in
many applications.

Assume that {xn} is a sequence in a metric space X. If we have a strictly
increasing sequence of natural numbers

n1 < n2 < n3 < . . . < nk < . . .

we call the sequence {yk} = {xnk
} a subsequence of {xn}. A subsequence

contains infinitely many of the terms in the original sequence, but usually
not all.

I leave the first result as an exercise:
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Proposition 2.5.1 If the sequence {xn} converges to a, so does all subse-
quences.

We are now ready to define compact sets:

Definition 2.5.2 A subset K of a metric space (X, d) is called compact if
every sequence in K has a subsequence converging to a point in K. The
space (X, d) is compact if X a compact set, i.e. if all sequences in X has a
convergent subsequence.

Compactness is a rather complex notion that it takes a while to get used to.
We shall start by relating it to other concepts we have already introduced.
First a definition:

Definition 2.5.3 A subset A of a metric space (X, d) is bounded if there
is a point b ∈ X and a constant K ∈ R such that d(a, b) ≤ K for all a ∈ A
(it does not matter which point b ∈ X we use in this definition).

Here is our first result on compact sets:

Proposition 2.5.4 Every compact set K in a metric space (X, d) is closed
and bounded.

Bevis: We argue contrapositively. First we show that if a set K is not closed,
then it can not be compact, and then we show that if K is not bounded, it
can not be compact.

Assume that K is not closed. Then there is a boundary point a that does
not belong to K. For each n ∈ N, there is an xn ∈ K such that d(xn, a) < 1

n .
The sequence {xn} converges to a /∈ K, and so does all its subsequences,
and hence no subsequence can converge to a point in K.

Assume now that K is not bounded. For every n ∈ N there is an element
xn ∈ K such that d(xn, b) > n. If {yk} is a subsequence of xn, clearly
limk→∞ d(yk, b) = ∞. It is easy to see that {yk} can not converge to any
element y ∈ X: According to the triangle inequality

d(yk, b) ≤ d(yk, y) + d(y, b)

and since d(yk, b) → ∞, we must have d(yk, y) → ∞. Hence {xn} has no
convergent subsequences, and K can not be compact. 2

In Rn the converse of the result above holds: All closed and bounded sub-
sets of Rn are compact (this is just a reformulation of Bolzano-Weierstrass’
Theorem in MAT1110). The following example shows that this is not the
case for all metric space.
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Example 1: Consider the metric space (N, d) where d is the discrete met-
ric. Then N is complete, closed and bounded, but the sequence {n} does
not have a convergent subsequence.

We shall later see how we can strengthen the boundedness condition (to
something called total boundedness) to get a characterization of compact-
ness.

We next want to take a look at the relationship between completeness
and compactness. Not all complete spaces are compact (R is complete but
not compact), but it turns out that all compact spaces are complete. To
prove this, we need a lemma on subsequences of Cauchy sequences that is
useful also in other contexts.

Lemma 2.5.5 Assume that {xn} is a Cauchy sequence in a (not necessarily
complete) metric space (X, d). If there is a subsequence {xnk

} converging to
a point a, then the original sequence {xn} also converges to a

Proof: We must show that for any given ε > 0, there is an N ∈ N such that
d(xn, a) < ε for all n ≥ N . Since {xn} is a Cauchy sequence, there is an
N ∈ N such that d(xn, xm) < ε

2 for all n, m ≥ N . Since {xnk
} converges to

a, there is a K such that nK ≥ N and d(xnK , a) ≤ ε
2 . For all n ≥ N we then

have
d(xn, a) ≤ d(xn, xnK ) + d(xnK , a) <

ε

2
+

ε

2
= ε

by the triangle inequality. 2

Proposition 2.5.6 Every compact metric space is complete.

Proof: Let {xn} be a Cauchy sequence. Since X is compact, there is a
subsequence {xnk

} converging to a point a. By the lemma above, {xn} also
converges to a. Hence all Cauchy sequences converge, and X must be com-
plete. 2

Here is another useful result:

Proposition 2.5.7 A closed subset F of a compact set K is compact.

Proof: Assume that {xn} is a sequence in F — we must show that {xn} has
a subsequence converging to a point in F . Since {xn} is also a sequence in
K, and K is compact, there is a subsequence {xnk

} converging to a point
a ∈ K. Since F is closed, a ∈ F , and hence {xn} has a subsequence con-
verging to a point in F . 2
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We have previously seen that if f is a continuous function, the inverse
images of open and closed are open and closed, respectively. The inverse im-
age of a compact set need not be compact, but it turns out that the (direct)
image of a compact set under a continuous function is always compact.

Proposition 2.5.8 Assume that f : X → Y is a continuous function be-
tween two metric spaces. If K ⊂ X is compact, then f(K) is a compact
subset of Y .

Proof: Let {yn} be a sequence in f(K); we shall show that {yn} has subse-
quence converging to a point in f(K). Since yn ∈ f(K), we can for each n
find an element xn ∈ K such that f(xn) = yn. Since K is compact, the se-
quence {xn} has a subsequence {xnk

} converging to a point x ∈ K. But then
{ynk

} = {f(xnk
)} is a subsequence of {yn} converging to y = f(x) ∈ f(K).

2

So far we have only proved technical results about the nature of compact
sets. The next result gives the first indication why these sets are useful.

Theorem 2.5.9 (The Extreme Value Theorem) Assume that K is a
compact subset of a metric space (X, d) and that f : K → R is a continuous
function. Then f has maximum and minimum points in K, i.e. there are
points c, d ∈ K such that

f(d) ≤ f(x) ≤ f(c)

for all x ∈ K.

Proof: We prove the part about the maximum and leave the minimum as
an exercise. Let

M = sup{f(x) | x ∈ K}

(since we don’t know yet that f is bounded, we must consider the possibility
that M = ∞). Choose a sequence {xn} in K such that f(xn) → M (such a
sequence exists regardless of whether M = ∞ or not). Since K is compact,
{xn} has a subsequence {yk} = {xnk

} converging to a point c ∈ K. Then
on the one hand f(yk) → M , and on the other lim f(yk) = f(c) according
to Proposition 2.2.3. Hence f(c) = M , and since M = sup{f(x) | x ∈ K},
we see that c is a maximum point for f on K. 2.

Let us finally turn to the description of compactness in terms of total
boundedness.

Definition 2.5.10 A subset A of a metric space X is called totally bounded
if for each ε > 0 there is a finite number B(a1, ε),B(a2, ε), . . . ,B(an, ε) of
balls with centers in A and radius ε that cover A (i.e. A ⊂ B(a1, ε) ∪
B(a2, ε) ∪ . . . ∪ B(an, ε)).
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We first observe that a compact set is always totally bounded.

Proposition 2.5.11 Let K be a bounded subset of a metric space X. Then
K is totally bounded.

Proof: We argue contrapositively: Assume that A is not totally bounded.
Then there is an ε > 0 such that no finite collection of ε-balls cover A.
We shall construct a sequence {xn} in A that does not have a convergent
subsequence. We begin by choosing an arbitrary element x1 ∈ A. Since
B(x1, ε) does not cover A, we can choose x2 ∈ A \ B(x1, ε). Since B(x1, ε)
and B(x2, ε) do not cover A, we can choose x3 ∈ A \

(
B(x1, ε) ∪ B(x2, ε)

)
.

Continuing in this way, we get a sequence {xn} such that

xn ∈ A \
(
B(x1, ε) ∪ B(x2, ε) ∪ . . . ∪ (B(xn−1, ε)

)
This means that d(xn, xm) ≥ ε for all n, m ∈ N, n > m, and hence {xn} has
no convergent subsequence. 2

We are now ready for the final theorem. Note that we have no added
the assumption that X is complete — without this condition, the statement
is false.

Theorem 2.5.12 A subset A of a complete metric space X is compact if
and only if it is closed and totally bounded.

Proof: As we already know that a compact set is closed and totally bounded,
it suffices to prove that a closed and totally bounded set A is compact. Let
{xn} be a sequence in A. Our aim is to construct a convergent subsequence
{xnk

}. Choose balls B1
1 , B1

2 , . . . , B1
k1

of radius one that cover A. At least one
of these balls must contain infinitely many terms from the sequence. Call
this ball S1 (if there are more than one such ball, just choose one). We now
choose balls B2

1 , B2
2 , . . . , B2

k2
of radius 1

2 that cover A. At least one of these
ball must contain infinitely many of the terms from the sequence that lies in
S1. If we call this ball S2, S1 ∩ S2 contains infinitely many terms from the
sequence. Continuing in this way, we find a sequence of balls Sk of radius 1

k
such that

S1 ∩ S2 ∩ . . . ∩ Sk

always contains infinitely many terms from the sequence.
We can now construct a convergent subsequence of {xn}. Choose n1

to be the first number such that xn1 belongs to S1. Choose n2 to be first
number larger that n1 such that xn2 belongs to S1 ∩ S2, then choose n3 to
be the first number larger than n2 such that xn3 belongs to S1 ∩ S2 ∩ S3.
Continuing in this way, we get a subsequence {xnk

} such that

xnk
∈ S1 ∩ S2 ∩ . . . ∩ Sk
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for all k. Since the Sk’s are shrinking, {xnk
} is a Cauchy sequence, and

since X is complete, {xnk
} converges to a point a. Since A is closed, a ∈ A.

Hence we have proved that any sequence in A has a subsequence converging
to a point in A, and thus A is compact. 2

Problems to Section 2.5

1. Show that a space (X, d) with the discrete metric is compact if and only if
X is a finite set.

2. Prove Proposition 2.5.1.

3. Prove the minimum part of Theorem 2.5.9.

4. Let b and c be two points in a metric space (X, d), and let A be a subset of
X. Show that if there is a number K ∈ R such that d(a, b) ≤ K for all a ∈ A,
then there is a number M ∈ R such that d(a, c) ≤ M for all a ∈ A. Hence it
doesn’t matter which point b ∈ X we use in Definition 2.5.3.

5. Assume that (X, d) is metric space and that f : X → [0,∞) is a continuous
function. Assume that for each ε > 0, there is a compact Kε ⊂ X such that
f(x) < ε when x /∈ Kε. Show that f has a maximum point.

6. Let (X, d) be a compact metric space, and assume that f : X → R is contin-
uous when we give R the usual metric. Show that if f(x) > 0 for all x ∈ X,
then there is a positive, real number a such that f(x) > a for all x ∈ X.

7. Assume that f : X → Y is a continuous function between metric spaces,
and let K be a compact subset of Y . Show that f−1(K) is closed. Find an
example which shows that f−1(K) need not be compact.

8. Show that a totally bounded subset of a metric space is always bounded. Find
an example of a bounded set in a metric space that is not totally bounded.

9. The Bolzano-Weierstrass’ Theorem says that any bounded sequence in Rn

has a convergent subsequence. Use it to prove that a subset of Rn is compact
if and only if it is closed and bounded.

10. Let (X, d) be a metric space.

a) Assume that K1,K2, . . . ,Kn is a finite collection of compact subsets of
X. Show that the union K1 ∪K2 ∪ . . . ∪Kn is compact.

b) Assume that K is a collection of compact subset of X. Show that the
intersection

⋂
K∈K K is compact.

11. Let (X, d) be a metric space. Assume that {Kn} is a sequence of non-empty,
compact subsets of X such that K1 ⊃ K2 ⊃ . . . ⊃ Kn ⊃ . . .. Prove that⋂

n∈N Kn is non-empty.

12. Let (X, dX) and (Y, dY ) be two metric spaces. Assume that (X, dX) is com-
pact, and that f : X → Y is bijective and continuous. Show that the inverse
function f−1 : Y → X is continuous.
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13. Assume that C and K are disjoint, compact subsets of a metric space (X, d),
and define

a = inf{d(x, y) | x ∈ C, y ∈ K}

Show that a is strictly positive and that there are points x0 ∈ C, y0 ∈ K
such that d(x0, y0) = a. Show by an example that the result does not hold if
we only assume that one of the sets C and K is compact and the other one
closed.

14. Assume that (X, d) is compact and that f : X → X is continuous.

a) Show that the function g(x) = d(x, f(x)) is continuous and has a min-
imum point.

b) Assume in addition that d(f(x), f(y)) < d(x, y) for all x, y ∈ X, x 6= y.
Show that f has a unique fixed point. (Hint: Use the minimum from
a))

2.6 Alternative descriptions of compactness
As the contents of this
section will only be
needed a few places in
the rest of the book, it
may be skipped at the
first reading.

The descriptions of compactness we studied in the previous section, suffice
for most purposes in this book, but for some of the more advanced proofs
there is another description that is more convenient. This alternative de-
scription is also the right one to use if one wants to extend the concept of
compactness to even more general spaces, so-called topological spaces. In
such spaces, sequences are not always an efficient tool, and it is better to
have a description of compactness in terms of coverings by open sets.

To see what this means, assume that K is a subset of a metric space X.
An open covering of X is simply a (finite or infinite) collection O of open
sets whose union contains K, i.e.

K ⊂
⋃
{O : O ∈ O}

The purpose of this section is to show that in metric spaces, the following
property is equivalent to compactness.

Definition 2.6.1 (Open Covering Property) Let K be a subset of a
metric space X. Assume that for each open covering O of K, there is a
finite number of elements O1, O2, . . . , On in O such that

K ⊂ O1 ∪O2 ∪ . . . ∪On

(we say that each open covering of K has a finite subcovering). Then the
set K is said to have the open covering property.

The open covering property is quite abstract and may take some time
to get used to, but it turns out to be a very efficient tool. Note that that
the term “open covering property” is not standard terminology, and that
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it will more or less disappear once we have proved that it is equivalent to
compactness.

Let us first prove that a set with the open covering property is necessarily
compact. Before we begin, we need a simple observation: Assume that x is
a point in our metric space X, and that no subsequence of a sequence {xn}
converges to x. Then there must be an open ball B(x; r) around x which
only contains finitely many terms from {xn} (because if all balls around x
contained infinitely many terms, we could use these terms to construct a
subsequence converging to x).

Proposition 2.6.2 If a subset K of a metric space X has the open covering
property, then it is compact.

Proof: We argue contrapositively, i.e., we assume that K is not compact
and prove that it does no have the open covering property. Since K is not
compact, there is sequence {xn} which does not have any subsequences con-
verging to points in K. By the observation above, this means that for each
element x ∈ K, there is an open ball B(x; rx) around x which only contains
finitely many terms of the sequence. The family {B(x, rx) : x ∈ K} is an
open covering of K, but it cannot have a finite subcovering since any such
subcovering B(x1, rx1),B(x2, rx2), . . . ,B(xm, rxm) can only contain finitely
many of the infinitely many terms in the sequence. 2

To prove the opposite implication, we have to work harder. We begin
with the following two concept which are useful in a lot of situations.

Definition 2.6.3 Let A and D be two subsets of a metric space X, and
assume that D ⊂ A. We say that D is dense in A if every a ∈ A is the limit
of a sequence from D. We say that A is separable if it has a countable,
dense subset D.

Remark: The terminology above is also used when A is the entire space
X; in fact, this is the most common situation. Note, e.g., that Qm is dense
in Rm, and that Rm hence is separable.

We begin by a simple observation combining the concepts of compactness
and separability.

Proposition 2.6.4 All compact sets are separable.

Proof: According to Proposition 2.5.11, our compact set K is totally bounded.
For each n ∈ N, we can hence find a finite collection of balls with centers
in K and radius 1

n that covers K. Let D consist of the centers of all these
balls for all n ∈ N. Then D is a countable subset of K, and for each x ∈ K,
it is easy to construct a sequence {xn} from D which converges to x: Just
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let xn be the center of the ball with radius 1
n that contains x (if there are

several such balls, just pick one). 2

The next step allows us to reduce arbitrary coverings to countable ones:

Proposition 2.6.5 Assume that O is an open covering of a separable set
A. Then there is a sequence {On}n∈N of sets in O that covers A, i.e. such
that

A ⊂
⋃
n∈N

On

Proof: Let D be a countable dense subset of A. The collection of all balls
with center in D and radius of the form 1

n , where n ∈ N, is clearly countable.
Let B1, B2, . . . , Bn, . . . be a listing of all such balls that are subsets of at least
one of the sets in the covering O.

Let us check that B1, B2, . . . Bn, . . . is a covering of A, i.e., that each
a ∈ A belongs to at least one Bn. Observe first that since O is a covering
of A, our point a belongs to a set O ∈ O. Since O is open, there is an
n ∈ N such that B(a, 1

n) ⊂ O, and since D is dense in A, there is an x ∈ D
such that d(a, x) < 1

2n . But then B(x, 1
2n) ⊂ B(a, 1

n) ⊂ O (use the triangle
inequality), and hence B(x, 1

2n) belongs to the sequence B1, B2, . . . Bn, . . ..
Since a ∈ B(x, 1

2n), this shows that B1, B2, . . . , Bn, . . . is indeed a covering
of A.

The rest is easy: By definition, each ball Bn is the subset of some set
On in the original covering O, and hence O1, O2, . . . , On, . . . is a countable
subcovering of O. 2

Remark: A set is sometimes called Lindelöf if all open coverings have
countable subcoverings. In this terminology, the proposition above says
that all separable spaces are Lindelöf.

We are now ready for the main theorem:

Theorem 2.6.6 A subset K of a metric space is compact if and only if it
has the open covering property.

Proof: It remains to prove that if K is compact, then it has the open
covering property, and hence we assume that K is compact and that O is
an open covering of K. By the two propositions above, we know that O
has a countable subcovering O1, O2, . . . , On, . . .. We shall show that we can
reduce O1, O2, . . . , On, . . . to a finite subcovering.

Assume for contradiction that this is not possible. Then O1, O2, . . . On

cannot cover K for any n ∈ N, and we can choose an element xn in K which
does not belong to O1 ∪ O2 ∪ . . . ∪ On. Since K is compact, the sequence
{xn} obtained in this way must have a subsequence {xnk

} which converges
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to a point x ∈ K. Since O1, O2, . . . , On, . . . is a covering of K, the limit
x must belong to a set ON in this covering. Since O is open and {xnk

}
converges to x, the points xnk

in the subsequences must also belong to ON

for all sufficiently large k. But this impossible since xnk
by definition is not

an element of ON when nk ≥ N . 2

As usual, there is a reformulation of the theorem above in terms of
closed sets. Let us first agree to say that a collection F of sets has the finite
intersection property over K if

K ∩ F1 ∩ F2 ∩ . . . ∩ Fn 6= ∅

for all finite collections F1, F2, . . . , Fn of sets from F .

Corollary 2.6.7 Assume that K is a subset of a metric space X. Then the
following are equivalent:

(i) K is compact.

(ii) If a collection F of closed sets has the finite intersection property over
K, then

K ∩

( ⋂
F∈F

F

)
6= ∅

Proof: Left to the reader (see Exercise 8). 2

Problems to Section 2.6

1. Assume that A, D, where D ⊂ A, are two subsets of a metric space X. Show
that the following are equivalent:

(i) D is dense in A.

(ii) All balls B(a, r) centered at a point a ∈ A contain an element from D.

2. Assume that A, B are two subsets of a metric space X. Assume that A is
separable and that B ⊂ A. Show that B is separable.

3. Assume that I is a collection of open intervals in R whose union contains
[0, 1]. Show that there exists a finite collection I1, I2, . . . , In of sets from I
such that

[0, 1] ⊂ I1 ∪ I1 ∪ . . . ∪ In

4. Let {Kn} be a decrasing sequence (i.e., Kn+1 ⊂ Kn for all n ∈ N) of
nonempty, compact sets. Show that

⋂
n∈N Kn 6= ∅.

5. Assume that f : X → Y is a continuous function between two metric spaces.
Use the open covering property to show that if K is a compact subset of X,
then f(K) is a compact subset of Y .
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6. Assume that K1,K2, . . . ,Kn are compact subsets of a metric space X. Use
the open covering property to show that K1 ∪K2 ∪ . . . ∪Kn is compact.

7. Use the open covering property to show that a closed subset of a compact
set is compact.

8. Prove Corollary 2.6.7.

9. Assume that f : X → Y is a continuous function between two metric
spaces, and assume that K is a compact subset of X. Show that for a
given ε > 0, there is for each x ∈ K an open ball B(x, rx) around x such that
dY (f(u), f(v)) < ε for all u, v ∈ B(x, rx). Show that there is a finite collec-
tion of points x1, x2, . . . , xn such that B(x1, rx1),B(x2, rx2), . . . ,B(xn, rxn

)
cover K. Use this to show that there is a δ > 0 such that if u, v ∈ K
and dX(u, v) < δ, then dY (f(u), f(v)) < ε. This property is called uniform
continuity.
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Chapter 3

Spaces of continuous
functions

In this chapter we shall apply the theory we developed in the previous chap-
ter to spaces where the elements are continuous functions. We shall study
completeness and compactness of such spaces and take a look at some ap-
plications.

3.1 Modes of continuity

If (X, dX) and (Y, dY ) are two metric spaces, the function f : X → Y
is continuous at a point a if for each ε > 0 there is a δ > 0 such that
dY (f(x), f(a)) < ε whenever dX(x, a) < δ. If f is also continuous at another
point b, we may need a different δ to match the same ε. A question that
often comes up is when we can use the same δ for all points x in the space
X. The function is then said to be uniformly continuous in X. Here is the
precise definition:

Definition 3.1.1 Let f : X → Y be a function between two metric spaces.
We say that f is uniformly continuous if for each ε > 0 there is a δ > 0
such that dY (f(x), f(y)) < ε for all points x, y ∈ X such that dX(x, y) < δ.

A function which is continuous at all points in X, but not uniformly
continuous, is often called pointwise continuous when we want to emphasize
the distinction.

Example 1 The function f : R → R defined by f(x) = x2 is pointwise
continuous, but not uniformly continuous. The reason is that the curve be-
comes steeper and steeper as |x| goes to infinity, and that we hence need
increasingly smaller δ’s to match the same ε (make a sketch!) See Exercise
1 for a more detailed discussion. ♣

49
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If the underlying space X is compact, pointwise continuity and uniform
continuity is the same. This means that a continuous function defined on a
closed and bounded subset of Rn is always uniformly continuous.

Proposition 3.1.2 Assume that X and Y are metric spaces. If X is com-
pact, all continuous functions f : X → Y are uniformly continuous.

Proof: We argue contrapositively: Assume that f is not uniformly continu-
ous; we shall show that f is not continuous.

Since f fails to be uniformly continuous, there is an ε > 0 we cannot
match; i.e. for each δ > 0 there are points x, y ∈ X such that dX(x, y) < δ,
but dY (f(x), f(y)) ≥ ε. Choosing δ = 1

n , there are thus points xn, yn ∈ X
such that dX(xn, yn) < 1

n and dY (f(xn), f(yn)) ≥ ε. Since X is compact,
the sequence {xn} has a subsequence {xnk

} converging to a point a. Since
dX(xnk

, ynk
) < 1

nk
, the corresponding sequence {ynk

} of y’s must also con-
verge to a. We are now ready to show that f is not continuous at a. Had it
been, the two sequences {f(xnk

)} and {f(ynk
)} would both have converged

to f(a), something they clearly can not since dY (f(xn), f(yn)) ≥ ε for all
n ∈ N. 2

There is an even more abstract form of continuity that will be impor-
tant later. This time we are not considering a single function, but a whole
collection of functions:

Definition 3.1.3 Let (X, dX) and (Y, dY ) be metric spaces, and let F be a
collection of functions f : X → Y . We say that F is equicontinuous if for
all ε > 0, there is a δ > 0 such that for all f ∈ F and all x, y ∈ X with
dX(x, y) < δ, we have dY (f(x), f(y)) < ε.

Note that in the case, the same δ should not only hold at all points
x, y ∈ X, but also for all functions f ∈ F .

Example 2 Let F be the set of all contractions f : X → X. Then F is
equicontinuous, since we can can choose δ = ε. To see this, just note that
if dX(x, y) < δ = ε, then dX(f(x), f(y)) ≤ dX(x, y) < ε for all x, y ∈ X and
all f ∈ F . ♣

Equicontinuous families will be important when we study compact sets
of continuous functions in Section 3.5.

Exercises for Section 3.1

1. Show that the function f(x) = x2 is not uniformly continuous on R. (Hint:
You may want to use the factorization f(x)−f(y) = x2−y2 = (x+y)(x−y)).
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2. Prove that the function f : (0, 1) → R given by f(x) = 1
x is not uniformly

continuous.

3. A function f : X → Y between metric spaces is said to be Lipschitz-
continuous with Lipschitz constant K if dY (f(x), f(y)) ≤ KdX(x, y) for
all x, y ∈ X. Asume that F is a collection of functions f : X → Y with
Lipschitz constant K. Show that F is equicontinuous.

4. Let f : R → R be a differentiable function and assume that the derivative f ′

is bounded. Show that f is uniformly continuous.

3.2 Modes of convergence

In this section we shall study two ways in which a sequence {fn} of continu-
ous functions can converge to a limit function f : pointwise convergence and
uniform convergence. The distinction is rather simililar to the distinction
between pointwise and uniform continuity in the previous section — in the
pointwise case, a condition can be satisfied in different ways for different x’s;
in the uniform, case it must be satisfied in the same way for all x. We begin
with pointwise convergence:

Definition 3.2.1 Let (X, dX) and (Y, dY ) be two metric space, and let {fn}
be a sequence of functions fn : X → Y . We say that {fn} converges point-
wise to a function f : X → Y if fn(x) → f(x) for all x ∈ X. This means that
for each x and each ε > 0, there is an N ∈ N such that dY (fn(x), f(x)) < ε
when n ≥ N .

Note that the N in the last sentence of the definition depends on x —
we may need a much larger N for some x’s than for others. If we can use
the same N for all x ∈ X, we have uniform convergence. Here is the precise
definition:

Definition 3.2.2 Let (X, dX) and (Y, dY ) be two metric space, and let {fn}
be a sequence of functions fn : X → Y . We say that {fn} converges uni-
formly to a function f : X → Y if for each ε > 0, there is an N ∈ N such
that if n ≥ N , then dY (fn(x), f(x)) < ε for all x ∈ X.

At first glance, the two definitions may seem confusingly similar, but the
difference is that in the last one, the same N should work simultaneously for
all x, while in the first we can adapt N to each individual x. Hence uniform
convergence implies pointwise convergence, but a sequence may converge
pointwise but not uniformly. Before we look at an example, it will be useful
to reformulate the definition of uniform convergence.

Proposition 3.2.3 Let (X, dX) and (Y, dY ) be two metric space, and let
{fn} be a sequence of functions fn : X → Y . For any function f : X → Y
the following are equivalent.
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(i) {fn} converges uniformly to f .

(ii) sup{dY (fn(x), f(x)) |x ∈ X} → 0 as n →∞.

Hence uniform convergence means that the “maximal” distance between f
and fn goes to zero.

Bevis: (i) =⇒ (ii) Assume that {fn} converges uniformly to f . For any
ε > 0, we can find an N ∈ N such that dY (fn(x), f(x)) < ε for all x ∈ X and
all n ≥ N . This means that sup{dY (fn(x), f(x)) |x ∈ X} ≤ ε for all n ≥ N ,
and since ε is arbitrary, this implies that sup{dY (fn(x), f(x)) |x ∈ X} → 0.

(ii) =⇒ (i) Assume that sup{dY (fn(x), f(x)) |x ∈ X} → 0 as n → ∞.
Given an ε > 0, there is an N ∈ N such that sup{dY (fn(x), f(x)) |x ∈ X} <
ε for all n ≥ N . But then we have dY (fn(x), f(x) < ε for all x ∈ X and all
n ≥ N , which means that {fn} converges uniformly to f . 2

Here is an example which shows clearly the distinction between point-
wise and uniform convergence:

Example 1 Let fn : [0, 1] → R be the function in Figure 1. It is constant
zero except on the interval [0, 1

n ] where it looks like a tent of height 1.

-
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If you insist, the function is defined by

fn(x) =


2nx if 0 ≤ x < 1

2n

−2nx + 2 if 1
2n ≤ x < 1

n

0 if 1
n ≤ x ≤ 1

but it is much easier just to work from the picture.
The sequence {fn} converges pointwise to 0, because at every point x ∈

[0, 1] the value of fn(x) eventually becomes 0 (for x = 0, the value is always
0, and for x > 0 the “tent” will eventually pass to the left of x.) However,
since the maximum value of all fn is 1, sup{dY (fn(x), f(x)) |x ∈ [0, 1]} = 1



3.2. MODES OF CONVERGENCE 53

for all n, and hence {fn} does not converge uniformly to 0. ♣

When we are working with convergent sequences, we would often like
the limit to inherit properties from the elements in the sequence. If, e.g.,
{fn} is a sequence of continuous functions converging to a limit f , we are
often interested in showing that f is also continuous. The next example
shows that this is not always the case when we are dealing with pointwise
convergence.

Example 2: Let fn : R → R be the function in Figure 2.

-

6

-1
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1
n

− 1
n

Figure 2
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It is defined by

fn(x) =


−1 if x ≤ − 1

n

nx if − 1
n < x < 1

n

1 if 1
n ≤ x

The sequence {fn} converges pointwise to the function, f defined by

f(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

but although all the functions {fn} are continuous, the limit function f is
not. ♣

If we strengthen the convergence from pointwise to uniform, the limit of
a sequence of continuous functions is always continuous.

Proposition 3.2.4 Let (X, dX) and (Y, dY ) be two metric spaces, and as-
sume that {fn} is a sequence of continuous functions fn : X → Y converging
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uniformly to a function f . Then f is continuous.

Proof: Let a ∈ X. Given an ε > 0, we must find a δ > 0 such that
dY (f(x), f(a)) < ε whenever dX(x, a) < δ. Since {fn} converges uniformly
to f , there is an N ∈ N such that when n ≥ N , dY (f(x), fn(x)) < ε

3
for all x ∈ X. Since fN is continuous at a, there is a δ > 0 such that
dY (fN (x), fN (a)) < ε

3 whenever dX(x, a) < δ. If dX(x, a) < δ, we then have

dY (f(x), f(a)) ≤ dY (f(x), fN (x)) + dY (fN (x), fN (a)) + dY (fN (a), f(a)) <

<
ε

3
+

ε

3
+

ε

3
= ε

and hence f is continuous at a. 2

The technique in the proof above is quite common, and arguments of
this kind are often referred to as ε

3 -arguments.

Exercises for Section 3.2

1. Let fn : R → R be defined by fn(x) = x
n . Show that {fn} converges point-

wise, but not uniformly to 0.

2. Let fn : (0, 1) → R be defined by fn(x) = xn. Show that {fn} converges
pointwise, but not uniformly to 0.

3. The function fn : [0,∞) → R is defined by fn(x) = e−x
(

x
n

)ne.

a) Show that {fn} converges pointwise.

b) Find the maximum value of fn. Does {fn} converge uniformly?

4. The function fn : (0,∞) → R is defined by

fn(x) = n(x1/n − 1)

Show that {fn} converges pointwise to f(x) = lnx. Show that the conver-
gence is uniform on each interval ( 1

n , n), n ∈ N, but not on (0,∞).

5. Let fn : R → R and assume that the sequence {fn} of continuous functions
converges uniformly to f : R → R on all intervals [−k, k], k ∈ N. Show that
f is continuous.

6. Assume that X is a metric space and that fn, gn are functions from X to R.
Show that if {fn} and {gn} converge uniformly to f and g, respectively, then
{fn + gn} converge uniformly to f + g.

7. Assume that fn : [a, b] → R are continuous functions converging uniformly
to f . Show that ∫ b

a

fn(x) dx →
∫ b

a

f(x) dx

Find an example which shows that this is not necessarily the case if {fn}
only coverges pointwise to f .
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8. Let fn : R → R be given by fn(x) = 1
n sin(nx). Show that {fn} converges

uniformly to 0, but that the sequence {f ′n} of derivates does not converge.
Sketch the graphs of fn to see what is happening.

9. Let (X, d) be a metric space and assume that the sequence {fn} of continuous
functions converges uniformly to f . Show that if {xn} is a sequence in X
converging to x, then fn(xn) → f(x). Find an example which shows that
this is not necessarily the case if {fn} only converges pointwise to f .

10. Assume that the functions fn : X → Y converges uniformly to f , and that
g : Y → Z is uniformly continuous. Show that the sequence {g ◦ fn} con-
verges uniformly. Find an example which shows that the conclusion does not
necessarily hold if g is only pointwise continuous.

11. Assume that
∑∞

n=0 Mn is a convergent series of positive numbers. Assume
that fn : X → R is a sequence of continuous functions defined on a metric
space (X, d). Show that if |fn(x)| ≤ Mn for all x ∈ X and all n ∈ N , then
the partial sums sN (x) =

∑N
n=0 fn(x) converge uniformly to a continuous

function s : X → R as N →∞. (This is called Weierstrass’ M-test).

12. Assume that (X, d) is a compact space and that {fn} is a decreasing se-
quence of continuous functions converging pointwise to a continuous function
f . Show that the convergence is uniform (this is called Dini’s theorem).

3.3 The spaces C(X, Y )

If (X, dX) and (Y, dY ) are metric spaces, we let

C(X, Y ) = {f : X → Y | f is continuous}

be the collection of all continuous functions from X to Y . In this section
we shall see how we can turn C(X, Y ) into a metric space. To avoid certain
technicalities, we shall restrict ourselves to the case where X is compact as
this is sufficient to cover most interesting applications (see Exercise 4 for
one possible way of extending the theory to the non-compact case).

The basic idea is to measure the distance between two functions by
looking at the point they are the furthest apart; i.e. by

ρ(f, g) = sup{dY (f(x), g(x)) |x ∈ X}

Our first task is to show that ρ is a metric on C(X, Y ). But first we need a
lemma:

Lemma 3.3.1 Let (X, dX) and (Y, dY ) be metric spaces, and assume that
X is compact. If f.g : X → Y are continuous functions, then

ρ(f, g) = sup{dY (f(x), g(x)) |x ∈ X}

is finite, and there is a point x ∈ X such that dY (f(x), g(x)) = ρ(f, g).
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Proof: The result will follow from the Extreme Value Theorem (Theorem
2.5.9) if we can only show that the function

h(x) = dY (f(x), g(x))

is continiuous. By the triangle inequality for numbers and the inverse tri-
angle inequality 2.1.2, we get

|h(x)− h(y)| = |dY (f(x), g(x))− dY (f(y), g(y))| =

= |dY (f(x), g(x))− dY (f(x), g(y)) + dY (f(x), g(y))− dY (f(y), g(y))| ≤

≤ |dY (f(x), g(x))− dY (f(x), g(y))|+ |dY (f(x), g(y))− dY (f(y), g(y))| ≤

≤ dY (g(x), g(y)) + dY (f(x), f(y))

To prove that h is continuous at x, just observe that since f and g are contin-
uous at x, there is for any given ε > 0 a δ > 0 such that dY (f(x), f(y)) < ε

2
and dY (g(x), g(y)) < ε

2 when dX(x, y) < δ. But then

|h(x)− h(y)| ≤ dY (f(x), f(y)) + dY (g(y), g(x)) <
ε

2
+

ε

2
= ε

whenever dX(x, y) < δ, and hence h is continuous. 2

We are now ready to prove that ρ is a metric on C(X, Y ):

Proposition 3.3.2 Let (X, dX) and (Y, dY ) be metric spaces, and assume
that X is compact. Then

ρ(f, g) = sup{dY (f(x), g(x)) |x ∈ X}

defines a metric on C(X, Y ).

Proof: By the lemma, ρ(f, g) is always finite, and we only have to prove
that ρ satisfies the three properties of a metric: positivity, symmetry, and
the triangle inequality. The first two are more or less obvious, and we
concentrate on the triangle inequality:

Assume that f, g, h are three functions in C(X, Y ); we must show that

ρ(f, g) ≤ ρ(f, h) + ρ(h, g)

According to the lemma, there is a point x ∈ X such that ρ(f, g) =
dY f(x), g(x)). But then

ρ(f, g) = dY (f(x), g(x)) ≤ dY (f(x), h(x))+dY (h(x), g(x)) ≤ ρ(f, h)+ρ(h, g)

where we have used the triangle inequality in Y and the definition of ρ. 2

Not surprisingly, convergence in C(X, Y ) is exactly the same as uniform
convergence.
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Proposition 3.3.3 A sequence {fn} converges to f in (C(X, Y ), ρ) if and
only if it converges uniformly to f .

Proof: According to Proposition 3.2.3, {fn} converges uniformly to f if and
only if

sup{dY (fn(x), f(x)) |x ∈ X} → 0

This just means that ρ(fn, f) → 0, which is to say that {fn} converges to f
in (C(X, Y ), ρ). 2

The next result is the starting point for many applications; it shows that
C(X, Y ) is complete if Y is.

Theorem 3.3.4 Assume that (X, dX) is a compact and (Y, dY ) a complete
metric space. Then C(X, Y ), ρ) is complete.

Proof: Assume that {fn} is a Cauchy sequence in C(X, Y ). We must prove
that fn converges to a function f ∈ C(X, Y ).

Fix an element x ∈ X. Since dY (fn(x), fm(x)) ≤ ρ(fn, fm) and {fn} is a
Cauchy sequence in (C(X, Y ), ρ), the function values {fn(x)} form a Cauchy
sequence in Y . Since Y is complete, {fn(x)} converges to a point f(x) in
Y. This means that {fn} converges pointwise to a function f : X → Y . We
must prove that f ∈ C(X, Y ) and that {fn} converges to f in the ρ-metric.

Since {fn} is a Cauchy sequence, we can for any ε > 0 find an N ∈ N
such that ρ(fn, fm) < ε

2 when n, m ≥ N . This means that all x ∈ X and
all n, m ≥ N , dY (fn(x), fm(x)) < ε

2 . If we let m → ∞, we see that for all
x ∈ X and all n ≥ N

dY (fn(x), f(x)) = lim
m→∞

dY (fn(x), fm(x)) ≤ ε

2
< ε

This means that {fn} converges uniformly to f . According to Proposition
3.2.4, f is continuos and belongs to C(X, Y ), and according to the proposi-
tio above, {fn} converges to f in (C(X, Y ), ρ). 2

In the next section we shall combine the result above with Banach’s
Fixed Point Theorem to obtain our first real application.

Exercises to Section 3.3

1. Let f, g : [0, 1] → R be given by f(x) = x, g(x) = x2. Find ρ(f, g).

2. Let f, g : [0, 2π] → R be given by f(x) = sin x, g(x) = cos x. Find ρ(f, g).

3. Complete the proof of Proposition 3.3.2 by showing that ρ satisfies the first
two conditions of a metric (positivity and symmetry)
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4. The main reason why we have restricted the theory above to the case where
X is compact, is that if not,

ρ(f, g) = sup{dY (f(x), g(x)) |x ∈ X}

may be infinite, and then ρ is not a metric. In this problem we shall sketch
a way to avoid this problem.
A function f : X → Y is called bounded if there is a point a ∈ Y and a
constant K ∈ R such that dY (a, f(x)) ≤ K for all x ∈ X (it doesn’t matter
which point a we use in this definition). Let C0(X, Y ) be the set of all
bounded, continuous functions f : X → Y , and define

ρ(f, g) = sup{dY (f(x), g(x)) |x ∈ X}

a) Show that ρ(f, g) < ∞ for all f, g ∈ C0(X, Y ).
b) Show by an example that there need not be a point x in X such that

ρ(f, g) = dY (f(x), g(x)).
c) Show that ρ is a metric on C0(X, Y ).
d) Show that if a sequence {fn} of functions in C0(X, Y ) converges uni-

formly to a function f , then f ∈ C0(X, Y ).
e) Assume that (Y, dY ) is complete. Show that (C0(X, Y ), ρ) is complete.
f) Let c0 be the set of all bounded sequences in R. If {xn}, {yn} are in

c0, define
ρ({xn}, {yn}) = sup(|xn − yn| |n ∈ N}

Prove that (c0, ρ) is a complete metric space. (Hint: You may think of
c0 as C0(N, R) where N has the discrete metric).

3.4 Applications to differential equations

Consider a system of differential equations

y′1(t) = f1(t, y1(t), y2(t), . . . , yn(t))
y′2(t) = f2(t, y1(t), y2(t), . . . , yn(t))
...

...
...

...
y′n(t) = fn(t, y1(t), y2(t), . . . , yn(t))

with initial conditions y1(0) = Y1, y2(0) = Y2, . . . , yn(0) = Yn. In this sec-
tion we shall use Banach’s Fixed Point Theorem 2.4.5 and the completeness
of C([0, a], Rn) to prove that under reasonable conditions such systems have
a unique solution.

We begin by introducing vector notation to make the formulas easier to
read:

y(t) =


y1(t)
y2(t)

...
yn(t)
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y0 =


Y1

Y2
...

Yn


and

f(t,y(t)) =


f1(t, y1(t), y2(t), . . . , yn(t))
f2(t, y1(t), y2(t), . . . , yn(t))

...
fn(t, y1(t), y2(t), . . . , yn(t))


In this notation, the system becomes

y′(t) = f(t,y(t)), y(0) = y0 (3.4.1)

The next step is to rewrite the differential equation as an integral equa-
tion. If we integrate on both sides of (3.4.1), we get

y(t)− y(0) =
∫ t

0
f(s,y(s)) ds

i.e.

y(t) = y0 +
∫ t

0
f(s,y(s)) ds (3.4.2)

On the other hand, if we start with a solution of (3.4.2) and differentiate,
we arrive at (3.4.1). Hence solving (3.4.1) and (3.4.2) amounts to exactly
the same thing, and for us it will be convenient to concentrate on (3.4.2).

Let us begin by putting an arbitrary, continuous function z into the right
hand side of (3.4.2). What we get out is another function u defined by

u(t) = y0 +
∫ t

0
f(s, z(s)) ds

We can think of this as a function F mapping continuous functions z to
continuous functions u = F (z). From this point of view, a solution y of
the integral equation (3.4.2) is just a fixed point for the function F — we
are looking for a y such that y = F (y). (Don’t worry if you feel a little
dizzy; that’s just normal at this stage! Note that F is a function acting on
a function z to produce a new function u = F (z) — it takes some time to
get used to such creatures!)

Our plan is to use Banach’s Fixed Point Theorem to prove that F has a
unique fixed point, but first we have to introduce a crucial condition. We say
that the function f : [a, b] × Rn → Rn is uniformly Lipschitz with Lipschitz
constant K on the interval [a, b] if K is a real number such that

|f(t,y)− f(t, z)| ≤ K|y − z|

for all t ∈ [a, b] and all y, z ∈ Rn. Here is the key observation in our
argument.
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Lemma 3.4.1 Assume that y0 ∈ Rn and that f : [0,∞] × Rn → Rn is
continuous and uniformly Lipschitz with Lipschitz constant K on [0,∞). If
a < 1

K , the map
F : C([0, a], Rn) → C([0, a], Rn)

defined by

F (z)(t) = y0 +
∫ t

0
f(t, z(t)) dt

is a contraction.

Remark: The notation here is rather messy. Remember that F (z) is a
function from [0, a] to Rn. The expression F (z)(t) denotes the value of this
function at point t ∈ [0, a].

Proof: Let v,w be two elements in C([0, a], Rn), and note that for any
t ∈ [0, a]

|F (v)(t)− F (w)(t)| = |
∫ t

0

(
f(s,v(s))− f(s,w(s))

)
ds| ≤

≤
∫ t

0
|f(s,v(s))− f(s,w(s))| ds ≤

∫ t

0
K|v(s)−w(s)| ds ≤

≤ K

∫ t

0
ρ(v,w) ds ≤ K

∫ a

0
ρ(v,w) ds = Kaρ(v,w)

Taking the supremum over all t ∈ [0, a], we get

ρ(F (v), F (w)) ≤ Kaρ(v,w).

Since Ka < 1, this means that F is a contraction. 2

We are now ready for the main theorem.

Theorem 3.4.2 Assume that y0 ∈ Rn and that f : [0, t] × Rn → Rn is
continuous and uniformly Lipschitz on [0,∞). Then the initial value problem

y′(t) = f(t,y(t)), y(0) = y0 (3.4.3)

has a unique solution y on [0,∞).

Proof: Let K be the uniform Lipschitz constant, and choose a number
a < 1/K. According to the lemma, the function

F : C([0, a], Rn) → C([0, a], Rn)

defined by

F (z)(t) = y0 +
∫ t

0
f(t, z(t)) dt
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is a contraction. Since C([0, a], Rn) is complete by Theorem 3.3.4, Banach’s
Fixed Point Theorem tells us that F has a unique fixed point y. This means
that the integral equation

y(t) = y0 +
∫ t

0
f(s,y(s)) ds (3.4.4)

has a unique solution on the interval [0, a]. To extend the solution to a
longer interval, we just repeat the argument on the interval [a, 2a], using
y(a) as initial value. The function we then get, is a solution of the integral
equation (3.4.4) on the extended interval [0, 2a] as we for t ∈ [a, 2a] have

y(t) = y(a) +
∫ t

a
f(s,y(s)) ds =

= y0 +
∫ a

0
f(s,y(s)) ds +

∫ t

a
f(s,y(s)) ds = y0 +

∫ t

0
f(s,y(s)) ds

Continuing this procedure to new intervals [2a, 3a], [3a, 4a], we see that the
integral equation (3.4.3) has a unique solution on all of [0,∞). As we have
already observed that equation (3.4.3) has exactly the same solutions as
equation (3.4.4), the theorem is proved. 2

In the exercises you will see that the conditions in the theorem are im-
portant. If they fail, the equation may have more than one solution, or a
solution defined only on a bounded interval.

Exercises to Section 3.4

1. Solve the initial value problem

y′ = 1 + y2, y(0) = 0

and show that the solution is only defined on the interval [0, π/2).

2. Show that the functions

y(t) =


0 if 0 ≤ t ≤ a

(t− a)
3
2 if t > a

where a ≥ 0 are all solutions of the initial value problem

y′ =
3
2
y

1
3 , y(0) = 0

Remember to check that the differential equation is satisfied at t = a.

3. In this problem we shall sketch how the theorem in this section can be used
to study higher order systems. Assume we have a second order initial value
problem

u′′(t) = g(t, u(t), u′(t)) u(0) = a, u′(0) = b (∗)
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where g : [0,∞)×R2 → R is a given function. Define a function f : [0,∞)×
R2 → R2 by

f(t, u, v) =
(

v
g(t, u, v)

)
Show that if

y(t) =
(

u(t)
v(t)

)
is a solution of the initial value problem

y′(t) = f(t,y(t)). y(0) =
(

a
b

)
,

then u is a solution of the original problem (∗).

3.5 Compact subsets of C(X, Rm)

The compact subsets of Rm are easy to describe — they are just the closed
and bounded sets. This characterization is extremely useful as it is much
easier to check that a set is closed and bounded than to check that it satisfies
the definition of compactness. In the present section we shall prove a similar
kind of characterization of compact sets in C(X, Rm) — we shall show that
a subset of C(X, Rm) is compact if and only if it it closed, bounded and
equicontinuous. This is known as the Arzelà-Ascoli Theorem. But before
we turn to it, we have a question of independent interest to deal with.1

Definition 3.5.1 Let (X, d) be a metric space and assume that A is a subset
of X. We say that A is dense in X if for each x ∈ X there is a sequence
from A converging to x.

We know that Q is dense in R — we may, e.g., approximate a real number
by longer and longer parts of its decimal expansion. For x =

√
2 this would

mean the approximating sequence

a1 = 1.4 =
14
10

, a2 = 1.41 =
141
100

, a3 = 1.414 =
1414
1000

, a4 = 1.4142 =
14142
10000

, . . .

Recall that Q is countable, but that R is not. Still every element in the
uncountable set R can be approximated arbitrarily well by elements in the
much smaller set Q. This property turns out to be so useful that it deserves
a name.

Definition 3.5.2 A metric set (X, d) is called separable if it has a count-
able, dense subset A.

1If you have read Section 1.6, you will recognize some of the concepts and results at
the beginning of this section, but I repeat them here for the benefit of readers who have
skipped Section 1.6
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Our first result is a simple, but rather surprising connection between
separability and compactness.

Proposition 3.5.3 All compact metric (X, d) spaces are separable. We can
choose the countable dense set A in such a way that for any δ > 0, there is
a finite subset Aδ of A such that all elements of X are within distance less
than δ of Aδ, i.e. for all x ∈ X there is an a ∈ Aδ such that d(x, a) < δ.

Proof: We use that a compact space X is totally bounded (recall Theorem
2.5.12). This mean that for all n ∈ N, there is a finite number of balls of
radius 1

n that cover X. The centers of all these balls form a countable subset
A of X (to get a listing of A, first list the centers of the balls of radius 1,
then the centers of the balls of radius 1

2 etc.). We shall prove that A is dense
in X.

Let x be an element of X. To find a sequence {an} from A converging to
x, we first pick the center a1 of (one of) the balls of radius 1 that x belongs
to, then we pick the center a2 of (one of) the balls of radius 1

2 that x belong
to, etc. Since d(x, an) < 1

n , {an} is a sequence from A converging to x.
To find the set Aδ, just choose m ∈ N so big that 1

m < δ, and let Aδ

consist of the centers of the balls of radius 1
m . 2

We are now ready to turn to C(X, Rm). First we recall the definition of
equicontinuous sets of functions from Section 3.1.

Definition 3.5.4 Let (X, dX) and (Y, dY ) be metric spaces, and let F be a
collection of functions f : X → Y . We say that F is equicontinuous if for
all ε > 0, there is a δ > 0 such that for all f ∈ F and all x, y ∈ X with
dX(x, y) < δ, we have dY (f(x), f(y)) < ε.

We dive straight in by first proving the most difficult and important
ingredient in the Arzelà-Ascoli Theorem.

Proposition 3.5.5 Assume that (X, d) is a compact metric space, and let
{fn} be a bounded and equicontinuous sequence in C(X, Rm). Then {fn}
has a subsequence converging in C(X, Rm).

Proof: Since X is compact, there is a countable, dense subset

A = {a1, a2. . . . , an, . . .}

as in Proposition 3.5.3. The hard part of the proof is to find a subsequence
{gk} of {fn} which is such that {gk(a)} converges for all a ∈ A. Let us first
check that such a sequence {gk} will necessarily converge in C(X, Rm) (it is
here we need the equicontinuity), and hence do the job for us.

Since C(X, Rm) is complete, it suffices to prove that {gk} is a Cauchy
sequence in C(X, Rm). Given an ε > 0, we must thus find an N ∈ N
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such that ρ(gn, gm) < ε when n, m ≥ N . Since the original sequence
is equicontinuous, there exists a δ > 0 such that if dX(x, y) < δ, then
dR(fn(x), fn(y)) < ε

4 for all n. Since {gk} is a subsequence of {fn}, we
clearly have dR(gk(x), gk(y)) < ε

4 for all k. Choose a finite subset Aδ of A
such that any element in X is within less than δ of an element in Aδ. Since
the sequences {gk(a)}, a ∈ Aδ, converge, they are all Cauchy sequences, and
we can find an N ∈ N such that when n, m ≥ N , dRm(gn(a), gm(a)) < ε

4 for
all a ∈ Aδ (here we are using that Aδ is finite).

For any x ∈ X, we can find an a ∈ Aδ such that dX(x, a) < δ. But then
for all n, m ≥ N ,

dRm(gn(x), gm(x)) ≤ dRm(gn(x), gn(a))+dRm(gn(a), gm(a))+dRm(gm(a), gm(x))

<
ε

4
+

ε

4
+

ε

4
=

3ε

4
Since this holds for any x ∈ X, we must have ρ(gn, gm) ≤ 3ε

4 < ε for all
n, m ≥ N , and hence {gk} is a Cauchy sequence and converges.

It remains to prove that the original sequence {fn} really has a subse-
quence {gk} such that {gk(a)} converges for all a ∈ A. We begin a little
less ambitiously by showing that {fn} has a subsequence {f (1)

n } such that
{f (1)

n (a1)} converges (recall that a1 is the first element in our listing of
the countable set A). Next we show that {f (1)

n } has a subsequence {f (2)
n }

such that both {f (2)
n (a1)} and {f (2)

n (a2)} converge. Continuing taking sub-
sequences in this way, we shall for each j ∈ N find a sequence {f (j)

n } such
that {f (j)

n (a)} converges for a = a1, a2, . . . , aj . Finally, we shall construct
the sequence {gk} by combining all the sequences {f (j)

n } in a clever way.
Let us start by constructing {f (1)

n }. Since the sequence {fn} is bounded,
{fn(a1)} is a bounded sequence in Rm, and by Bolzano-Weierstrass’ Theo-
rem, it has a convergent subsequence {fnk

(a1)}. We let {f (1)
n } consist of the

functions appearing in this subsequence. If we now apply {f (1)
n } to a2, we get

a new bounded sequence {f (1)
n (a2)} in Rm with a convergent subsequence.

We let {f (2)
n } be the functions appearing in this subsequence. Note that

{f (2)
n (a1)} still converges as {f (2)

n } is a subsequence of {f (1)
n }. Continuing

in this way, we see that we for each j ∈ N have a sequence {f (j)
n } such that

{f (j)
n (a)} converges for a = a1, a2, . . . , aj . In addition, each sequence {f (j)

n }
is a subsequence of the previous ones.

We are now ready to construct a sequence {gk} such that {gk(a)} con-
verges for all a ∈ A. We do it by a diagonal argument, putting g1 equal
to the first element in the first sequence {f (1)

n }, g2 equal to the second el-
ement in the second sequence {f (2)

n } etc. In general, the k-th term in the
g-sequence equals the k-th term in the k-th f -sequence {fk

n}, i.e. gk = f
(k)
k .

Note that except for the first few elements, {gk} is a subsequence of any
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sequence {f (j)
n }. This means that {gk(a)} converges for all a ∈ A, and the

proof is complete. 2

As a simple consequence of this result we get:

Corollary 3.5.6 If (X, d) is a compact metric space, all bounded, closed
and equicontinuous sets K in C(X, Rm) are compact.

Proof: According to the proposition, any sequence in K has a convergent
subsequence. Since K is closed, the limit must be in K, and hence K is
compact. 2

As already mentioned, the converse of this result is also true, but before
we prove it, we need a technical lemma that is quite useful also in other
situations:

Lemma 3.5.7 Assume that (X, dX) and (Y, dY ) are metric spaces and that
{fn} is a sequence of continuous function from X to Y which converges
uniformly to f . If {xn} is a sequence in X converging to a, then {fn(xn)}
converges to f(a).

Remark This lemma is not as obvious as it may seem — it is not true if
we replace uniform convergence by pointwise!

Proof of Lemma 3.5.7: Given ε > 0, we must show how to find an N ∈ N
such that dY (fn(xn), f(a)) < ε for all n ≥ N . Since we know from Proposi-
tion 3.2.4 that f is continuous, there is a δ > 0 such that dY (f(x), f(a)) < ε

2
when dX(x, a) < δ. Since {xn} converges to x, there is an N1 ∈ N such
that dX(xn, a) < δ when n ≥ N1. Also, since {fn} converges uniformly to
f , there is an N2 ∈ N such that if n ≥ N2, then dY (fn(x), f(x)) < ε

2 for all
x ∈ X. If we choose N = max{N1, N2}, we see that if n ≥ N ,

dY (fn(xn), f(a)) ≤ dY (fn(xn), f(xn)) + dY (f(xn), f(a)) <
ε

2
+

ε

2
= ε

and the lemma is proved. 2

We are finally ready to prove the main theorem:

Theorem 3.5.8 (Arzelà-Ascoli’s Theorem) Let (X, dX) be a compact
metric space. A subset K of C(X, Rm) is compact if and only if it is closed,
bounded and equicontinuous.

Proof: It remains to prove that a compact set K in C(X, Rm) is closed,
bounded and equicontinuous. Since compact sets are always closed and
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bounded according to Proposition 2.5.4, if suffices to prove that K is equicon-
tinuous. We argue by contradiction: We assume that the compact set K is
not equicontinuous and show that this leads to a contradiction.

Since K is not equicontinuous, there must be an ε > 0 which can not
be matched by any δ; i.e. for any δ > 0, there is a function f ∈ K and
points x, y ∈ X such that dX(x, y) < δ, but dRm(f(x), f(y)) ≥ ε. If we
put δ = 1

n , we get at function fn ∈ K and points xn, yn ∈ X such that
dX(xn, yn) < 1

n , but dRm(fn(xn), fn(yn)) ≥ ε. Since K is compact, there is a
subsequence {fnk

} of {fn} which converges (uniformly) to a function f ∈ K.
Since X is compact, the corresponding subsequence {xnk

} of {xn}, has a
subsequence {xnkj

} converging to a point a ∈ X. Since dX(xnkj
, ynkj

) < 1
nkj

,

the corresponding sequence {ynkj
} of y’s also converges to a.

Since {fnkj
} converges uniformly to f , and {xnkj

}, {ynkj
} both converge

to a, the lemma tells us that

fnkj
(xnkj

) → f(a) and fnkj
(ynkj

) → f(a)

But this is impossible since dRm(f(xnkj
), f(ynkj

)) ≥ ε for all j. Hence we
have our contradiction, and the theorem is proved. 2

Exercises for Section 3.5

1. Show that Rn is separable for all n.

2. Show that a subset A of a metric space (X, d) is dense if and only if all open
balls B(a, r), a ∈ X, r > 0, contain elements from X.

3. Assume that (X, d) is a complete metric space, and that A is a dense subset
of X. We let A have the subset metric dA.

a) Assume that f : A → R is uniformly continuous. Show that if {an} is a
sequence from A converging to a point x ∈ X, then {f(an)} converges.
Show that the limit is the same for all such sequences {an} converging
to the same point x.

b) Define f̄ : X → R by putting f̄(x) = limn→∞ f(an) where {an} is a
sequence from a converging to x. We call f the continuous extension
of f to X. Show that f̄ is uniformly continuous.

c) Let f : Q → R be defined by

f(q) =

 0 if q <
√

2

1 if q >
√

2

Show that f is continuous on Q (we are using the usual metric dQ(q, r) =
|q − r|). Is f uniformly continuous?

d) Show that f does not have a continuous extension to R.
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4. Let K be a compact subset of Rn. Let {fn} be a sequence of contractions of
K. Show that {fn} has uniformly convergent subsequence.

5. A function f : [−1, 1] → R is called Lipschitz continuous with Lipschitz
constant K ∈ R if

|f(x)− f(y)| ≤ K|x–y|

for all x, y ∈ [−1, 1]. Let K be the set of all Lipschitz continuous functions
with Lipschitz constant K such that f(0) = 0. Show that K is a compact
subset of C([−1, 1], R).

6. Assume that (X, dX) and (Y, dY ) are two metric spaces, and let σ : [0,∞) →
[0,∞) be a nondecreasing, continuous function such that σ(0) = 0. We say
that σ is a modulus of continuity for a function f : X → Y if

dY (f(u), f(v)) ≤ σ(dX(u, v))

for all u, v ∈ X.

a) Show that a family of functions with the same modulus of continuity is
equicontinuous.

b) Assume that (X, dX) is compact, and let x0 ∈ X. Show that if σ is a
modulus of continuity, then the set

K = {f : X → Rn : f(x0) = 0 and σ is modulus of continuity for f}

is compact.

c) Show that all functions in C([a, b], Rm) has a modulus of continuity.

7. A metric space (X, d) is called locally compact if for each point a ∈ X,
there is a closed ball B(a; r) centered at a that is compact. (Recall that
B(a; r) = {x ∈ X : d(a, x) ≤ r}). Show that Rm is locally compact, but
that C([0, 1], R) is not.

3.6 Differential equations revisited

In Section 3.4, we used Banach’s Fixed Point Theorem to study initial value
problems of the form

y′(t) = f(t,y(t)), y(0) = y0 (3.6.1)

or equivalently

y(t) = y0 +
∫ t

0
f(s,y(s)) ds (3.6.2)

In this section we shall see how Arzelà-Ascoli’s Theorem can be used to prove
existence of solutions under weaker conditions than before. But in the new
approach we shall also lose something — we can only prove that the solutions
exist in small intervals, and we can no longer guarantee uniqueness.

The starting point is Euler’s method for finding approximate solutions
to differential equations. If we want to approximate the solution starting at
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y0 at time t = 0, we begin by partitioning time into discrete steps of length
∆t; hence we work with the time line

T = {t0, t1, t2, t3 . . .}

where t0 = 0 and ti+1− ti = ∆t. We start the approximate solution ŷ at y0

and move in the direction of the derivative f(t0,y0), i.e. we put

ŷ(t) = y0 + f(t0,y0)(t− t0)

for t ∈ [t0, t1]. Once we reach t1, we change directions and move in the
direction of the new derivative f(t1, ŷ(t1)) so that we have

ŷ(t) = ŷ(t1) + f(t0, ŷ(t1))(t− t1)

for t ∈ [t1, t2]. If we insert the expression for ŷ(t1), we get:

ŷ(t) = y0 + f(t0,y0)(t1 − t0) + f(t1, ŷ(t1))(t− t1)

If we continue in this way, changing directions at each point in T , we get

ŷ(t) = y0 +
k−1∑
i=0

f(ti, ŷ(ti))(ti+1 − ti) + f(tk, ŷ(tk))(t− tk)

for t ∈ [tk, tk+1]. If we observe that

f(ti, ŷ(ti))(ti+1 − ti) =
∫ ti+1

ti

f(ti, ŷ(ti) ds ,

we can rewrite this expression as

ŷ(t) = y0 +
k−1∑
i=0

∫ ti+1

ti

f(ti, ŷ(ti) ds +
∫ t

tk

f(tk, ŷ(tk) ds

If we also introduce the notation

s = the largest ti ∈ T such that ti ≤ s,

we may express this more compactly as

ŷ(t) = y0 +
∫ t

0
f(s, ŷ(s)) ds

Note that we can also write this as

ŷ(t) = y0 +
∫ t

0
f(s, ŷ(s)) ds +

∫ t

0

(
f(s, ŷ(s))− f(s, ŷ(s))

)
ds
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(observe that there is one s and one s term in the last integral) where the
last term measures how much ŷ “deviates” from being a solution of equation
(3.6.2).

Intuitively, one would think that the approximate solution ŷ will con-
verge to a real solution y when the step size ∆t goes to zero. To be more
specific, if we let ŷn be the approximate solution we get when we choose
∆t = 1

n , we would expext the squence {ŷn} to converge to a solution of (2).
It turns out that in the most general case we can not quite prove this, but we
can instead use the Arzelà-Ascoli Theorem to find a subsequence converging
to a solution.

Before we turn to the proof, it will useful to see how intergals of the form

Ik(t) =
∫ t

0
f(s, ŷk(s)) ds

behave when the functions ŷk converge uniformly to a limit y.

Lemma 3.6.1 Let f : [0,∞) × Rm be a continuous function, and assume
that {ŷk} is a sequence of continuous functions ŷk : [0, a] → Rm converging
uniformly to a function y. Then the integral functions

Ik(t) =
∫ t

0
f(s, ŷk(s)) ds

converge uniformly to

I(t) =
∫ t

0
f(s,y(s)) ds

on [0, a].

Proof: Since the sequence {ŷk} converges unifomly, it is bounded, and hence
there is a constant K such that |ŷk(t)| ≤ K for all k ∈ N and all t ∈ [0, a]
(prove this!). The continuous function f is uniformly continuous on the
compact set [0, a] × [−K, K]m, and hence for every ε > 0, there is a δ > 0
such that if |y − y′| < δ, then |f(s,y)− f(s,y′)| < ε

a for all s ∈ [0, a]. Since
{ŷk} converges uniformly to y, there is an N ∈ N such that if n ≥ N ,
|ŷn(s)− y(s)| < δ for all s ∈ [0, a]. But then

|In(t)− I(t)| = |
∫ t

0

(
f(s, ŷn(s))− f(s,y(s))

)
ds| ≤

≤
∫ t

0

∣∣f(s, ŷn(s))− f(s,y(s))
∣∣ ds <

∫ a

0

ε

a
ds = ε

for all t ∈ [0, a], and hence {Ik} converges uniformly to I. 2

We are now ready for the main result.
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Theorem 3.6.2 Assume that f : [0,∞)× Rm → Rm is a continuous func-
tion and that y0 ∈ Rm. Then there exists a positive real number a and a
function y : [0, a] → Rm such that y(0) = y0 and

y′(t) = f(t,y(t)) for all t ∈ [0, a]

Remark Note that there is no uniqueness statement (the problem may have
more than one solution), and that the solution is only guaranteed to exist
on a bounded intervall (it may disappear to infinity after finite time).

Proof of Theorem 3.6.2: Choose a big, compact subset C = [0, R]×[−R,R]m

of [0,∞) × Rm containing (0,y0) in its interior. By the Extreme Value
Theorem, the components of f have a maximum value on C, and hence
there exists a number M ∈ R such that |fi(t,y)| ≤ M for all (t,y) ∈ C and
all i = 1, 2, . . . ,m. If the initial value has components

y0 =


Y1

Y2
...

Ym


we choose a ∈ R so small that the set

A = [0, a]×[Y1−Ma, Y1+Ma]×[Y2−Ma, Y2+Ma]×· · ·×[Ym−Ma, Ym+ma]

is contained in C. This may seem mysterious, put the point is that our
approximate solutions of the differential equation can never leave the area

[Y1 −Ma, Y1 + Ma]× [Y2 −Ma, Y2 + Ma]× · · · × [Ym −Ma, Y + ma]

while t ∈ [0, a] since all the derivatives are bounded by M .
Let ŷn be the approximate solution obtained by using Euler’s method

on the interval [0, a] with time step a
n . The sequence {ŷn} is bounded

since (t, ŷn(t)) ∈ A, and it is equicontinuous since the components of f are
bounded by M . By Proposition 3.5.5, ŷn has a subsequece {ŷnk

} converging
uniformly to a function y. If we can prove that y solves the integral equation

y(t) = y0 +
∫ t

0
f(s,y(s)) ds

for all t ∈ [0, a], we shall have proved the theorem.
From the calculations at the beginning of the section, we know that

ŷnk
(t) = y0 +

∫ t

0
f(s, ŷnk

(s)) ds+
∫ t

0

(
f(s, ŷnk

(s))−f(s, ŷnk
(s))

)
ds (3.6.3)
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and according to the lemma∫ t

0
f(s, ŷnk

(s)) ds →
∫ t

0
f(s,y(s)) ds uniformly for t ∈ |0, a]

If we can only prove that∫ t

0

(
f(s, ŷnk

(s))− f(s, ŷnk
(s))

)
ds → 0 (3.6.4)

we will get

y(t) = y0 +
∫ t

0
f(s,y(s)) ds

as k →∞ in (3.6.3), and the theorem will be proved
To prove (3.6.4), observe that since A is a compact set, f is uniformly

continuous on A. Given an ε > 0, we thus find a δ > 0 such that |f(s,y)−
f(s′,y′)| < ε

a when |(s,y) − (s′,y)| < δ (we are measuring the distance in
the ordinary Rm+1-metric). Since

|(s, ŷnk
(s))− (s, ŷnk

(s))| ≤ |(∆t, M∆t, . . . ,M∆t)| =
√

1 + nM2 ∆t ,

we can clearly get |(s, ŷnk
(s))− (s, ŷnk

(s))| < δ by choosing k large enough
(and hence ∆t small enough). For such k we then have

|
∫ t

0

(
f(s, ŷnk

(s))− f(s, ŷnk
(s))

∣∣ < ∫ a

0

ε

a
ds = ε

and hence ∫ t

0

(
f(s, ŷnk

(s))− f(s, ŷnk
(s))

)
ds → 0

as k →∞. As already observed, this completes the proof. 2

Remark An obvious question at this stage is why didn’t we extend our
solution beyond the interval [0, a] as we did in the proof of Theorem 3.4.2?
The reason is that in the present case we do not have control over the length
of our intervals, and hence the second interval may be very small compared
to the first one, the third one even smaller, and so one. Even if we add an
infinite number of intervals, we may still only cover a finite part of the real
line. There are good reasons for this: the differential equation may only
have solutions that survive for a finite amount of time. A typical example
is the equation

y′ = (1 + y2), y(0) = 0

where the (unique) solution y(t) = tan t goes to infinity when t → π
2
−.
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The proof above is a simple, but typical example of a wide class of
compactness arguments in the theory of differential equations. In such ar-
guments one usually starts with a sequence of approximate solutions and
then uses compactness to extract a subsequence converging to a solution.
Compactness methods are strong in the sense that they can often prove lo-
cal existence of solutions under very general conditions, but they are weak
in the sense that they give very little information about the nature of the
solution. But just knowing that a solution exists, is often a good starting
point for further explorations.

Exercises for Section 3.6

1. Prove that if fn : [a, b] → Rm are continuous functions converging uniformly
to a function f , then the sequence {fn} is bounded in the sense that there is
a constant K ∈ R such that |fn(t)| ≤ K for all n ∈ N and all t ∈ [a, b] (this
property is used in the proof of Lemma 3.6.1).

2. Go back to exercises 1 and 2 in Section 3.4. Show that the differential equa-
tions satisfy the conditions of Theorem 3.6.2. Comment.

3. It is occasionally useful to have a slightly more general version of Theorem
3.6.2 where the solution doesn’t just start a given point, but passes through it:

Teorem Assume that f : R × Rm → Rm is a continuous function. For any
t0 ∈ R and y0 ∈ Rm, there exists a positive real number a and a function
y : [t0 − a, t0 + a] → Rm such that y(t0) = y0 and

y′(t) = f(t,y(t)) for all t ∈ [t0 − a, t0 + a]

Prove this theorem by modifying the proof of Theorem 3.6.2 (run Euler’s
method “backwards” on the interval [t0 − a, t0]).

3.7 Polynomials are dense in C([a, b], R)

From calculus we know that many continuous functions can be approxi-
mated by their Taylor polynomials, but to have Taylor polynomials of all
orders, a function f has to be infinitely differentiable, i.e. the higher order
derivatives f (k) have to exist for all k. Most continuous functions are not dif-
ferentiable at all, and the question is whether they still can be approximated
by polynomials. In this section we shall prove:

Theorem 3.7.1 (Weierstrass’ Theorem) The polynomials are dense in
C([a, b], R) for all a, b ∈ R, a < b. In other words, for each continuous
function f : [a, b] → R, there is a sequence of polynomials {pn} converging
uniformly to f .
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The proof I shall give (due to the Russian mathematician Sergei Bern-
stein (1880-1968)) is quite surprising; it uses probability theory to establish
the result for the interval [0, 1], and then a straight forward scaling argument
to extend it to all closed and bounded intervals.

The idea is simple: Assume that you are tossing a biased coin which has
probability x of coming up “heads”. If you toss it more and more times,
you expect the proportion of times it comes up “heads” to stabilize around
x. If somebody has promised you an award of f(X) dollars, where X is the
actually proportion of “heads” you have had during your (say) 1000 first
tosses, you would expect your average award to be close to f(x). If the
number of tosses was increased to 10 000, you would feel even more certain.

Let us fomalize this: Let Yi be the outcome of the i-th toss in the sense
that Yi has the value 0 if the coin comes up “tails” and 1 if it comes up
“heads”. The proportion of “heads” in the first N tosses is then given by

XN =
1
N

(Y1 + Y2 + · · ·+ YN )

Each Yi is binomially distributed with mean E(Yi) = x and variance Var(Yi) =
x(1− x), and since they are independent, we see that

E(XN ) =
1
N

(E(Y1) + E(Y2) + · · ·E(YN )) = x

and

Var(XN ) =
1

N2
(Var(Y1) + Var(y2) + · · ·+ Var(YN )) =

1
N

x(1− x)

(if you don’t remember these formulas from probability theory, we shall
derive them by analytic methods in the exercises). As N goes to infinity,
we would expect XN to converge to x with probability 1. If the “award
function” f is continuous, we would also expect our average award E(f(XN ))
to converge to f(x).

To see what this has to do with polynomials, let us compute the average
award E(f(XN )). Since the probability of getting exactly k heads in N
tosses is

(
N
k

)
xk(1− x)n−k, we get

E(f(XN )) =
N∑

k=0

f(
k

N
)
(

N

k

)
xk(1− x)N−k

Our expectation that E(f(XN )) → f(x) as N → ∞, can therefore be
rephrased as

N∑
k=0

f(
k

N
)
(

N

k

)
xk(1− x)N−k → f(x) N →∞
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If we expand the parentheses (1−x)N−k, we see that the expressions on the
right hand side are just polynomials in x, and hence we have arrived at the
hypothesis that the polynomials

pN (x) =
N∑

k=0

f(
k

N
)
(

N

k

)
xk(1− x)N−k

converge to f(x). We shall prove that this is indeed the case, and that the
convergence is uniform.

Proposition 3.7.2 If f : [0, 1] → R is a continuous function, the Bernstein
polynomials

pN (x) =
N∑

k=0

f(
k

N
)
(

N

k

)
xk(1− x)N−k

converge uniformly to f on [0, 1].

Proof: Given ε > 0, we must show how to find an N such that |f(x) −
pn(x)| < ε for all n ≥ N and all x ∈ [0, 1]. Since f is continuous on the
compact set [0, 1], it has to be uniformly continuous, and hence we can
find a δ > 0 such that |f(u) − f(v)| < ε

2 whenever |u − v| < δ. Since
pn(x) = E(f(Xn)), we have

|f(x)−pn(x)| = |f(x)−E(f(Xn))| = |E(f(x)−f(Xn))| ≤ E(|f(x)−f(Xn)|)

We split the last expectation into two parts: the cases where |x −Xn| < δ
and the rest:

E(|f(x)−f(Xn)|) = E(1{|x−Xn|<δ}|f(x)−f(Xn)|)+E(1{|x−Xn|≥δ}|f(x)−f(Xn)|)

where the indicator function 1{|x−Xn|<δ} is defined by

1{|x−Xn|<δ} =


1 if |x−Xn| < δ

0 otherwise

and oppositely for 1{|x−Xn|≥δ}. By choice of δ, we have for the first term

E(1{|x−Xn|<δ}|f(x)− f(Xn)|) ≤ E
(
1{|x−Xn|<δ}

ε

2

)
≤ ε

2

For the second term, we first note that since f is a continuous function on
a compact interval, it must be bounded by a constant M . Hence

E(1{|x−Xn|≥δ}|f(x)−f(Xn)|) ≤ 2ME(1{|x−Xn|≥δ}) ≤ 2ME

((
|x−Xn|

δ

)2
)

=
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=
2M

δ2
E(|x−Xn|2) =

2M

δ2
Var(Xn) =

2Mx(1− x)
δ2n

≤ M

2δ2n

where we in the last step used that 1
4 is the maximal value of x(1 − x) on

[0, 1]. If we now choose N ≥ M
δ2ε

, we see that we get

E(1{|x−Xn|≥δ}|f(x)− f(Xn)|) <
ε

2

for all n ≥ N . Combining all the inequalities above, we see that if n ≥ N ,
we have for all x ∈ [0, 1]

|f(x)− pn(x)| ≤ E(|f(x)− f(Xn)|) =

= E(1{|x−Xn|<δ}|f(x)− f(Xn)|) + E(1{|x−Xn|≥δ}|f(x)− f(Xn)|) <

<
ε

2
+

ε

2
= ε

and hence the Bernstein polynomials pn converge uniformly to f . 2

To get Weierstrass’ result, we just have to move functions from arbitrary
intervals [a, b] to [0, 1] and back. The function

T (x) =
x− a

b− a

maps [a, b] bijectively to [0, 1], and the inverse function

T−1(y) = a + (b− a)y

maps [0, 1] back to [a, b]. If f is a continuous function on [a, b], the function
f̂ = f ◦T−1 is a continuous function on [0, 1] taking exactly the same values
in the same order. If {qn} is a sequence of pynomials converging uniformly
to f̂ on [0, 1], then the functions pn = qn ◦ T converge uniformly to f on
[a, b]. Since

pn(x) = qn(
x− a

b− a
)

the pn’s are polynomials, and hence Weierstrass’ theorem is proved.

Remark Weierstrass’ theorem is important because many mathematical ar-
guments are easier to perform on polynomials than on continuous functions
in general. If the property we study is preserved under uniform limits (i.e.
if the if the limit function f of a uniformly convergent sequence of func-
tions {fn} always inherits the property from the fn’s), we can use Weier-
strass’ Theorem to extend the argument from polynomials to all continuous
functions. There is an extension of the result called the Stone-Weierstrass
Theorem which generalizes the result to much more general settings.
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Exercises for Section 3.7

1. Show that there is no sequence of polynomials that converges uniformly to
the continuous function f(x) = 1

x on (0, 1).

2. Show that there is no sequence of poynomials that converges uniformly to
the function f(x) = ex on R.

3. In this problem

f(x) =

 e−1/x2
if x 6= 0

0 if x = 0

a) Show that if x 6= 0, then the n-th derivative has the form

f (n)(x) = e−1/x2 Pn(x)
xNn

where Pn is a polynomial and Nn ∈ N.

b) Show that f (n)(0) = 0 for all n.

c) Show that the Taylor polynomials of f at 0 do not converge to f except
in the point 0.

4. Assume that f : [a, b] → R is a continuous function such that
∫ b

a
f(x)xn dx =

0 for all n = 0, 1, 2, 3, . . ..

a) Show that
∫ b

a
f(x)p(x) dx = 0 for all polynomials p.

b) Use Weierstrass’ theorem to show that
∫ b

a
f(x)2 dx = 0. Conclude that

f(x) = 0 for all x ∈ [a, b].

5. In this exercise we shall show that C([a, b], R) is a separable metric space.

a) Assume that (X, d) is a metric space, and that S ⊂ T are subsets of X.
Show that if S is dense in (T, dT ) and T is dense in (X, d), then S is
dense in (X, d).

b) Show that for any polynomial p, there is a sequence {qn} of polynomials
with rational coefficients that converges uniformly to p on [a, b].

c) Show that the polynomials with rational coefficients are dense in C([a, b], R).

d) Show that C([a, b], R) is separable.

6. In this problem we shall reformulate Bernstein’s proof in purely analytic
terms, avoiding concepts and notation from probability theory. You should
keep the Binomial Formula

(a + b)N =
N∑

k=0

(
n

k

)
akbN−k

and the definition
(
N
k

)
= N(N−1)(N−2)·...·(N−k+1)

1·2·3·...·k in mind.

a) Show that
∑N

k=0

(
N
k

)
xk(1− x)N−k = 1.
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b) Show that
∑N

k=0
k
N

(
N
k

)
xk(1 − x)N−k = x (this is the analytic version

of E(XN ) = 1
N (E(Y1) + E(Y2) + · · ·E(YN )) = x)

c) Show that
∑N

k=0

(
k
N − x

)2 (N
k

)
xk(1 − x)N−k = 1

N x(1 − x) (this is the
analytic version of Var(XN ) = 1

N x(1 − x)). Hint: Write ( k
N − x)2 =

1
N2

(
k(k − 1) + (1− 2xN)k + N2x2

)
and use points b) and a) on the

second and third term in the sum.
d) Show that if pn is the n-th Bernstein polynomial, then

|f(x)− pn(x)| ≤
n∑

k=0

|f(x)− f(k/n)|
(

n

k

)
xn(1− x)n−k

e) Given ε > 0, explain why there is a δ > 0 such that |f(u)− f(v)| < ε/2
for all u, v ∈ [0, 1] such that |u− v| < δ. Explain why

|f(x)− pn(x)| ≤
∑

{k:| k
n−x|<δ}

|f(x)− f(k/n)|
(

n

k

)
xn(1− x)n−k+

+
∑

{k:| k
n−x|≥δ}

|f(x)− f(k/n)|
(

n

k

)
xn(1− x)n−k ≤

<
ε

2
+

∑
{k:| k

n−x|≥δ}

|f(x)− f(k/n)|
(

n

k

)
xn(1− x)n−k

f) Show that there is a constant M such that |f(x)| ≤ M for all x ∈ [0, 1].
Explain all the steps in the calculation:∑

{k:| k
n−x|≥δ}

|f(x)− f(k/n)|
(

n

k

)
xn(1− x)n−k ≤

≤ 2M
∑

{k:| k
n−x|≥δ}

(
n

k

)
xn(1− x)n−k ≤

≤ 2M
n∑

k=0

(
k
n − x

δ

)2(
n

k

)
xn(1− x)n−k ≤ 2M

nδ2
x(1− x) ≤ M

2nδ2

g) Explain why we can get |f(x)− pn(x)| < ε by chosing n large enough,
and explain why this proves Proposition 3.7.2.

3.8 Baire’s Category Theorem

Recall that a subset A of a metric space (X, d) is dense if for all x ∈ X
there is a sequence from A converging to x. An equivalent definition is that
all balls in X contain elements from A. To show that a set S is not dense,
we thus have to find an open ball that does not intersect S. Obviously, a
set can fail to be dense in parts of X, and still be dense in other parts.
The following definition catches our intiution of a set set that is not dense
anywhere.
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Definition 3.8.1 A subset S of a metric space (X, d) is said to be nowhere
dense if for all nonempty, open sets G ⊂ X, there is a ball B(x; r) ⊂ G that
does not intersect S.

This definition simply says that no matter how much we restrict our atten-
tion, we shall never find an area in X where S is dense.

Example 1. N is nowhere dense in R.

Nowhere dense sets are sparse in an obvious way. The following definition
indicates that even countable unions of nowhere dense sets are unlikely to
be very large.

Definition 3.8.2 A set is called meager if it is a countable union of nowhere
dense sets. The complement of a meager set is called comeager.2

Example 2. Q is a meager set in R as it can be written as a countable union
Q =

⋃
a∈Q{a} of the nowhere dense singletons {a}. By the same argument,

Q is also meager in Q.

The last part of the example shows that a meager set can fill up a metric
space. However, in complete spaces the meager sets are always “meager” in
the following sense:

Theorem 3.8.3 (Baire’s Category Theorem) Assume that M is a mea-
ger subset of a complete metric space (X, d). Then M does not contain any
open balls, i.e. M c is dense in X.

Proof: Since M is meager, it can be written as a union M =
⋃

k∈N Nk of
nowhere dense sets Nk. Given a ball B(a; r), our task is to find an element
x ∈ B(a; r) which does not belong to M .

We first observe that since N1 is nowhere dense, there is a ball B(a1; r1)
inside B(a; r) which does not intersect N1. By shrinking the radius r1 slightly
if necessary, we may assume that the closed ball B(a1; r1) is contained in
B(a; r), does not intersect N1, and has radius less than 1. Since N2 is
nowhere dense, there is a ball B(a2; r2) inside B(a1; r1) which does not in-
tersect N2. By shrinking the radius r2 if necessary, we may assume that
the closed ball B(a2; r2) does not intersect N2 and has radius less than 1

2 .
Continuing in this way, we get a sequence {B(ak; rk)} of closed balls, each

2Most books refer to meager sets as “sets of first category” while comeager sets are
called “residual sets”. Sets that are not of first category, are said to be of “second cat-
egory”. Although this is the original terminology of René-Louis Baire (1874-1932) who
introduced the concepts, it is in my opinion so nondescriptive that it should be abandoned
in favor of more evocative terms.
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contained in the previous, such that B(ak; rk) has radius less than 1
k and

does not intersect Nk.
Since the balls are nested and the radii shrink to zero, the centers ak

form a Cauchy sequence. Since X is complete, the sequence converges to a
point x. Since each ball B(ak; rk) is closed, and the “tail” {an}∞n=k of the
sequence belongs to B(ak; rk), the limit x also belongs to B(ak; rk). This
means that for all k, x /∈ Nk , and hence x /∈ M . Since B(a1; r1) ⊂ B(a; r),
we see that x ∈ B(a; r), and the theorem is proved. 2

As an immediate consequence we have:

Corollary 3.8.4 A complete metric space is not a countable union of nowhere
dense sets.

Baire’s Category Theorem is a surprisingly strong tool for proving the-
orems about sets and families of functions. We shall take a look at some
examples.

Definition 3.8.5 Let (X, d) be a metric space. A family F of functions
f : X → R is called pointwise bounded if for each x ∈ X, there is a
constant Mx ∈ R such that |f(x)| ≤ Mx for all f ∈ F .

Note that the constant Mx may vary from point to point, and that there
need not be a constant M such that |f(x)| ≤ M for all f and all x (a simple
example is F = {f : R → R | f(x) = kx for k ∈ [−1, 1}, where Mx = |x|).
The next result shows that although we cannot guarantee boundedness on
all X, we can under reasonable assumptions guarantee boundedness on a
part of X.

Proposition 3.8.6 Let (X, d) be a complete metric space, and assume that
F is a pointwise bounded family of continuous functions f : X → R. Then
there exists an open, nonempty set G and a constant M ∈ R such that
|f(x)| ≤ M for all f ∈ F and all x ∈ G.

Proof: For each n ∈ N and f ∈ F , the set f−1([−n, n]) is closed as it is the
inverse image of a closed set under a continuous function (recall Proposition
2.3.10). As intersections of closed sets are closed (Proposition 2.3.12)

An =
⋂

f∈F
f−1([−n, n])

is also closed. Since F is pointwise bounded, R =
⋃

n∈N An, and the corol-
lary above tells us that not all An can be nowhere dense. If An0 is not
nowhere dense, there must be an open set G such that all balls inside G
contains elements from An0 . Since An0 is closed, this means that G ⊂ An0
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(check!). By definition of An0 , we see that |f(x)| ≤ n0 for all f ∈ F and all
x ∈ G. 2

You may doubt the usefulness of this theorem as we only know that the result
holds for some open set G, but the point is that if we have extra information
on the the family F , the sole existence of such a set may be exactly what we
need to pull through a more complex argument. In functional analysis, there
is a famous (and most useful) example of this called the Banach-Steinhaus
Theorem.

For our next application, we first observe that although Rn is not com-
pact, it can be written as a countable union of compact sets:

Rn =
⋃
k∈N

[−k, k]n

We shall show that this is not the case for C([0, 1], R) — this space can
not be written as a countable union of compact sets. We need a couple of
lemmas.

Lemma 3.8.7 A closed set F is nowhere dense if and only if it does not
contain any open balls.

Proof: If F contains an open ball, it obviously isn’t nowhere dense. We
therefore assume that F does not contain an open ball, and prove that it is
nowhere dense. Given a nonempty, open set G, we know that F cannot be
contained in G as G contains open balls and F does not. Pick an element
x in G that is not in F . Since F is closed, there is a ball B(x; r1) around x
that does not intersect F . Since G is open, there is a ball B(x; r2) around
x that is contained in G. If we choose r = min{r1, r2}, the ball B(x; r) is
contained in G and does not intersect F , and hence F is nowhere dense. 2

The next lemma contains the key to the argument.

Lemma 3.8.8 A compact subset K of C([0, 1], R) is nowhere dense.

Proof: Since compact sets are closed, it suffices (by the previous lemma)
to show that each ball B(f ; ε) contains elements that are not in K. By
Arzelà-Ascoli’s Theorem, we know that compact sets are equicontinuous,
and hence we need only prove that B(f ; ε) contains a family of functions
that is not equicontinuous. We shall produce such a family by perturbing f
by functions that are very steep on small intervals.

For each n ∈ N, let gn be the function

gn(x) =


nx for x ≤ ε

2n

ε
2 for x ≥ ε

2n
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Then f + gn is in B(f, ε), but since {f + gn} is not equicontinuous (see
Exercise 9 for help to prove this), all these functions can not be in K, and
hence B(f ; ε) contains elements that are not in K. 2

Proposition 3.8.9 C([0, 1], R) is not a countable union of compact sets.

Proof: Since C([0, 1], R) is complete, it is not the countable union of nowhere
dense sets by Corollary 3.8.4. Since the lemma tells us that all compact sets
are nowhere dense, the theorem follows. 2

Remark: The basic idea in the proof above is that the compact sets are
nowhere dense since we can obtain arbitrarily steep functions by perturbing
a given function just a little. The same basic idea can be used to prove more
sophisticated results, e.g. that the set of nowhere differentiable functions is
comeager in C([0, 1], R). The key idea is that starting with any continuous
function, we can perturb it into functions with arbitrarily large derivatives
by using small, but rapidly oscillating functions. With a little bit of technical
work, this implies that the set of functions that are differentiable at at least
one point, is meager.

Exercises for Section 3.8

1. Show that N is a nowhere dense subset of R.

2. Show that the set A = {g ∈ C([0, 1], R) | g(0) = 0} is nowhere dense in
C([0, 1], R).

3. Show that a subset of a nowhere dense set is nowhere dense and that a subset
of a meager set is meager.

4. Show that a subset S of a metric space X is nowhere dense if and only if for
each open ball B(a0; r0) ⊂ X, there is a ball B(x; r) ⊂ B(a0; r0) that does
not intersect S.

5. Recall that the closure N of a set N consist of N plus all its boundary points.

a) Show that if N is nowhere dense, so is N .

b) Find an example of a meager set M such that M is not meager.

c) Show that a set is nowhere dense if and only if N does not contain any
open balls.

6. Show that a countable union of meager sets is meager.

7. Show that if N1, N2, . . . , Nk are nowhere dense, so is N1 ∪N2 ∪ . . . Nk.

8. Prove that G ⊂ An0 in the proof of Proposition 3.8.6.

9. In this problem we shall prove that the set {f + gn} in the proof of Lemma
3.8.8 is not equicontinuous.

a) Show that the set {gn} is not equicontinuous.
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b) Show that if {hn} is an equicontinous family of functions hn : [0, 1] → R
and k : [0, 1] → R is continuous, then {hn + k} is equicontinuous.

c) Prove that the set {f + gn} in the lemma is not equicontinuous. (Hint:
Assume that the sequence is equicontinuous, and use part b) with hn =
f + gn and k = −f to get a contradiction with a)).

10. Let N have the discrete metric. Show that N is complete and that N =⋃
n∈N{n}. Why doesn’t this contradict Baire’s Category Theorem?

11. Let (X, d) be a metric space.

a) Show that if G ⊂ X is open and dense, then Gc is nowhere dense.

b) Assume that (X, d) is complete. Show that if {Gn} is a countable
collection of open, dense subsets of X, then

⋂
n∈N Gn is dense in X

12. Assume that a sequence {fn} of continuous functions fn : [0, 1] → R con-
verges pointwise to f . Show that f must be bounded on a subinterval of
[0, 1]. Find an example which shows that f need not be bounded on all of
[0, 1].

13. In this problem we shall study sequences {fn} of functions converging point-
wise to 0.

a) Show that if the functions fn are continuous, then there exists a nonempty
subinterval (a, b) of [0, 1] and an N ∈ N such that for n ≥ N , |fn(x)| ≤ 1
for all x ∈ (a, b).

b) Find a sequence of functions {fn} converging to 0 on [0, 1] such that for
each nonempty subinterval (a, b) there is for each N ∈ N an x ∈ (a, b)
such that fN (x) > 1.

14. Let (X, d) be a metric space. A point x ∈ X is called isolated if there is an
ε > 0 such that B(x; ε) = {x}.

a) Show that if x ∈ X, the singleton {x} is nowhere dense if and only if x
is not an isolated point.

b) Show that if X is a complete metric space without isolated points, then
X is uncountable.

We shall now prove:

Theorem: The unit interval [0, 1] can not be written as a countable, disjoint
union of closed, proper subintervals In = [an, bn].

c) Assume for contradictions that [0, 1] can be written as such a union.
Show that the set of all endpoints, F = {an, bn |n ∈ N} is a closed
subset of [0, 1], and that so is F0 = F \ {0, 1}. Explain that since F0

is countable and complete in the subspace metric, F0 must have an
isolated point, and use this to force a contradiction.



Chapter 4

Series of functions

In this chapter we shall see how the theory in the previous chapters can be
used to study functions. We shall be particularly interested in how general
functions can be written as sums of series of simple functions such as power
functions and trigonometric functions. This will take us to the theories of
power series and Fourier series.

4.1 lim sup and lim inf

In this section we shall take a look at a useful extension of the concept
of limit. Many sequences do not converge, but still have a rather regular
asymptotic behavior as n goes to infinity — they may, for instance, oscillate
between an upper set of values and a lower set. The notions of limit superior,
lim sup, and limit inferior, lim inf, are helpful to describe such behavior.
They also have the advantage that they always exist (provided we allow
them to take the values ±∞).

We start with a sequence {an} of real numbers, and define two new
sequences {Mn} and {mn} by

Mn = sup{ak | k ≥ n}

and

mn = inf{ak | k ≥ n}

We allow that Mn = ∞ and that mn = −∞ as may well occur. Note that
the sequence {Mn} is decreasing (as we are taking suprema over smaller
and smaller sets), and that {mn} is increasing (as we are taking infima over
increasingly smaller sets). Since the sequences are monotone, the limits

lim
n→∞

Mn and lim
n→∞

mn

83
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clearly exist, but they may be ±∞. We now define the limit superior of the
original sequence {an} to be

lim sup
n→∞

an = lim
n→∞

Mn

and the limit inferior to be

lim inf
n→∞

an = lim
n→∞

mn

The intuitive idea is that as n goes to infinity, the sequence {an} may oscil-
late and not converge to a limit, but the oscillations will be asymptotically
bounded by lim sup an above and lim inf an below.

The following relationship should be no surprise:

Proposition 4.1.1 Let {an} be a sequence of real numbers. Then

lim
n→∞

an = b

if and only if
lim sup

n→∞
an = lim inf

n→∞
an = b

(we allow b to be a real number or ±∞.)

Proof: Assume first that lim supn→∞ an = lim infn→∞ an = b. Since mn ≤
an ≤ Mn, and

lim
n→∞

mn = lim inf
n→∞

an = b ,

lim
n→∞

Mn = lim sup
n→∞

an = b ,

we clearly have limn→∞ an = b by “squeezing”.
We now assume that limn→∞ an = b where b ∈ R (the cases b = ±∞

are left to the reader). Given an ε > 0, there exists an N ∈ N such that
|an − b| < ε for all n ≥ N . In other words

b− ε < an < b + ε

for all n ≥ N . But then

b− ε ≤ mn < b + ε

and
b− ε < Mn ≤ b + ε

for n ≥ N . Since this holds for all ε > 0, we have lim supn→∞ an =
lim infn→∞ an = b 2
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Exercises for section 4.1

1. Let an = (−1)n. Find lim supn→∞ an and lim infn→∞ an.

2. Let an = cos nπ
2 . Find lim supn→∞ an and lim infn→∞ an.

3. Let an = arctan(n) sin
(

nπ
2

)
. Find lim supn→∞ an and lim infn→∞ an.

4. Complete the proof of Proposition 2.3.1 for the case b = ∞.

5. Show that
lim sup

n→∞
(an + bn) ≤ lim sup

n→∞
an + lim sup

n→∞
bn

and
lim inf
n→∞

(an + bn) ≥ lim inf
n→∞

an + lim inf
n→∞

bn

and find examples which show that we do not in general have equality. State
and prove a similar result for the product {anbn} of two positive sequences.

6. Assume that the sequence {an} is nonnegative and converges to a, and that
b = lim sup bn is finite. Show that lim supn→∞ anbn = ab. What happens if
the sequence {an} is negative?

7. We shall see how we can define lim sup and lim inf for functions f : R → R.
Let a ∈ R, and define

Mε = sup{f(x) |x ∈ (a− ε, a + ε)}

mε = inf{f(x) |x ∈ (a− ε, a + ε)}

for ε > 0 (we allow Mε = ∞ and mε = −∞).

a) Show that Mε decreases and mε increases as ε → 0.

b) Show that lim supx→a f(x) = limε→0+ Mε and lim infx→a f(x) = limε→0+ mε

exist (we allow ±∞ as values).

c) Show that limx→a f(x) = b if and only if lim supx→a f(x) = lim infx→a f(x) =
b

d) Find lim infx→0 sin 1
x and lim supx→0 sin 1

x

4.2 Integrating and differentiating sequences

Assume that we have a sequence of functions {fn} converging to a limit
function f . If we integrate the functions fn, will the integrals converge
to the integral of f? And if we differentiate the fn’s, will the derivatives
converge to f ′?

In this section, we shall see that without any further restrictions, the
answer to both questions are no, but that it is possible to put conditions on
the sequences that turn the answers into yes.

Let us start with integration and the following example.

Example 1: Let fn : [0, 1] → R be the function in the figure.
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It is given by the formula

fn(x) =


2n2x if 0 ≤ x < 1

2n

−2n2x + 2n if 1
2n ≤ x < 1

n

0 if 1
n ≤ x ≤ 1

but it is much easier just to work from the picture. The sequence {fn} con-
verges pointwise to 0, but the integrals do not not converge to 0. In fact,∫ 1
0 fn(x) dx = 1

2 since the value of the integral equals the area under the
function graph, i.e. the area of a triangle with base 1

n and height n. ♣

The example above shows that if the functions fn converge pointwise to a
function f on an interval [a, b], the integrals

∫ b
a fn(x) dx need not converge

to
∫ b
a f(x) dx. The reason is that with pointwise convergence, the difference

between f and fn may be very large on small sets — so large that the
integrals of fn do not converge to the integral of f . If the convergence is
uniform, this can not happen (note that the result below is actually a special
case of Lemma 3.6.1):

Proposition 4.2.1 Assume that {fn} is a sequence of continuous functions
converging uniformly to f on the interval [a, b]. Then the functions

Fn(x) =
∫ x

a
fn(t) dt

converge uniformly to

F (x) =
∫ x

a
f(t) dt

on [a, b].

Proof: We must show that for a given ε > 0, we can always find an N ∈ N
such that |F (x) − Fn(x)| < ε for all n ≥ N and all x ∈ [a, b]. Since {fn}
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converges uniformly to f , there is an N ∈ N such that |f(t)− fn(t)| < ε
b−a

for all t ∈ [a, b]. For n ≥ N , we then have for all x ∈ [a, b]:

|F (x)− Fn(x)| = |
∫ x

a
(f(t)− fn(t)) dt | ≤

∫ x

a
|f(t)− fn(t)| dt ≤

≤
∫ x

a

ε

b− a
dt ≤

∫ b

a

ε

b− a
dt = ε

This shows that {Fn} converges uniformly to F on [a, b]. 2

In applications it is often useful to have the result above with a flexible
lower limit.

Corollary 4.2.2 Assume that {fn} is a sequence of continuous functions
converging uniformly to f on the interval [a, b]. For any x0 ∈ [a, b], the
functions

Fn(x) =
∫ x

x0

fn(t) dt

converge uniformly to

F (x) =
∫ x

x0

f(t) dt

on [a, b].

Proof: Recall that∫ x

a
fn(t) dt =

∫ x0

a
fn(t) dt +

∫ x

x0

fn(t) dt

regardless of the order of the numbers a, x0, x, and hence∫ x

x0

fn(t) dt =
∫ x

a
fn(t) dt−

∫ x0

a
fn(t) dt

The first integral on the right converges uniformly to
∫ x
a f(t) dt according to

the proposition, and the second integral converges (as a sequence of num-
bers) to

∫ x0

a f(t) dt. Hence
∫ x
x0

fn(t) dt converges uniformly to∫ x

a
f(t) dt−

∫ x0

a
f(t) dt =

∫ x

x0

f(t) dt

as was to be proved. 2

Let us reformulate this result in terms of series. Recall that a series of
functions

∑∞
n=0 vn(x) converges pointwise/unifomly to a function f on an

interval I if an only if the sequence {sn} of partial sum sn(x) =
∑n

k=0 vk(x)
converges pointwise/uniformly to f on I.
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Corollary 4.2.3 Assume that {vn} is a sequence of continuous functions
such that the series

∑∞
n=0 vn(x) converges uniformly on the interval [a, b].

Then for any x0 ∈ [a, b], the series
∑∞

n=0

∫ x
x0

vn(t) dt converges uniformly
and

∞∑
n=0

∫ x

x0

vn(t) dt =
∫ x

x0

∞∑
n=0

vn(t) dt

The corollary tell us that if the series
∑∞

n=0 vn(x) converges uniformly,
we can integrate it term by term to get∫ x

x0

∞∑
n=0

vn(t) dt =
∞∑

n=0

∫ x

x0

vn(t) dt

This formula may look obvious, but it does not in general hold for series
that only converge pointwise. As we shall see later, interchanging integrals
and infinite sums is quite a tricky business.

To use the corollary efficiently, we need to be able to determine when a
series of functions converges uniformly. The following simple test is often
helpful:

Proposition 4.2.4 (Weierstrass’ M-test) Let {vn} be a sequence of con-
tinuous functions on the interval [a, b], and assume that there is a convergent
series

∑∞
n=0 Mn of positive numbers such that |vn(x)| ≤ Mn for all n ∈ N

and all x ∈ [a, b]. Then series
∑∞

n=0 vn(x) converges uniformly on [a, b].

Proof: Since (C([a, b], R), ρ) is complete, we only need to check that the
partial sums sn(x) =

∑n
k=0 vk(x) form a Cauchy sequence. Since the series∑∞

n=0 Mn converges, we know that its partial sums Sn =
∑n

k=0 Mk form a
Cauchy sequence. Since for all x ∈ [a, b] and all m > n,

|sm(x)− sn(x)| = |
m∑

k=n+1

vk(x) | ≤
m∑

k=n+1

|vk(x)| ≤
m∑

k=n+1

Mk = |Sm − Sn| ,

this implies that {sn} is a Cauchy sequence. 2

Example 1: Consider the series
∑∞

n=1
cos nx

n2 . Since | cos nx
n2 | ≤ 1

n2 , and∑∞
n=0

1
n2 converges, the original series

∑∞
n=1

cos nx
n2 converges uniformly to a

function f on any closed and bounded interval [a, b]. Hence we may inter-
grate termwise to get∫ x

0
f(t) dt =

∞∑
n=1

∫
x

cos nt

n2
dt =

∞∑
n=1

sinnx

n3

♣
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Let us now turn to differentiation of sequences. This is a much trickier
business than integration as integration often helps to smoothen functions
while differentiation tends to make them more irregular. Here is a simple
example.

Example 2: The sequence (not series!) { sin nx
n } obviously converges uni-

formly to 0, but the sequence of derivatives {cos nx} does not converge at
all. ♣

The example shows that even if a sequence {fn} of differentiable functions
converges uniformly to a differentiable function f , the derivatives f ′n need
not converge to the derivative f ′ of the limit function. If you draw the graphs
of the functions fn, you will see why — although they live in an increasingly
narrower strip around the x-axis, they all wriggle equally much, and the
derivatives do not converge.

To get a theorem that works, we have to put the conditions on the
derivatives. The following result may look ugly and unsatisfactory, but it
gives us the information we shall need.

Proposition 4.2.5 Let {fn} be a sequence of differentiable functions on
the interval [a, b]. Assume that the derivatives f ′n are continuous and that
they converge uniformly to a function g on [a, b]. Assume also that there
is a point x0 ∈ [a, b] such that the sequence {f(x0)} converges. Then the
sequence {fn} converges uniformly on [a, b] to a differentiable function f
such that f ′ = g.

Proof: The proposition is just Corollary 4.2.2 in a convenient disguise. If
we apply that proposition to the sequence {f ′n}, we se that the integrals∫ x
x0

f ′n(t) dt converge uniformly to
∫ x
x0

g(t) dt. By the Fundamental Theorem
of Calculus, we get

fn(x)− fn(x0) →
∫ x

x0

g(t) dt uniformly on [a, b]

Since fn(x0) converges to a limit b, this means that fn(x) converges uni-
formly to the function f(x) = b +

∫ x
x0

g(t) dt. Using the Fundamental Theo-
rem of Calculus again, we see that f ′(x) = g(x). 2

Also in this case it is useful to have a reformulation in terms of series:

Corollary 4.2.6 Let
∑∞

n=0 un(x) be a series where the functions un are
differentiable with continuous derivatives on the interval [a, b]. Assume that
the series of derivatives

∑∞
n=0 u′n(x) converges uniformly on [a, b]. Assume

also that there is a point x0 ∈ [a, b] where the series
∑∞

n=0 un(x0) converges.
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Then the series
∑∞

n=0 un(x) converges uniformly on [a, b], and( ∞∑
n=0

un(x)

)′
=

∞∑
n=0

u′n(x)

The corollary tells us that under rather strong conditions, we can differ-
entiate the series

∑∞
n=0 un(x) term by term.

Example 3: Summing a geometric series, we see that

1
1− e−x

=
∞∑

n=0

e−nx for x > 0 (4.2.1)

If we can differentiate term by term on the right hand side, we shall get

e−x

(1− e−x)2
=

∞∑
n=1

ne−nx for x > 0 (4.2.2)

To check that this is correct, we must check the convergence of the dif-
ferentiated series (4.2.2). Choose an interval [a, b] where a > 0, then
ne−nx ≤ ne−na for all x ∈ [a, b]. Using, e.g., the ratio test, it is easy to
see that the series

∑∞
n=0 ne−na converges, and hence

∑∞
n=0 ne−nx converges

uniformly on [a, b] by Weierstrass’ M -test. The corollary now tells us that
the sum of the sequence (4.2.2) is the derivative of the sum of the sequence
(4.2.1), i.e.

e−x

(1− e−x)2
=

∞∑
n=1

ne−nx for x ∈ [a, b]

Since [a, b] is an arbitrary subinterval of (0,∞), we have

e−x

(1− e−x)2
=

∞∑
n=1

ne−nx for all x > 0

♣

Exercises for Section 4.2

1. Show that
∑∞

n=0
cos(nx)
n2+1 converges uniformly on R.

2. Does the series
∑∞

n=0 ne−nx In Example 3 converge uniformly on (0,∞)?

3. Let fn : [0, 1] → R be defined by fn(x) = nx(1− x2)n. Show that fn(x) → 0
for all x ∈ [0, 1], but that

∫ 1

0
fn(x) dx → 1

2 .

4. Explain in detail how Corollary 4.2.3 follows from Corollary 4.2.2.

5. Explain in detail how Corollary 4.2.6 follows from Proposition 4.2.5.
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6. a) Show that series
∑∞

n=1
cos x

n

n2 converges uniformly on R.

b) Show that
∑∞

n=1
sin x

n

n converges to a continuous function f , and that

f ′(x) =
∞∑

n=1

cos x
n

n2

7. One can show that

x =
∞∑

n=1

2(−1)n+1

n
sin(nx) for x ∈ (−π, π)

If we differentiate term by term, we get

1 =
∞∑

n=1

2(−1)n+1 cos(nx) for x ∈ (−π, π)

Is this a correct formula?

8. a) Show that the sequence
∑∞

n=1
1

nx converges uniformly on all intervals
[a,∞) where a > 1.

b) Let f(x) =
∑∞

n=1
1

nx for x > 1. Show that f ′(x) = −
∑∞

n=1
ln x
nx .

4.3 Power series

Recall that a power series is a function of the form

f(x) =
∞∑

n=0

cn(x− a)n

where a is a real number and {cn} is a sequence of real numbers. It is
defined for the x-values that make the series converge. We define the radius
of convergence of the series to be the number R such that

1
R

= lim sup
n→∞

n
√
|cn|

with the interpretation that R = 0 if the limit is infinite, and R = ∞ if the
limit is 0. To justify this terminology, we need the the following result.

Proposition 4.3.1 If R is the radius of convergence of the power series∑∞
n=0 cn(x − a)n, the series converges for |x − a| < R and diverges for

|x− a| > R. If 0 < r < R, the series converges uniformly on [a− r, a + r].

Proof: Let us first assume that |x − a| > R. This means that 1
|x−a| < 1

R ,

and since lim supn→∞
n
√
|cn| = 1

R , there must be arbitrarily large values of
n such that n

√
|cn[ > 1

|x−a| . Hence |cn(x − a)n| > 1, and consequently the
series must diverge as the terms do not decrease to zero.
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To prove the (uniform) convergence, assume that r is a number between
0 and R. Since 1

r > 1
R , we can pick a positive number b < 1 such that

b
r > 1

R . Since lim supn→∞
n
√
|cn| = 1

R , there must be an N ∈ N such that
n
√
|cn| < b

r when n ≥ N . This means that |cnrn| < bn for n ≥ N , and
hence that |cn(x − a)|n < bn for all x ∈ [a − r, a + r]. Since

∑∞
n=N bn is

a convergent, geometric series, Weierstrass’ M-test tells us that the series∑∞
n=N cn(x − a)n converges uniformly on [a − r, a + r]. Since only the tail

of a sequence counts for convergence, the full series
∑∞

n=0 cn(x − a)n also
converges uniformly on [a − r, a + r]. Since r is an arbitrary number less
than R, we see that series must converge on the open interval (a−R, a+R),
i.e. whenever |x− a| < R. 2

Remark: When we want to find the radius of convergence, it is occasion-
ally convenient to compute a slightly different limit such as limn→∞ n+1

√
cn

or limn→∞ n−1
√

cn instead of limn→∞ n
√

cn. This corresponds to finding the
radius of convergence of the power series we get by either multiplying or di-
viding the original one by (x− a), and gives the correct answer as multiply-
ing or dividing a series by a non-zero number doesn’t change its convergence
properties.

The proposition above does not tell us what happens at the endpoints
a±R of the interval of convergence, but we know from calculus that a series
may converge at both, one or neither endpoint. Although the convergence
is uniform on all subintervals [a − r, a + r], it is not in general uniform on
(a−R, a + R).

Corollary 4.3.2 Assume that the power series f(x) =
∑∞

n=0 cn(x−a)n has
radius of convergence R larger than 0. Then the function f is continuous
and differentiable on the open interval (a−R, a + R) with

f ′(x) =
∞∑

n=1

ncn(x−a)n−1 =
∞∑

n=0

(n+1)cn+1(x−a)n for x ∈ (a−R, a+R)

and∫ x

a
f(t) dt =

∞∑
n=0

cn

n + 1
(x−a)n+1 =

∞∑
n=1

cn−1

n
(x−a)n for x ∈ (a−R, a+R)

Proof: Since the power series converges uniformly on each subinterval [a −
r, a+r], the sum is continuous on each such interval according to Proposition
3.2.4. Since each x in (a− R, a + R) is contained in the interior of some of
the subintervals [a− r, a + r], we see that f must be continuous on the full
interval (a−R, a + R). The formula for the integral follows immediately by
applying Corollary 4.2.3 on each subinterval [a− r, a + r] in a similar way.
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To get the formula for the derivative, we shall apply Corollary 4.2.6. To
use this result, we need to know that the differentiated series

∑∞
n=1(n +

1)cn+1(x− a)n has the same radius of convergence as the original series; i.e.
that

lim sup
n→∞

n+1
√
|(n + 1)cn+1| = lim sup

n→∞
n
√
|cn| =

1
R

(note that by the remark above, we may use the n + 1-st root on the left
hand side instead of the n-th root). Since limn→∞

n+1
√

(n + 1) = 1, this
is not hard to show (see Exercise 6). Taking the formula for granted, we
may apply Corollary 4.2.6 on each subinterval [a − r, a + r] to get the for-
mula for the derivative at each point x ∈ [a− r, a + r]. Since each point in
(a−R, a+R) belongs to the interior of some of the subintervals, the formula
for the derivative must hold at all points x ∈ (a−R, a + R). 2

A function that is the sum of a power series, is called a real analytic
function. Such functions have derivatives of all orders.

Corollary 4.3.3 Let f(x) =
∑∞

n=0 cn(x− a)n for x ∈ (a−R, a+R). Then
f is k times differentiable in (a−R, a+R) for any k ∈ N, and f (k)(a) = k!ck.
Hence

∑∞
n=0 cn(x− a)n is the Taylor series

f(x) =
∞∑

n=0

f (n)(a)
n!

(x− a)n

Proof: Using the previous corollary, we get by induction that f (k) exists on
(a−R, a + R) and that

f (k)(x) =
∞∑

n=k

n(n− 1) · . . . · (n− k + 1)cn(x− a)n−k

Putting x = a, we get f (k)(a) = k!ck, and the corollary follows. 2

Exercises for Section 4.3

1. Find power series with radius of convergence 0, 1, 2, and ∞.

2. Find power series with radius of convergence 1 that converge at both,
one and neither of the endpoints.

3. Show that for any polynomial P , limn→∞
n
√
|P (n)| = 1.

4. Use the result in Exercise 3 to find the radius of convergence:

a)
∑∞

n=0
2nxn

n3+1
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b)
∑∞

n=0
2n2+n−1

3n+4 xn

c)
∑∞

n=0 nx2n

5. a) Explain that 1
1−x2 =

∑∞
n=0 x2n for |x| < 1,

b) Show that 2x
(1−x2)2

=
∑∞

n=0 2nx2n−1 for |x| < 1.

c) Show that 1
2 ln

∣∣∣1+x
1−x

∣∣∣ =∑∞
n=0

x2n+1

2n+1 for |x| < 1.

6. Let
∑∞

n=0 cn(x− a)n be a power series.

a) Show that the radius of convergence is given by

1
R

= lim sup
n→∞

n+k
√
|cn|

for any integer k.

b) Show that limn→∞
n+1
√

n + 1 = 1 (write n+1
√

n + 1 = (n+1)
1

n+1 ).

c) Prove the formula

lim sup
n→∞

n+1
√
|(n + 1)cn+1| = lim sup

n→∞
n
√
|cn| =

1
R

in the proof of Corollary 4.3.2.

4.4 Abel’s Theorem

We have seen that the sum f(x) =
∑∞

n=0 cn(x − a)n of a power series is
continuous in the interior (a−R, a + R) of its interval of convergence. But
what happens if the series converges at an endpoint a ± R? It turns out
that the sum is also continuous at the endpoint, but that this is surprisingly
intricate to prove.

Before we turn to the proof, we need a lemma that can be thought of as
a discrete version of integration by parts.

Lemma 4.4.1 (Abel’s Summation Formula) Let {an}∞n=0 and {bn}∞n=0

be two sequences of real numbers, and let sn =
∑n

k=0 an. Then

N∑
n=0

anbn = sNbN +
N−1∑
n=0

sn(bn − bn+1).

If the series
∑∞

n=0 an converges, and bn → 0 as n →∞, then

∞∑
n=0

anbn =
∞∑

n=0

sn(bn − bn+1)
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Proof: Note that an = sn−sn−1 for n ≥ 1, and that this formula even holds
for n = 0 if we define s−1 = 0. Hence

N∑
n=0

anbn =
N∑

n=0

(sn − sn−1)bn =
N∑

n=0

snbn −
N∑

n=0

sn−1bn

Changing the index of summation and using that s−1 = 0, we see that∑N
n=0 sn−1bn =

∑N−1
n=0 snbn+1. Putting this into the formula above, we get

N∑
n=0

anbn =
N∑

n=0

snbn −
N−1∑
n=0

snbn+1 = sNbN +
N−1∑
n=0

sn(bn − bn+1)

and the first part of the lemma is proved. The second follows by letting
N →∞. 2

We are now ready to prove:

Theorem 4.4.2 (Abel’s Theorem) The sum of a power series f(x) =∑∞
n=0 cn(x − a)n is continuous in its entire interval of convergence. This

means in particular that if R is the radius of convergence, and the power se-
ries converges at the right endpoint a+R, then limx↑a+R f(x) = f(a+R), and
if the power series converges at the left endpoint a−R, then limx↓a−R f(x) =
f(a−R).1

Proof: We already know that f is continuous in the open interval (a−R, a+
R), and that we only need to check the endpoints. To keep the notation
simple, we shall assume that a = 0 and concentrate on the right endpoint
R. Thus we want to prove that limx↑R f(x) = f(R).

Note that f(x) =
∑∞

n=0 cnRn
(

x
R

)n. If we assume that |x| < R, we may
apply the second version of Abel’s summation formula with an = cnRn and
bn =

(
x
n

)n to get

f(x) =
∞∑

n=0

fn(R)
(( x

R

)n
−
( x

R

)n+1
)

=
(
1− x

R

) ∞∑
n=0

fn(R)
( x

R

)n

where fn(R) =
∑n

k=0 ckR
k. Summing a geometric series, we see that we

also have

f(R) =
(
1− x

R

) ∞∑
n=0

f(R)
( x

R

)n

Hence

|f(x)− f(R)| =

∣∣∣∣∣(1− x

R

) ∞∑
n=0

(fn(R)− f(R))
( x

R

)n
∣∣∣∣∣

1I use limx↑b and limx↓b for one-sided limits, also denoted by limx→b− and limx→b+ .
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Given an ε > 0, we must find a δ > 0 such that this quantity is less than ε
when R − δ < x < R. This may seem obvious due to the factor (1− x/R),
but the problem is that the infinite series may go to infinity when x → R.
Hence we need to control the tail of the sequence before we exploit the factor
(1 − x/R). Fortunately, this is not difficult: Since fn(R) → f(R), we first
pick an N ∈ N such that |fn(R)− f(R)| < ε

2 for n ≥ N . Then

|f(x)− f(R)| ≤
(
1− x

R

)N−1∑
n=0

|fn(R)− f(R)|
( x

R

)n
+

+
(
1− x

R

) ∞∑
n=N

|fn(R)− f(R)|
( x

R

)n
≤

≤
(
1− x

R

)N−1∑
n=0

|fn(R)− f(R)|
( x

R

)n
+
(
1− x

R

) ∞∑
n=0

ε

2

( x

R

)n
=

=
(
1− x

R

)N−1∑
n=0

|fn(R)− f(R)|
( x

R

)n
+

ε

2

where we have summed a geometric series. Now the sum is finite, and
the first term clearly converges to 0 when x ↑ R. Hence there is a δ > 0
such that this term is less than ε

2 when R − δ < x < R, and consequently
|f(x)− f(R)| < ε for such values of x. 2

Let us take a look at a famous example.

Example 1: Summing a geometric series, we clearly have

1
1 + x2

=
∞∑

n=0

(−1)nx2n for |x| < 1

Integrating, we get

arctanx =
∞∑

n=0

(−1)n x2n+1

2n + 1
for |x| < 1

Using the Alternating Series Test, we see that the series converges even for
x = 1. By Abel’s Theorem

π

4
= arctan 1 = lim

x↑1
arctanx = lim

x↑1

∞∑
n=0

(−1)n x2n+1

2n + 1
=

∞∑
n=0

(−1)n 1
2n + 1

Hence we have proved

π

4
= 1− 1

3
+

1
5
− 1

7
+ . . .
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This is often called Leibniz’ or Gregory’s formula for π, but it was actually
first discovered by the Indian mathematician Madhava (ca. 1350 – ca. 1425).
♣

This example is rather typical; the most interesting information is often
obtained at an endpoint, and we need Abel’s Theorem to secure it.

It is natural to think that Abel’s Theorem must have a converse saying
that if limx↑a+R

∑∞
n=0 cnxn exists, then the sequence converges at the right

endpoint x = a + R. This, however, is not true as the following simple
example shows.

Example 2: Summing a geometric series, we have

1
1 + x

=
∞∑

n=0

(−x)n for |x| < 1

Obviously, limx↑1
∑∞

n=0(−x)n = limx↑1
1

1+x = 1
2 , but the series does not

converge for x = 1. ♣

It is possible to put extra conditions on the coefficients of the series to
ensure convergence at the endpoint, see Exercise 2.

Exercises for Section 4.4

1. a) Explain why 1
1+x =

∑∞
n=0(−1)nxn for |x| < 1.

b) Show that ln(1 + x) =
∑∞

n=0(−1)n xn+1

n+1 for |x| < 1.

c) Show that ln 2 =
∑∞

n=0(−1)n 1
n+1 .

2. In this problem we shall prove the following partial converse of Abel’s The-
orem:

Tauber’s Theorem Assume that s(x) =
∑∞

n=0 cnxn is a power series with
radius of convergence 1. Assume that s = limx↑1

∑∞
n=0 cnxn is finite. If in

addition limn→∞ ncn = 0, then the power series converges for x = 1 and
s = s(1).

a) Explain that if we can prove that the power series converges for x = 1,
then the rest of the theorem will follow from Abel’s Theorem.

b) Show that limN→∞
1
N

∑N
n=0 n|cn| = 0.

c) Let sN =
∑N

n=0 cn. Explain that

s(x)− sN = −
N∑

n=0

cn(1− xn) +
∞∑

n=N+1

cnxn

d) Show that 1− xn ≤ n(1− x) for |x| < 1.
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e) Let Nx be the integer such that Nx ≤ 1
1−x < Nx + 1 Show that

Nx∑
n=0

cn(1− xn) ≤ (1− x)
Nx∑
n=0

n|cn| ≤
1

Nx

Nx∑
n=0

n|cn| → 0

as x ↑ 1.

f) Show that ∣∣∣∣∣
∞∑

n=Nx+1

cnxn

∣∣∣∣∣ ≤
∞∑

n=Nx+1

n|cn|
xn

n
=

dx

Nx

∞∑
n=0

xn

where dx → 0 as x ↑ 1. Show that
∑∞

n=Nx+1 cnxn → 0 as x ↑ 1.

g) Prove Tauber’s theorem.

4.5 Normed spaces

In later sections of this chapter we shall continue our study of how general
functions can be expressed as series of simpler functions. This time the
“simple functions” will be trigonometric functions and not power functions,
and the series will be called Fourier series and not power series. Before
we turn to Fourier series, we shall take a look at normed spaces and inner
product spaces. Strictly speaking, it is not necessary to know about such
spaces to study Fourier series, but a basic understanding will make it much
easier to appreciate the basic ideas and put them into a wider framework.

In Fourier analysis, one studies vector spaces of functions, and let me
begin by reminding you that a vector space is just a set where you can
add elements and multiply them by numbers in a reasonable way. More
precisely:

Definition 4.5.1 Let K be either R or C, and let V be a nonempty set.
Assume that V is equipped with two operations:

• Addition which to any two elements u,v ∈ V assigns an element u +
v ∈ V .

• Scalar multiplication which to any element u ∈ V and any number
α ∈ K assigns an element αu ∈ V .

We call V a vector space over K if the following axioms are satisfied:

(i) u + v = v + u for all u,v ∈ V .

(ii) (u + v) + w = u + (v + w) for all u,v,w ∈ V .

(iii) There is a zero vector 0 ∈ V such that u + 0 = u for all u ∈ V .

(iv) For each u ∈ V , there is an element −u ∈ V such that u + (−u) = 0.
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(v) α(u + v) = αu + αv for all u,v ∈ V and all α ∈ K.

(vi) (α + β)u = αu + βu for all u ∈ V and all α, β ∈ K:

(vii) α(βu) = (αβ)u for all u ∈ V and all α, β ∈ K:

(viii) 1u = u for all u ∈ V .

To make it easier to distinguish, we sometimes refer to elements in V as
vectors and elements in K as scalars.

I’ll assume that you are familar with the basic consequences of these
axioms as presented in a course on linear algebra. Recall in particular that
a subset U ⊂ V is a vector space if it closed under addition and scalar
multiplication, i.e. that whenever u,v ∈ U and α ∈ K, then u + v, αu ∈ U .

To measure the seize of an element in a metric space, we introduce norms:

Definition 4.5.2 If V is a vector space over K, a norm on V is a function
|| · || : V → R such that:

(i) ||u|| ≥ 0 with equality if and only if u = 0.

(ii) ||αu|| = |α|||u|| for all α ∈ K and all u ∈ V .

(iii) ||u + v|| ≤ ||u||+ ||v|| for all u,v ∈ V .

Example 1: The classical example of a norm on a real vector space, is the
euclidean norm on Rn given by

||x|| =
√

x2
1 + x2

2 + · · ·+ x2
n

where x = (x1, x2. . . . , xn). The corresponding norm on the complex vector
space Cn is

||z|| =
√
|z1|2 + |z2|2 + · · ·+ |zn|2

where z = (z1, z2. . . . , zn). ♣

The spaces above are the most common vector spaces and norms in lin-
ear algebra. More relevant for our purposes in this chapter are:

Example 2: Let (X, d) be a compact metric space, and let V = C(X, R)
be the set of all continuous, real valued functions on X. Then V is a vector
space over R and

||f || = sup{|f(x)| |x ∈ X}

is a norm on V . To get a complex example, let V = C(X, C) and define the
norm by the same formula as before. ♣

From a norm we can always get a metric in the following way:
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Proposition 4.5.3 Assume that V is a vector space over K and that || · ||
is a norm on V . Then

d(u,v) = ||u− v||

is a metric on V .

Proof: We have to check the three properties of a metric:
Positivity: Since d(u,v) = ||u − v||, we see from part (i) of the definition
above that d(u,v) ≥ 0 with equality if and only if u − v = 0, i.e. if and
only if u = v.
Symmetry: Since

||u− v|| = ||(−1)(v − u)|| = |(−1)|||v − u|| = ||v − u||

by part (ii) of the definition above, we see that d(u,v) = d(v,u).
Triangle inequality: By part (iii) of the definition above, we see that for all
u,v,w ∈ V :

d(u,v) = ||u− v|| = ||(u−w) + (w − v)|| ≤

≤ ||u−w||+ ||w − v|| = d(u,w) + d(w,v)

2

Whenever we refer to notions such as convergence, continuity, openness,
closedness, completeness, compactness etc. in a normed vector space, we
shall be refering to these notions with respect to the metric defined by the
norm. In practice, this means that we continue as before, but write ||u− v||
instead of d(u,v) for the distance between the points u and v.

Remark: The inverse triangle inequality (recall Proposition 2.1.2)

|d(x, y)− d(x, z)| ≤ d(y, z) (4.5.1)

is a useful tool in metric spaces. In normed spaces, it is most conveniently
expressed as

| ||u|| − ||v|| | ≤ ||u− v|| (4.5.2)

(use formula (4.5.1) with x = 0, y = u and z = v).

Note that if {un}∞n=1 is a sequence of elements in a normed vector space,
we define the infinite sum

∑∞
n=1 un as the limit of the partial sums sn =∑n

k=1 uk provided this limit exists; i.e.

∞∑
n=1

un = lim
n→∞

n∑
k=1

uk
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When the limit exists, we say that the series converges.

Remark: The notation u =
∑∞

n=1 un is rather treacherous — it seems to
be a purely algebraic relationship, but it does, in fact, depend on which
norm we are using. If we have a two different norms || · ||1 and || · ||2 on the
same space V , we may have u =

∑∞
n=1 un with respect to || · ||1, but not with

respect to || · ||2, as ||u− sn||1 → 0 does not necesarily imply ||u− sn||2 → 0.
This phenomenon is actually quite common, and we shall meet it on several
occesions later in the book.

Recall from linear algebra that at vector space V is finite dimensional
if there is a finite set e1, e2, . . . , en of elements in V such that each element
x ∈ V can be written as a linear combination x = α1e1 + α2e2 + · · ·+ αnen

in a unique way. We call e1, e2, . . . , en a basis for V , and say that V has
dimension n. A space that is not finite dimensional is called infinte dimen-
sional. Most of the spaces we shall be working with are infinite dimensional,
and we shall now extend the notion of basis to (some) such spaces.

Definition 4.5.4 Let {en}∞n=1 be a sequence of elements in a normed vector
space V . We say that {en} is a basis2 for V if for each x ∈ V there is a
unique sequence {αn}∞n=1 from K such that

x =
∞∑

n=1

αnen

Not all normed spaces have a basis; there are, e.g., spaces so big that
not all elements can be reached from a countable set of basis elements. Let
us take a look at an infinite dimensional space with a basis.

Example 3: Let c0 be the set of all sequences x = {xn}n∈N of real numbers
such that limn→∞ xn = 0. It is not hard to check that {c0} is a vector space
and that

||x|| = sup{|xn| : n ∈ N}

is a norm on c0. Let en = (0, 0, . . . , 0, 1, 0, . . .) be the sequence that is 1
on element number n and 0 elsewhere. Then {en}n∈N is a basis for c0 with
x =

∑∞
n=1 xnen. ♣

If a normed vector space is complete, we call it a Banach space. The
next theorem provides an efficient method for checking that a normed space

2Strictly speaking, there are two notions of basis for an infinite dimensional space.
The type we are introducing here is sometimes called a Schauder basis and only works
in normed spaces where we can give meaning to infinite sums. There ia another kind of
basis called a Hamel basis which does not require the space to be normed, but which is
less practical for applications.
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is complete. We say that a series
∑∞

n=1 un in V converges absolutely if∑∞
n=1 ||un|| converges (note that

∑∞
n=1 ||un|| is a series of positive numbers).

Proposition 4.5.5 A normed vector space V is complete if and only if
every absolutely convergent series converges.

Proof: Assume first that V is complete and that the series
∑∞

n=0 un con-
verges absolutely. We must show that the series converges in the ordinary
sense. Let Sn =

∑n
k=0 ||uk|| and sn =

∑n
k=0 uk be the partial sums of the

two series. Since the series converges absolutely, the sequence {Sn} is a
Cauchy sequence, and given an ε > 0, there must be an N ∈ N such that
|Sn − Sm| < ε when n, m ≥ N . Without loss of generality, we may assume
that m > n. By the triangle inequality

||sm − sn|| = ||
m∑

k=n+1

uk|| ≤
m∑

k=n+1

||uk|| = |Sm − Sn| < ε

when n, m ≥ N , and hence {sn} is a Cauchy sequence. Since V is complete,
the series

∑∞
n=0 un converges.

For the converse, assume that all absolutely convergent series converge,
and let {xn} be a Cauchy sequence. We must show that {xn} converges.
Since {xn} is a Cauchy sequence, we can find an increasing sequence {ni} in
N such that ||xn − xm|| < 1

2i for all n, m ≥ ni. In particular ||xni+1 − xni || <
1
2i , and clearly

∑∞
i=1 ||xni+1 − xni || converges. This means that the series∑∞

i=1(xni+1 − xni) converges absolutely, and by assumption it converges in
the ordinary sense to some element s ∈ V . The partial sums of this sequence
are

sN =
N∑

i=1

(xni+1 − xni) = xnN+1 − xn1

(the sum is “telescoping” and almost all terms cancel), and as they converge
to s, we see that xnN+1 must converge to s + xn1 . This means that a
subsequence of the Cauchy sequence {xn} converges, and thus the sequence
itself converges according to Lemma 2.5.5. 2

Exercises for Section 4.5

1. Check that the norms in Example 1 really are norms (i.e. that they satisfy
the conditions in Definition 4.5.2).

2. Check that the norms in Example 2 really are norms (i.e. that they satisfy
the conditions in Definition 4.5.2).

3. Let V be a normed vector space over K. Assume that {un}, {vn} are se-
quences in V converging to u og v, respectively, and that {αn}, {βn} are
sequences in K converging to α og β, respectively.
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a) Show that {un + vn} converges to u + v.

b) Show that {αnun} converges to αu

c) Show that {αnun + βnvn} converges to αu + βv.

4. Let V be a normed vector space over K.

a) Prove the inverse triangle inequality |||u||−||v||| ≤ ||u−v|| for all u,v ∈ V .

b) Assume that {un} is a sequence in V converging to u. Show that {||un||}
converges to ||u||

5. Show that

||f || =
∫ 1

0

|f(t)| dt

is a norm on C([0, 1], R).

6. Prove that the set {en}n∈N in Example 3 really is a basis for c0.

7. Let V 6= {0} be a vector space, and let d be the discreet metric on V . Show
that d is not generated by a norm (i.e. there is no norm on V such that
d(x,y) = ||x− y||).

8. Let V 6= {0} be a normed vector space. Show that V is complete if and only
if the unit sphere S = {x ∈ V : ||x|| = 1} is complete.

9. Show that if a normed vector space V has a basis (as defined in Definition
4.5.4), then it is separable (i.e. it has a countable, dense subset).

10. l1 is the set of all sequences x = {xn}n∈N of real numbers such that
∑∞

n=1 |xn|
converges.

a) Show that

||x|| =
∞∑

n=1

|xn|

is a norm on l1.

b) Show that the set {en}n∈N in Example 3 is a basis for l1.

c) Show that l1 is complete.

4.6 Inner product spaces

The usual (euclidean) norm in Rn can be defined in terms of the scalar (dot)
product:

||x|| =
√

x · x

This relationship is extremely important as it connects length (defined by
the norm) and orthogonality (defined by the scalar product), and it is the
key to many generalizations of geometric arguments from R2 and R3 to Rn.
In this section we shall see how we can extend this generalization to certain
infinite dimensional spaces called inner product spaces.
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The basic observation is that some norms on infinite dimensional spaces
can be defined in terms of a product just as the euclidean norm is defined in
terms of the scalar product. Let us begin by taking a look at such products.
As in the previous section, we assume that all vector spaces are over K which
is either R or C. As we shall be using complex spaces in our study of Fourier
series, it is important that you don’t neglect the complex case.

Definition 4.6.1 An inner product 〈·, ·〉 on a vector space V over K is a
function 〈·, ·〉 : V × V → K such that:

(i) 〈u,v〉 = 〈v,u〉 for all u,v ∈ V (the bar denotes complex conjugation;
if the vector space is real, we just have 〈u,v〉 = 〈v,u〉).

(ii) 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉 for all u,v,w ∈ V .

(iii) 〈αu,v〉 = α〈u,v〉 for all α ∈ K, u,v ∈ V .

(iv) For all u ∈ V , 〈u,u〉 ≥ 0 with equality if and only if u = 0 (by (i),
〈u,u〉 is always a real number).3

As immediate consequences of (i)-(iv), we have

(v) 〈u,v + w〉 = 〈u,v〉+ 〈u,w〉 for all u,v,w ∈ V .

(vi) 〈u, αv〉 = α〈u,v〉 for all α ∈ K, u,v ∈ V (note the complex conju-
gate!).

(vii) 〈αu, αv〉 = |α|2〈u,v〉 (combine (i) and(vi) and recall that for complex
numbers |α|2 = αα).

Example 1: The classical examples are the dot products in Rn and Cn. If
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are two real vectors, we define

〈x,y〉 = x · y = x1y1 + x2y2 + . . . + xnyn

If z = (z1, z2, . . . , zn) and w = (w1, w2, . . . , wn) are two complex vectors, we
define

〈z,w〉 = z ·w = z1w1 + z2w2 + . . . + znwn

Before we look at the next example, we need to extend integration to
complex valued functions. If a, b ∈ R, a < b, and f, g : [a, b] → R are
continuous functions, we get a complex valued function h : [a, b] → C by
letting

h(t) = f(t) + i g(t)

3Strictly speaking, we are defining positive definite inner products, but they are the
only inner products we have use for.
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We define the integral of h in the natural way:∫ b

a
h(t) dt =

∫ b

a
f(t) dt + i

∫ b

a
g(t) dt

i.e., we integrate the real and complex parts separately.

Example 2: Again we look at the real and complex case separately. For
the real case, let V be the set of all continuous functions f : [a, b] → R, and
define the inner product by

〈f, g〉 =
∫ b

a
f(t)g(t) dt

For the complex case, let V be the set of all continuous, complex valued
functions h : [a, b] → C as descibed above, and define

〈h, k〉 =
∫ b

a
h(t)k(t) dt

Then 〈·, ·〉 is an inner product on V .
Note that these inner products may be thought of as natural extensions

of the products in Example 1; we have just replaced discrete sums by con-
tinuous products.

Given an inner product 〈·, ·〉, we define || · || : V → [0,∞) by

||u|| =
√
〈u,u〉

in analogy with the norm and the dot product in Rn and Cn. For simplicity,
we shall refer to || · || as a norm, although at this stage it is not at all clear
that it is a norm in the sense of Definition 4.5.2.

On our way to proving that || · || really is a norm, we shall pick up a
few results of a geometric nature which will be useful later. We begin by
defining two vectors u,v ∈ V to be orthogonal if 〈u,v〉 = 0. Note that if
this is the case, we also have 〈v,u〉 = 0 since 〈v,u〉 = 〈u,v〉 = 0 = 0.

With these definitions, we can prove the following generalization of the
Pythagorean theorem:

Proposition 4.6.2 (Pythagorean Theorem) For all orthogonal u1, u2,
. . . , un in V ,

||u1 + u2 + . . . + un||2 = ||u1||2 + ||u2||2 + . . . + ||un||2

Proof: We have

||u1 + u2 + . . . + un||2 = 〈u1 + u2 + . . . + un,u1 + u2 + . . . + un〉 =
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=
∑

1≤i,j≤n

〈ui,uj〉 = ||u1||2 + ||u2||2 + . . . + ||un||2

where we have used that by orthogonality, 〈ui,uj〉 = 0 whenever i 6= j. 2

Two nonzero vectors u, v are said to be parallel if there is a number
α ∈ C such that u = αv. As in Rn, the projection of u on v is the vector p
parallel with v such that u−p is orthogonal to v. Figure 1 shows the idea.
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Figure 1: The projection p of u on v

Proposition 4.6.3 Assume that u and v are two nonzero elements of V .
Then the projection p of u on v is given by:

p =
〈u,v〉
||v||2

v

The norm of the projection is ||p|| = |〈u,v〉|
||v||

Proof: Since p is parallel to v, it must be of the form p = αv. To determine
α, we note that in order for u − p to be orthogonal to v, we must have
〈u− p,v〉 = 0. Hence α is determined by the equation

0 = 〈u− αv,v〉 = 〈u,v〉 − 〈αv,v〉 = 〈u,v〉 − α||v||2

Solving for α, we get α = 〈u,v〉
||v||2 , and hence p = 〈u,v〉

||v||2 v.
To calculate the norm, note that

||p||2 = 〈p,p〉 = 〈αv, αv〉 = |α|2〈v,v〉 =
|〈u,v〉|2

||v||4
〈v,v〉 =

|〈u,v〉|2

||v||2

(recall property (vi) just after Definition 4.6.1). 2

We can now extend Cauchy-Schwarz’ inequality to general inner prod-
ucts:
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Proposition 4.6.4 (Cauchy-Schwarz’ inequality) For all u,v ∈ V ,

|〈u,v〉| ≤ ||u||||v||

with equality if and only if u and v are parallel or at least one of them is
zero.

Proof: The proposition clearly holds with equality if one of the vectors is
zero. If they are both nonzero, we let p be the projection of u on v, and
note that by the pythagorean theorem

||u||2 = ||u− p||2 + ||p||2 ≥ ||p||2

with equality only if u = p, i.e. when u and v are parallel. Since ||p|| = |〈u,v〉|
||v||

by Proposition 4.6.3, we have

||u||2 ≥ |〈u,v〉|2

||v||2

and the proposition follows. 2

We may now prove:

Proposition 4.6.5 (Triangle inequality for inner products) For all u,
v ∈ V

||u + v|| ≤ ||u||+ ||v||

Proof: We have (recall that Re(z) refers to the real part a of a complex
number z = a + ib):

||u + v||2 = 〈u + v,u + v〉 = 〈u,u〉+ 〈u,v〉+ 〈v,u〉+ 〈v,v〉 =

= 〈u,u〉+ 〈u,v〉+ 〈u,v〉+ 〈v,v〉 = 〈u,u〉+ 2Re(〈u,v〉) + 〈v,v〉 ≤

≤ ||u||2 + 2||u||||v||+ ||v||2 = (||u||+ ||v||)2

where we have used that according to Cauchy-Schwarz’ inequality, we have
Re(〈u,v〉) ≤ |〈u,v〉| ≤ ||u||||v||. 2

We are now ready to prove that || · || really is a norm:

Proposition 4.6.6 If 〈·, ·〉 is an inner product on a vector space V , then

||v|| =
√
〈u,u〉

defines a norm on V , i.e.

(i) ||u|| ≥ 0 with equality if and only if u = 0.
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(ii) ||αu|| = |α|||u|| for all α ∈ C and all u ∈ V .

(iii) ||u + v|| ≤ ||u||+ ||v|| for all u,v ∈ V .

Proof: (i) follows directly from the definition of inner products, and (iii)
is just the triangle inequality. We have actually proved (ii) on our way to
Cauchy-Scharz’ inequality, but let us repeat the proof here:

||αu||2 = 〈αu, αu〉 = |α|2||u||2

where we have used property (vi) just after Definition 4.6.1. 2

The proposition above means that we can think of an inner product
space as a metric space with metric defined by

d(x,y) = ||x− y|| =
√
〈x− y,x− y〉

Example 3: Returning to Example 2, we see that the metric in the real as
well as the complex case is given by

d(f, g) =
(∫ b

a
|f(t)− g(t)|2 dt

) 1
2

The next proposition tells us that we can move limits and infinite sums
in and out of inner products.

Proposition 4.6.7 Let V be an inner product space.

(i) If {un} is a sequence in V converging to u, then the sequence {||un||}
of norms converges to ||u||.

(ii) If the series
∑∞

n=0 wn converges in V , then

||
∞∑

n=0

wn|| = lim
N→∞

||
N∑

n=0

wn||

(iii) If {un} is a sequence in V converging to u, then the sequence 〈un,v〉
of inner products converges to 〈u,v〉 for all v ∈ V . In symbols,
limn→∞〈un,v〉 = 〈limn→∞ un,v〉 for all v ∈ V .

(iv) If the series
∑∞

n=0 wn converges in V , then

〈
∞∑

n=1

wn,v〉 =
∞∑

n=1

〈wn,v〉

.
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Proof: (i) follows directly from the inverse triangle inequality

| ||u|| − ||un|| | ≤ ||u− un||

(ii) follows immediately from (i) if we let un =
∑n

k=0 wk

(iii) Assume that un → u. To show that 〈un,v〉 → 〈u,v〉, is suffices
to prove that 〈un,v〉 − 〈u,v〉 = 〈un − u,v〉 → 0. But by Cauchy-Schwarz’
inequality

|〈un − u,v〉| ≤ ||un − u||||v|| → 0

since ||un − u|| → 0 by assumption.
(iv) We use (iii) with u =

∑∞
n=1 wn and un =

∑n
k=1 wk. Then

〈
∞∑

n=1

wn,v〉 = 〈u,v〉 = lim
n→∞

〈un,v〉 = lim
n→∞

〈
n∑

k=1

wk,v〉 =

= lim
n→∞

n∑
k=1

〈wk,v〉 =
∞∑

n=1

〈wn,v〉

2

We shall now generalize some notions from linear algebra to our new
setting. If {u1,u2, . . . ,un} is a finite set of elements in V , we define the
span

Sp{u1,u2, . . . ,un}

of {u1,u2, . . . ,un} to be the set of all linear combinations

α1u1 + α2u2 + . . . + αnun, where α1, α2, . . . , αn ∈ K

A set A ⊂ V is said to be orthonormal if it consists of orthogonal elements
of length one, i.e. if for all a,b ∈ A, we have

〈a,b〉 =


0 if a 6= b

1 if a = b

If {e1, e2, . . . , en} is an orthonormal set and u ∈ V , we define the projection
of u on Sp{e1, e2, . . . , en} by

Pe1,e2,...,en(u) = 〈u, e1〉e1 + 〈u, e2〉e2 + · · ·+ 〈u, en〉en

This terminology is justified by the following result.

Proposition 4.6.8 Let {e1, e2, . . . , en} be an orthonormal set in V . For ev-
ery u ∈ V , the projection Pe1,e2,...,en(u) is the element in Sp{e1, e2, . . . , en}
closest to u. Moreover, u − Pe1,e2,...,en(u) is orthogonal to all elements in
Sp{e1, e2, . . . , en}.
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Proof: We first prove the orthogonality. It suffices to prove that

〈u− Pe1,e2,...,en(u), ei〉 = 0 (4.6.1)

for each i = 1, 2, . . . , n, as we then have

〈u− Pe1,e2,...,en(u), α1e1 + · · ·+ αnen〉 =

= α1〈u− Pe1,e2,...,en(u), e1〉+ . . . + αn〈u− Pe1,e2,...,en(u), en〉 = 0

for all α1e1 + · · ·+αnen ∈ Sp{e1, e2, . . . , en}. To prove formula (4.6.1), just
observe that for each ei

〈u− Pe1,e2,...,en(u), ei〉 = 〈u, ei〉 − 〈Pe1,e2,...,en(u), ei〉

= 〈u, ei〉 −
(
〈u, ei〉〈e1, ei〉+ 〈u, e2〉〈e2, ei〉+ · · ·+ 〈u, en〉〈en, ei〉

)
=

= 〈u, ei〉 − 〈u, ei〉 = 0

To prove that the projection is the element in Sp{e1, e2, . . . , en} closest to
u, let w = α1e1+α2e2+· · ·+αnen be another element in Sp{e1, e2, . . . , en}.
Then Pe1,e2,...,en(u) − w is in Sp{e1, e2, . . . , en}, and hence orthogonal to
u−Pe1,e2,...,en(u) by what we have just proved. By the Pythagorean theorem

||u−w||2 = ||u−Pe1,e2,...,en(u)||2+||Pe1,e2,...,en(u)−w||2 > ||u−Pe1,e2,...,en(u)||2

2

As an immediate consequence of the proposition above, we get:

Corollary 4.6.9 (Bessel’s inequality) Let {e1, e2, . . . , en, . . .} be an or-
thonormal sequence in V . For any u ∈ V ,

∞∑
i=1

|〈u, ei〉|2 ≤ ||u||2

Proof: Since u−Pe1,e2,...,en(u) is orthogonal to Pe1,e2,...,en(u), we get by the
Pythagorean theorem that for any n

||u||2 = ||u− Pe1,e2,...,en(u)||2 + ||Pe1,e2,...,en(u)||2 ≥ ||Pe1,e2,...,en(u)||2

Using the Pythagorean Theorem again, we see that

||Pe1,e2,...,en(u)||2 = ||〈u, e1〉e1 + 〈u, e2〉e2 + · · ·+ 〈u, en〉en||2 =

= ||〈u, e1〉e1||2 + ||〈u, e2〉e2||2 + · · ·+ ||〈u, en〉en||2 =

= |〈u, e1〉|2 + |〈u, e2〉|2 + · · ·+ |〈u, en〉|2
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and hence
||u||2 ≥ |〈u, e1〉|2 + |〈u, e2〉|2 + · · ·+ |〈u, en〉|2

for all n. Letting n →∞, the corollary follows. 2

We have now reached the main result of this section. Recall from Defi-
nition 4.5.4 that {ei} is a basis for V if any element u in V can be written
as a linear combination u =

∑∞
i=1 αiei in a unique way. The theorem tells

us that if the basis is orthonormal, the coeffisients αi are easy to find; they
are simply given by αi = 〈u, ei〉.

Theorem 4.6.10 (Parseval’s Theorem) If {e1, e2, . . . , en, . . .} is an or-
thonormal basis for V , then for all u ∈ V , we have u =

∑∞
i=1〈u, ei〉ei and

||u||2 =
∑∞

i=1 |〈u, ei〉|2.

Proof: Since {e1, e2, . . . , en, . . .} is a basis, we know that there is a unique
sequence α1, α2, . . . , αn, . . . from K such that u =

∑∞
n=1 αnen. This means

that ||u−
∑N

n=1 αnen|| → 0 as N →∞. Since the projection Pe1,e2,...,eN (u) =∑N
n=1〈u, en〉en is the element in Sp{e1, e2, . . . , eN} closest to u, we have

||u−
N∑

n=1

〈u, en〉en|| ≤ ||u−
N∑

n=1

αnen|| → 0 as N →∞

and hence u =
∑∞

n=1〈u, en〉en. To prove the second part, observe that since
u =

∑∞
n=1〈u, en〉en = limN→∞

∑N
n=1〈u, en〉en, we have (recall Proposition

4.6.7(ii))

||u||2 = lim
N→∞

||
N∑

n=1

〈u, en〉en||2 = lim
N→∞

N∑
n=1

|〈u, en〉|2 =
∞∑

n=1

|〈u, en〉|2

2

The coefficients 〈u, en〉 in the arguments above are often called (abstract)
Fourier coefficients. By Parseval’s theorem, they are square summable in
the sense that

∑∞
n=1 |〈u, en〉|2 < ∞. A natural question is whether we can

reverse this procedure: Given a square summable sequence {αn} of elements
in K, does there exist an element u in V with Fourier coefficients αn, i.e.
such that 〈u, en〉 = αn for all n? The answer is affirmative provided V is
complete.

Proposition 4.6.11 Let V be a complete inner product space over K with
an orthonormal basis {e1, e2, . . . , en, . . .}. Assume that {αn}n∈N is a se-
quence from K which is square summable in the sense that

∑∞
n=1 |αn|2 con-

verges. Then the series
∑∞

n=1 αnen converges to an element u ∈ V , and
〈u, en〉 = αn for all n ∈ N.



112 CHAPTER 4. SERIES OF FUNCTIONS

Proof: We must prove that the partial sums sn =
∑n

k=1 αkek form a Cauchy
sequence. If m > n, we have

||sm − sn||2 = ||
m∑

k=n+1

αnen||2 =
m∑

k=n+1

|αn|2

Since
∑∞

n=1 |αn|2 converges, we can get this expression less than any ε > 0
by choosing n, m large enough. Hence {sn} is a Cauchy sequence, and the
series

∑∞
n=1 αnen converges to some element u ∈ V . By Proposition 4.6.7,

〈u, ei〉 = 〈
∞∑

n=1

αnen, ei〉 =
∞∑

n=1

〈αnen, ei〉 = αi

2

Completeness is necessary in the proposition above — if V is not com-
plete, there will always be a square summable sequence {αn} such that∑∞

n=1 αnen does not converge (see exercise 13).
A complete inner product space is called a Hilbert space.

Exercises for Section 4.6

1. Show that the inner products in Example 1 really are inner products (i.e.
that they satisfy Definition 4.6.1).

2. Show that the inner products in Example 2 really are inner products.

3. Prove formula (v) just after definition 4.6.1.

4. Prove formula (vi) just after definition 4.6.1.

5. Prove formula (vii) just after definition 4.6.1.

6. Show that if A is a symmetric (real) matrix with strictly positive eigenvalues,
then

〈u,v〉 = (Au) · v

is an inner product on Rn.

7. If h(t) = f(t) + i g(t) is a complex valued function where f and g are dif-
ferentiable, define h′(t) = f ′(t) + i g′(t). Prove that the integration by parts
formula ∫ b

a

u(t)v′(t) dt =
[

u(t)v(t)
]b

a

−
∫ b

a

u′(t)v(t) dt

holds for complex valued functions.

8. Assume that {un} and {vn} are two sequences in an inner product space
converging to u and v, respectively. Show that 〈un,vn〉 → 〈u,v〉.



4.7. COMPLEX EXPONENTIAL FUNCTIONS 113

9. Show that if the norm || · || is defined from an inner product by ||u|| = 〈u,u〉 1
2 ,

we have the parallellogram law

||u + v||2 + ||u− v||2 = 2||u||2 + 2||v||2

for all u,v ∈ V . Show that the norms on R2 defined by ||(x, y)|| = max{|x|, |y|}
and ||(x, y)|| = |x|+ |y| do not come from inner products.

10. Let {e1, e2, . . . , en} be an orthonormal set in an inner product space V . Show
that the projection P = Pe1,e2,...,en is linear in the sense that P (αu) = αP (u)
and P (u + v) = P (u) + P (v) for all u,v ∈ V and all α ∈ K.

11. In this problem we prove the polarization identities for real and complex
inner products. These identities are useful as they express the inner product
in terms of the norm.

a) Show that if V is an inner product space over R, then

〈u,v〉 =
1
4
(
||u + v||2 − ||u− v||2

)
b) Show that if V is an inner product space over C, then

〈u,v〉 =
1
4
(
||u + v||2 − ||u− v||2 + i||u + iv||2 − i||u− iv||2

)
12. If S is a nonempty subset of an inner product space, let

S⊥ = {u ∈ V : 〈u, s〉 = 0 for all s ∈ S}

a) Show that S⊥ is a closed subspace of S.

b) Show that if S ⊂ T , then S⊥ ⊃ T⊥.

c) Show that (S⊥)⊥ is the smallest closed subspace of V containing S.

13. Let l2 be the set of all real sequences x = {xn}n∈N such that
∑∞

n=1 x2
n < ∞.

a) Show that 〈x,y〉 =
∑∞

n=1 xnyn is an inner product on l2.

b) Show that l2 is complete.

c) Let en be the sequence where the n-th component is 1 and all the other
components are 0. Show that {en}n∈N is an orthonormal basis for l2.

d) Let V be an inner product space with an orthonormal basis {v1, v2,
. . . , vn, . . .}. Assume that for every square summable sequence {αn},
there is an element u ∈ V such that 〈u,vi〉 = αi for all i ∈ N. Show
that V is complete.

4.7 Complex exponential functions

Our next task is to apply the ideas in the previous section to spaces of
functions. Before we do that, it will be convenient to take a brief look at
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the functions that will serve as elements of our orthonormal basis. Recall
that for a complex number z = x + iy, the exponential ez is defined by

ez = ex(cos y + i sin y)

We shall mainly be interested in purely imaginary exponents:

eiy = cos y + i sin y (4.7.1)

Since we also have

e−iy = cos(−y) + i sin(−y) = cos y − i sin y

we may add and subtract to get

cos y =
eiy + e−iy

2
(4.7.2)

sin y =
eiy − e−iy

2i
(4.7.3)

Formulas (4.7.1)-(4.7.3) give us important connections between complex ex-
ponetials and trigonometric functions that we shall exploit in the next sec-
tions.

We shall be interested in functions f : R → C of the form

f(x) = e(a+ib)x = eax cos bx + ieax sin bx, where a ∈ R

If we differentiate f by differentiating the real and complex parts separately,
we get

f ′(x) = aeax cos bx− beax sin bx + iaeax sin bx + ibeax cos bx =

= aeax (cos bx + i sin bx) + ibeax (cos bx + i sin bx) = (a + ib)e(a+ib)x

and hence we have the formula(
e(a+ib)x

)′
= (a + ib)e(a+ib)x (4.7.4)

that we would expect from the real case. Antidifferentiating, we see that∫
e(a+ib)x dx =

e(a+ib)x

a + ib
+ C (4.7.5)

where C = C1 + iC2 is an arbitrary, complex constant.
Note that if we multiply by the conjugate a − ib in the numerator and

the denominator, we get

e(a+ib)x

a + ib
=

e(a+ib)x(a− ib)
(a + ib)(a− ib)

=
eax

a2 + b2
(cos bx + i sin bx)(a− ib) =
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=
eax

a2 + b2

(
a cos bx + b sin bx + i(a sin bx− b cos bx)

)
Hence (4.7.5) may also be written∫ (

eax cos bx + ieax sin bx
)
dx =

=
eax

a2 + b2

(
a cos bx + b sin bx + i(a sin bx− b cos bx)

)
Separating the real and the imaginary parts, we get∫

eax cos bx dx =
eax

a2 + b2

(
a cos bx + b sin bx

)
(4.7.6)

and ∫
eax sin bx dx =

eax

a2 + b2

(
a sin bx− b cos bx

)
(4.7.7)

In calculus, these formulas are usually proved by two times integration by
parts, but in our complex setting they follow more or less immediately from
the basic integration formula (4.7.5).

We shall be particularly interested in the functions

en(x) = einx = cos nx + i sinnx where n ∈ Z

Observe first that these functions are 2π-periodic in the sense that

en(x + 2π) = ein(x+2π) = einxe2nπi = einx · 1 = en(x)

This means in particular that en(−π) = en(π) (they are both equal to (−1)n

as is easily checked). Integrating, we see that for n 6= 0, we have∫ π

−π
en(x) dx =

[
einx

in

]π

−π

=
en(π)− en(−π)

in
= 0

while we for n = 0 have∫ π

−π
e0(x) dx =

∫ π

−π
1 dx = 2π

This leads to the following orthogonality relation.

Proposition 4.7.1 For all n, m ∈ Z we have

∫ π

−π
en(x)em(x) dx =


0 if n 6= m

2π if n = m
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Proof: Since
en(x)em(x) = einxe−imx = ei(n−m)x

the lemma follows from the formulas above. 2

The proposition shows that the family {en}n∈Z is almost orthonormal
with respect to the inner product

〈f, g〉 =
∫ π

−π
f(x)g(x) dx.

The only problem is that 〈en, en〉 is 2π and not 1. We could fix this by
replacing en by en√

2π
, but instead we shall choose to change the inner product

to
〈f, g〉 =

1
2π

∫ π

−π
f(x)g(x) dx.

Abusing terminology slightly, we shall refer to this at the L2-inner product
on [−π, π]. The norm it induces will be called the L2-norm.

The Fourier coefficients of a function f with respect to {en}n∈Z are
defined by

〈f, en〉 =
1
2π

∫ π

−π
f(x)en(x) dx =

1
2π

∫ π

−π
f(x)e−inx dx

From the previous section we know that f =
∑∞

n=−∞〈f, en〉en (where the
series converges in L2-norm) provided f belongs to a space where {en}n∈Z
is a basis. We shall study this question in detail in the next sections. For
the time being, we look at an example of how to compute Fourier coefficients.

Example 1: We shall compute the Fourier coefficients αn of the function
f(x) = x. By definition

αn = 〈f, en〉 =
1
2π

∫ π

−π
xe−inx dx

It is easy to check that α0 =
∫ π
−π x dx = 0. For n 6= 0, we use integration

by parts (see Exercise 4.6.7) with u = x and v′ = e−nx. We get u′ = 1 and
v = e−inx

−in , and:

αn = − 1
2π

[
x

e−inx

in

]π

−π

+
1
2π

∫ π

−π

e−inx

in
dx =

=
(−1)n+1

in
− 1

2π

[
e−inx

n2

]π

−π

=
(−1)n+1

in

The Fourier series becomes
∞∑

n=−∞
αnen =

−1∑
n=−∞

(−1)n+1

in
einx +

∞∑
n=1

(−1)n+1

in
einx =
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=
∞∑

n=1

2(−1)n+1

n
sin(nx)

We would like to conclude that x =
∑∞

n=1
2(−1)n+1

n sin(nx) for x ∈ (−π, π),
but we don’t have the theory to take that step yet.

Exercises for Section 4.7

1. Show that 〈f, g〉 = 1
2π

∫ π

−π
f(x)g(x) dx is an inner product on C([−π, π], C).

2. Deduce the formulas for sin(x + y) and cos(x + y) from the rule ei(x+y) =
eixeiy.

3. In this problem we shall use complex exponentials to prove some trigonomet-
ric identities.

a) Use the complex expressions for sin and cos to show that

sin(u) sin(v) =
1
2

cos(u− v)− 1
2

cos(u + v)

b) Integrate
∫

sin 4x sinx dx.

c) Find a similar expression for cos u cos v and use it to compute the inte-
gral

∫
cos 3x cos 2x dx.

d) Find an expression for sinu cos v and use it to integrate
∫

sinx cos 4x dx.

4. Find the Fourier series of f(x) = ex.

5. Find the Fourier series of f(x) = x2.

6. Find the Fourier sries of f(x) = sin x
2 .

7. a) Let sn = a0 + a0r + a0r
2 + · · ·+ a0r

n be a geometric series of complex
numbers. Show that if r 6= 1, then

sn =
a0(1− rn+1)

1− r

(Hint: Subtract rsn from sn.)

b) Explain that
∑n

k=0 eikx = 1−ei(n+1)x

1−eix when x is not a multiplum of 2π.

c) Show that
∑n

k=0 eikx = ei nx
2

sin( n+1
2 x)

sin( x
2 ) when x is not a multiplum of 2π.

d) Use the result in c) to find formulas for
∑n

k=0 cos(kx) and
∑n

k=0 sin(kx).

4.8 Fourier series

In the middle of the 18th century, mathematicians and physicists started to
study the motion of a vibrating string (think of the strings of a violin or a
guitar). If you pull the string out and then let it go, how will it vibrate?
To make a mathematical model, assume that at rest the string is stretched
along the x-axis from 0 to 1 and fastened at both ends.
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The figure below shows some possibilities. If we start with a simple
sine curve f1(x) = C1 sin(πx), the string will oscillate up an down between
the two curves shown in the top line of the picture (we are neglecting air
resistance and other frictional forces). The frequency of the oscillation is
called the fundamental harmonic of the string. If we start from a position
where the string is pinched in the middle as on the second line of the figure
(i.e. we use a starting position of the form f2(x) = C2 sin(2πx)), the curve
will oscillate with a node in the middle. The frequency will be twice the
fundamental harmonic. This is the first overtone of the string. Pinching
the string at more and more ponts (i.e. using starting positions of the form
fn(x) = Cn sin(nπx) for bigger and bigger integers n), we introduce more
and more nodes and more and more overtones (the frequency of fn will be
n times the fundamental harmonic). If the string is vibrating in air, the
frequencies (the fundamental harmonic and its overtones) can be heard as
tones of different pitch.

Imagine now that we start with a mixture

f(x) =
∞∑

n=1

Cn sin(nπx) (4.8.1)

of the starting positions above. The motion of the string will now be a
superposition of the motions created by each individual fn. The sound
produced will be a mixture of the fundamental harmonic and the different
overtones, and the size of the constant Cn will determine how much overtone
number n contributes to the sound.

This is a nice description, but the problem is that a function is usually
not of the form (4.8.1). Or – perhaps it is? Perhaps any reasonable starting
position for the string can be written in the form (4.8.1)? But if so, how do
we prove it, and how do we find the coefficients Cn? There was a heated
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discussion on these questions around 1750, but nobody at the time was able
to come up with a satisfactory solution.

The solution came with a memoir published by Joseph Fourier in 1807.
To understand Fourier’s solution, we need to generalize the situation a little.
Since the string is fastened at both ends of the interval, a starting position
for the string must always satisfy f(0) = f(1) = 0. Fourier realized that if
he were to include general functions that did not satisfy these boundary con-
ditions in his theory, he needed to allow constant terms and cosine functions
in his series. Hence he looked for representations of the form

f(x) = A +
∞∑

n=1

(
Cn sin(nπx) + Dn cos(nπx)

)
(4.8.2)

with A,Cn, Dn ∈ R. The big breakthrough was that Fourier managed to
find simple formulas to compute the coefficients A,Cn, Dn of this series.
This turned trigonometric series into a useful tool in applications (Fourier
himself was mainly interested in heat propagation).

When we now begin to develop the theory, we shall change the setting
slightly. We shall replace the interval [0, 1] by [−π, π] (it is easy to go from
one interval to another by scaling the functions, and [−π, π] has certain
notational advantages), and we shall replace sin and cos by complex expo-
nentials einx. Not only does this reduce the types of functions we have to
work with from two to one, but it also makes many of our arguments easier
and more transparent. The formulas in the previous section makes it easy
to get back to the cos/sin-setting when one needs to.

Recall from the previous section that the functions

en(x) = einx, n ∈ Z

form an orthonormal set with respect to the L2-inner product

〈f, g〉 =
1
2π

∫ π

−π
f(x)g(x) dx

The Fourier coefficients of a continuous function f : [−π, π] → C with
respect to this set are given by

αn = 〈f, en〉 =
1
2π

∫ π

−π
f(x)en(x) dx

From Parseval’s theorem, we know that if {en} is a basis, then

f(x) =
∞∑

n=−∞
αnen(x)
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where the series converges in the L2-norm, i.e.

lim
N→∞

||f −
N∑

n=−N

αnen||2 = 0

where || · ||2 denotes the norm induced by the L2-inner product (we shall refer
to it as the L2-norm).

At this stage, life becomes complicated in two ways. First, we don’t
know yet that {en}n∈Z is a basis for C([−π, π], C), and second, we don’t
really know what L2-convergence means. It turns out that L2-convergence
is quite weak, and that a sequence may converge in L2-norm without actually
converging at any point! This means that we would also like to investigate
other forms for convergence (pointwise, uniform etc.).

Let us begin by observing that since en(−π) = en(π) for all n ∈ Z, any
function that is the pointwise limit of a series

∑∞
n=−∞ αnen must also satisfy

this periodicity assumption. Hence it is natural to introduce the following
class of functions:

Definition 4.8.1 Let CP be the set of all continuous functions f : [−π, π] →
C such that f(−π) = f(π). A function in CP is called a trigonometric poly-
nomial if is of the form

∑N
n=−N αnen where N ∈ N and each αn ∈ C.

To distinguish it from the L2-norm, we shall denote the supremum norm
on C([−π, π], C) by || · ||∞, i.e.

||f ||∞ = sup{|f(x) : x ∈ [−π.π]}

Note that the metric generated by || · ||∞ is the metric ρ that we studied in
Chapter 3. Hence convergence with respect to || · ||∞ is the same as uniform
convergence.

Theorem 4.8.2 The trigonometric polynomials are dense in CP in the || ·
||∞-norm. Hence for any f ∈ CP there is a sequence {pn} of trigonometric
polynomials which converges uniformly to f .

It is possible to prove this result from Weierstrass’ Approximation The-
orem 3.7.1, but the proof is technical and not very informative. In the next
section, we shall get a more informative proof from ideas we have to develop
anyhow, and we postpone the proof till then. In the meantime we look at
some consequences.

Corollary 4.8.3 For all f ∈ CP , the Fourier series
∑∞

n=−∞〈f, en〉en con-
verges to f in L2-norm, i.e. limn→∞ ||f −

∑N
n=−N 〈f, en〉en||2 = 0.
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Proof: Given ε > 0, we must show that there is an N ∈ N such that
||f −

∑M
n=−M 〈f, en〉en||2 < ε when M ≥ N . According to the theorem

above, there is a trigonometric polynomial p(x) =
∑N

n=−N αnen such that
||f − p||∞ < ε. Hence

||f − p||2 =
(

1
2π

∫ π

−π
|f(x)− p(x)|2 dx

) 1
2

<

(
1
2π

∫ π

−π
ε2 dx

) 1
2

= ε

According to Proposition 4.6.8, ||f −
∑M

n=−M 〈f, en〉||2 ≤ ||f − p||2 for all
M ≥ N , and the corollary follows. 2

The corollary above is rather unsatisfactory. It is particularly incon-
venient that it only applies to periodic functions such that f(−π) = f(π)
(although we can not have pointwise convergence to functions violating this
condition, we may well have L2-convergence as we soon shall see). To get a
better result, we introduce a bigger space D of piecewise continuous func-
tions.

Definition 4.8.4 A function f : [−π, π] → C is said to be piecewise con-
tinuous with one sided limits if there exists a finite set of points

−π = a0 < a1 < a2 < . . . < an−1 < an = π

such that:

(i) f is continuous on each interval (ai, ai+1).

(ii) f have one sided limits at each point ai, i.e. f(a−i ) = limx↑ai
f(x) and

f(a+
i ) = limx↓ai

f(x) both exist, but need not be equal (at the endpoints
a0 = −π and an = π we do, of course, only require limits from the
appropriate side).

(iii) The value of f at each jump point ai is the avarage of the one-sided
limits, i.e. f(ai) = 1

2(f(a−i ) + f(a+
i )). At the endpoints, this is inter-

preted as f(a0) = f(an) = 1
2(f(a−n ) + f(a+

0 ))

The collection of all such functions will be denoted by D.

Remark: Part (iii) is only included for technical reasons (we must specify
the values at the jump points to make D an inner product space), but it
reflects how Fourier series behave — at jump points they always choose the
average value.

Note that the functions in D are bounded and integrable, that the sum
and product of two functions in D are also in D, and that D is a inner
product space over C with the L2-inner product. The next lemma will allow
us to extend the corollary above to D.
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Lemma 4.8.5 CP is dense in D in the L2-norm, i.e. for each f ∈ D and
each ε > 0, there is a g ∈ CP such that ||f − g||2 < ε.

Proof: I only sketch the main idea of the proof, leaving the details to the
reader. Assume that f ∈ D and ε > 0 are given. To construct g, choose a
very small δ > 0 (it is your task to figure out how small) and construct g as
follows: Outside the (nonoverlapping) intervals (ai−δ, ai +δ), we let g agree
with f , but in each of these intervals, g follows the straight line connecting
the points (ai− δ, f(ai− δ)) and (ai + δ, f(ai + δ)) on f ’s graph. Check that
if we choose δ small enough, ||f − g||2 < ε (In making your choice, you have
to take M = sup{|f(x)| : x ∈ [−π, π]} into account, and you also have to
figure ut what to do at the endpoints −π, π of the interval). 2

We can now extend the corollary above from CP to D.

Theorem 4.8.6 For all f ∈ D, the Fourier series
∑∞

n=−∞〈f, en〉en con-
verges to f in L2-norm, i.e. limn→∞ ||f −

∑N
n=−N 〈f, en〉en||2 = 0.

Proof: Assume that f ∈ D and ε > 0 are given. By the lemma, we know that
there is a g ∈ CP such that ||f − g||2 < ε

2 , and by the corollary above, there
is a trigonometric polynomial p =

∑N
n=−N αnen such that ||g−p||∞ < ε

2 . By
the same argument as in the proof of the corollary, we get ||g−p||2 < ε

2 . The
triangle inequality now tells us that

||f − p||2 ≤ ||f − g||2 + ||g − p||2 <
ε

2
+

ε

2
= ε

Invoking Proposition 4.6.8 again, we see that for M ≥ N , we have

||f −
M∑

n=−M

〈f, en〉en||2 ≤ ||f − p||2 < ε

and the theorem is proved. 2

The theorem above is satisfactory in the sense that we know that the
Fourier series of f converges to f for a reasonably wide class of functions.
However, we still have things to attend to: We haven’t proved Theorem 4.8.2
yet, and we would really like to prove that Fourier series converge pointwise
(or even uniformly) for a reasonable class of functions. We shall take a closer
look at these questions in the next sections.

Exercises for Section 4.8

1. Show that CP is a closed subset of C([−π, π], C)

2. In this problem we shall prove some properties of the space D.
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a) Show that if f, g ∈ D, then f + g, fg ∈ D.

b) Show that D is a vector space.

c) Show that all functions in D are bounded.

d) Show that all functions in D are integrable on [−π, π].

e) Show that 〈f, g〉 = 1
2π

∫ π

−π
f(x)g(x) dx is an inner product on D.

3. In this problem we shall show that if f : [−π, π] → R is a realvalued function,
then the Fourier series

∑∞
n=−∞ αnen can be turned into a sine/cosine-series

of the form (4.8.2).

a) Show that if αn = an + ibn are Fourier coefficients of f , then α−n =
αn = an − ibn.

b) Show that an = 1
2π

∫ π

−π
f(x) cos(nx) dx and bn = − 1

2π

∫ π

−π
f(x) sin(nx) dx.

c) Show that the Fourier series can be written

α0 +
∞∑

n=0

(
2an cos(nx)− 2bn sin(nx)

)
4. Complete the proof of Lemma 4.8.5.

4.9 The Dirichlet kernel

Our arguments so far have been entirely abstract — we have not really used
any properties of the functions en(x) = einx except that they are orthonor-
mal. To get better results, we need to take a closer look at these functions.
In some of our arguments, we shall need to change variables in integrals,
and such changes may take us outside our basic interval [−π, π], and hence
outside the region where our functions are defined. To avoid these prob-
lems, we extend our functions periodically outside the basic interval such
that f(x + 2π) = f(x) for all x ∈ R. The figure shows the extension graph-
ically; in part a) we have the original function, and in part b) (a part of )
the periodic extension. As there is no danger of confusion, we shall denote
the original function and the extension by the same symbol f .

a)

-

6

−π π
q q

-

b) 6

−π π
q q

−3π
q

3π
q q

Figure 1



124 CHAPTER 4. SERIES OF FUNCTIONS

Let us begin by looking at the partial sums

sN (x) =
N∑

n=−N

〈f, en〉en(x)

of the Fourier series. Since

αn = 〈f, en〉 =
1
2π

∫ π

−π
f(t)e−int dt

we have

sN (x) =
1
2π

N∑
n=−N

(∫ π

−π
f(t)e−int dt

)
einx =

1
2π

∫ π

−π
f(t)

N∑
n=−N

ein(x−t) dt =

=
1
2π

∫ π

−π
f(x− u)

N∑
n=−N

einu du

where we in the last step has substituted u = x−t and used the periodicity of
the functions to remain in the interval [−π, π]. If we introduce the Dirichlet
kernel

DN (u) =
N∑

n=−N

einu

we may write this as

sN (x) =
1
2π

∫ π

−π
f(x− u)DN (u) du

Note that the sum
∑N

n=−N einu =
∑N

n=−N (eiu)n is a geomtric series. For
u = 0, all the terms are 1 and the sum is 2N +1. For u 6= 0, we use the sum
formula for a finite geometric series to get:

DN (u) =
e−iNu − ei(N+1)u

1− eiu
=

e−i(N+ 1
2
)u − ei(N+ 1

2
)u

e−i u
2 − ei u

2

=
sin((N + 1

2)u)
sin u

2

where we have used the formula sinx = eix−e−ix

2i twice in the last step. This
formula gives us a nice, compact expression for DN (u). If we substitute it
into the formula above, we get

sN (x) =
1
2π

∫ π

−π
f(x− u)

sin((N + 1
2)u)

sin u
2

du

If we want to prove that partial sums sN (x) converge to f(x) (i.e. that the
Fourier series converges pointwise to f), the obvious strategy is to prove that
the integral above converges to f . In 1829, Dirichlet used this approach to
prove:
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Theorem 4.9.1 (Dirichlet’s Theorem) If f ∈ D has only a finite num-
ber of local minima and maxima, then the Fourier series of f converges
pointwise to f .

Dirichlet’s result must have come as something of a surprise; it probably
seemed unlikely that a theorem should hold for functions with jumps, but
not for continuous functions with an infinite number of extreme points.
Through the years that followed, a number of mathematicians tried — and
failed — to prove that the Fourier series of a periodic, continuous function
always converges to the function. In 1873, the German mathematician Paul
Du Bois-Reymond explained why they failed by constructing a periodic,
continuous function whose Fourier series diverges at a dense set of points.

It turns out that the theory for pointwise convergence of Fourier series
is quite complicated, and we shall not prove Dirichlet’s theorem here. In-
stead we shall prove a result known as Dini’s test which allows us to prove
convergence for many of the functions that appear in practice. But before
we do that, we shall take a look at a different notion of convergence which
is easier to handle, and which will also give us some tools that are useful
in the proof of Dini’s test. This alternative notion of convergence is called
Cesaro convergence or convergence in Cesaro mean. But first of all we shall
collect some properties of the Dirichlet kernels that will be useful later.

Let us first see what they look like. The figure above shows Dirichlet’s
kernel Dn for n = 5, 10, 15, 20. Note the changing scale on the y-axis; as
we have alresdy observed, the maximum value of Dn is 2n + 1. As n grows,
the graph becomes more and more dominated by a sharp peak at the origin.
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The smaller peaks and valleys shrink in size relative to the big peak, but
the problem with the Dirichlet kernel is that they do not shrink in absolute
terms — as n goes to infinity, the area between the curve and the x-axis
(measured in absolute value) goes to infinity. This makes the Dirichlet
kernel quite difficult to work with. When we turn to Cesaro convergence in
the next section, we get another set of kernels — the Fejér kernels — and
they turn out not to have this problem. This is the main reason why Cesaro
convergence works much better than ordinary convergence for Fourier series.

Let us now prove some of the crucial properties of the Dirichlet kernel.
Recall that a function g is even if g(t) = g(−t) for all t in the domain:

Lemma 4.9.2 The Dirichlet kernel Dn(t) is an even, realvalued function
such that |Dn(t)| ≤ Dn(0) = 2n + 1 for all t. For all n,

1
2π

∫ π

−π
Dn(t) dt = 1

but
lim

n→∞

∫ π

−π
|Dn(t)| dt →∞

Proof: That Dn is realvalued and even, follows immediately from the formula

Dn(t) = sin((n+ 1
2
)t)

sin t
2

To prove that |Dn(t)| ≤ Dn(0) = 2n+1 , we just observe
that

Dn(t) = |
n∑

k=−n

eikt| ≤
n∑

k=−n

|eikt| = 2n + 1 = Dn(0)

Similarly for the integral

1
2π

∫ π

−π
Dn(t) dt =

n∑
k=−n

1
2π

∫ π

−π
eikt dt = 1

as all integrals except the one for k = 0 is zero. To prove the last part, we
observe that since | sin u| ≤ |u| for all u, we have

|Dn(t)| =
| sin((n + 1

2)t)|
| sin t

2 |
≥

2| sin((n + 1
2)t)|

|t|

Using the symmetry and the substitution z = (n + 1
2)t, we see that∫ π

−π
|Dn(t)| dt =

∫ π

0
2|Dn(t)| dt ≥

∫ π

0

4| sin((n + 1
2)t)|

|t|
dt =

=
∫ (n+ 1

2
)π

0

4| sin z|
z

dz ≥
n∑

k=1

∫ kπ

(k−1)π

4| sin z|
kπ

dz =
8
π

n∑
k=1

1
k



4.10. THE FEJÉR KERNEL 127

The expression on the right goes to infinity since the series diverges. 2

The last part of the lemma is bad news. It tells us that when we are
doing calculations with the Dirichlet kernel, we have to be very careful in
putting in absolute values as the integrals are likely to diverge. For this
reason we shall now introduce another kernel — the Fejér kernel — where
this problem does not occur.

Exercises for Section 4.9

1. Let f : [−π, π] → C be the function f(x) = x. Draw the periodic extension
of f . Do the same with the function g(x) = x2.

2. Check that Dn(0) = 2n + 1 by computing limt→0
sin((n+ 1

2 )t)

sin t
2

.

3. Work out the details of the substitution u = x − t in the derivation of the
formula sN (x) = 1

2π

∫ π

−π
f(x− u)

∑N
n=−N einu du.

4. Explain the details in the last part of the proof of Lemma 4.9.2 (the part
that proves that limn→∞

∫ π

−π
|Dn(t)| dt = ∞).

4.10 The Fejér kernel

Before studying the Fejér kernel, we shall take a look at a generalized notion
of convergence for sequences. Certain sequences such at

0, 1, 0, 1, 0, 1, 0, 1, . . .

do not converge in the ordinary sense, but they do converge “in average” in
the sense that the average of the first n elements approaches a limit as n
goes to infinity. In this sense, the sequence above obviously converges to 1

2 .
Let us make this notion precise:

Definition 4.10.1 Let {ak}∞k=0 be a sequence of complex numbers, and let
Sn = 1

n

∑n−1
k=0 ak. We say that the sequence converges to a ∈ C in Cesaro

mean if

a = lim
n→∞

Sn = lim
n→∞

a0 + a1 + · · ·+ an−1

n

We shall write a = C- limn→∞ an.

The sequence at the beginning of the section converges to 1
2 in Cesaro

mean, but diverges in the ordinary sense. Let us prove that the opposite
can not happen:

Lemma 4.10.2 If limn→∞ an = a, then C-limn→∞ an = a.
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Proof: Given an ε > 0, we must find an N such that

|Sn − a| < ε

when n ≥ N . Since {an} converges to a, there is a K ∈ N such that
|an − a| < ε

2 when n ≥ K. If we let M = max{|ak − a| : k = 0, 1, 2, . . .}, we
have for any n ≥ K:

|Sn − a| =
∣∣∣∣(a0 − a) + (a1 − a) + · · ·+ (aK−1 − a) + (aK − a) + · · · (an−1 − a)

n

∣∣∣∣ ≤
≤
∣∣∣∣(a0 − a) + (a1 − a) + · · ·+ (aK−1 − a)

n

∣∣∣∣+∣∣∣∣(aK − a) + · · · (an−1 − a)
n

∣∣∣∣ ≤ MK

n
+

ε

2

Choosing n large enough, we get MK
n < ε

2 , and the lemma follows, 2

The idea behind the Fejér kernel is to show that the partial sums sn(x)
converge to f(x) in Cesaro mean; i.e. that the sums

Sn(x) =
s0(x) + s1(x) + · · ·+ sn−1(x)

n

converge to f(x). Since

sk(x) =
1
2π

∫ π

−π
f(x− u)Dk(u) du

where Dk is the Dirichlet kernel, we get

Sn(x) =
1
2π

∫ π

−π
f(x− u)

(
1
n

n−1∑
k=0

Dk(u)

)
du =

1
2π

∫ π

−π
f(x− u)Fn(u) du

where Fn(u) = 1
n

∑n−1
k=0 Dk(u) is the Fejér kernel.

We can find a closed expression for the Fejér kernel as we did for the
Dirichlet kernel, but the arguments are a little longer:

Lemma 4.10.3 The Fejér kernel is given by

Fn(u) =
sin2(nu

2 )
n sin2(u

2 )

for u 6= 0, and Fn(0) = n.

Proof: Since

Fn(u) =
1
n

n−1∑
k=0

Dk(u) =
1

n sin(u
2 )

n−1∑
k=0

sin((k +
1
2
)u)
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we have to find

n−1∑
k=0

sin((k +
1
2
)u) =

1
2i

(
n−1∑
k=0

ei(k+ 1
2
)u −

n−1∑
k=0

e−i(k+ 1
2
)u

)

The series are geometric and can easily be summed:

n−1∑
k=0

ei(k+ 1
2
)u = ei u

2

n−1∑
k=0

eiku = ei u
2
1− einu

1− eiu
=

1− einu

e−i u
2 − ei u

2

and

n−1∑
k=0

e−i(k+ 1
2
)u = e−i u

2

n−1∑
k=0

e−iku = e−i u
2
1− e−inu

1− e−iu
=

1− e−inu

ei u
2 − e−i u

2

Hence

n−1∑
k=0

sin((k +
1
2
)u) =

1
2i

(
1− einu + 1− e−inu

e−i u
2 − ei u

2

)
=

1
2i

(
einu − 2 + e−inu

ei u
2 − e−i u

2

)
=

=
1
2i
· (ei nu

2 − e−
nu
2 )2

ei u
2 − e−i u

2

=

(
ei nu

2 −e−
nu
2 )

2i

)2

ei u
2 −e−i u

2

2i

=
sin2(nu

2 )
sin u

2

and thus

Fn(u) =
1

n sin(u
2 )

n−1∑
k=0

sin((k +
1
2
)u) =

sin2(nu
2 )

n sin2 u
2

To prove that Fn(0) = n, we just have to sum an arithmetic series

Fn(0) =
1
n

n−1∑
k=0

Dk(0) =
1
n

n−1∑
k=0

(2k + 1) = n

2

The figure below shows the Fejer kernels Fn for n = 5, 10, 15, 20. At
first glance they look very much like the Dirichlet kernels in the previous
section. The peak in the middle is growing slower than before in absolute
terms (the maximum value is n compared to 2n+1 for the Dirichlet kernel),
but relative to the smaller peaks and values, it is much more dominant. The
functions are now positive, and the area between their graphs and the x-axis
is always equal to one. As n gets big, almost all this area belongs to the
dominant peak in the middle. The positivity and the concentration of all
the area in the center peak make the Fejér kernels much easier to handle
than their Dirichlet counterparts.



130 CHAPTER 4. SERIES OF FUNCTIONS

Let us now prove some of the properties of the Fejér kernels.

Proposition 4.10.4 For all n, the Fejér kernel Fn is an even, positive
function such that

1
2π

∫ π

−π
Fn(x) dx = 1

For all nonzero x ∈ [−π, π]

0 ≤ Fn(x) ≤ π2

nx2

Proof: That Fn is even and positive follows directly from the formula in the
lemma. By Proposition 4.9.2, we have

1
2π

∫ π

−π
Fn(x) dx =

1
2π

∫ π

−π

1
n

n−1∑
k=0

Dk dx =
1
n

n−1∑
k=0

1
2π

∫ π

−π
Dk dx =

1
n

n−1∑
k=0

1 = 1

For the last formula, observe that for u ∈ [−π
2 , π

2 ], we have 2
π |u| ≤ | sinu|

(make a drawing). Thus

Fn(x) =
sin2(nx

2 )
n sin2 x

2

≤ 1
n( 2

π
x
2 )2

≤ π2

nx2

2
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We shall now show that Sn(x) converges to f(x), i.e. that the Fourier
series converges to f in Cesaro mean. We have already observed that

Sn(x) =
1
2π

∫ π

−π
f(x− u)Fn(u) du

If we introduce a new variable t = −u and use that Fn is even, we get

Sn(x) =
1
2π

∫ −π

π
f(x + t)Fn(−t) (−dt) =

=
1
2π

∫ π

−π
f(x + t)Fn(t) dt =

1
2π

∫ π

−π
f(x + u)Fn(u) du

If we combine the two expressions we now have for Sn(x), we get

Sn(x) =
1
4π

∫ π

−π
(f(x + u) + f(x− u))Fn(u) du

Since 1
2π

∫ π
−π Fn(u) du = 1, we also have

f(x) =
1
2π

∫ π

−π
f(x)Fn(u) du

Hence

Sn(x)− f(x) =
1
4π

∫ π

−π
(f(x + u) + f(x− u)− 2f(x))Fn(u) du

To prove that Sn(x) converges to f(x), we only need to prove that the
integral goes to 0 as n goes to infinity. The intuitive reason for this is that for
large n, the kernel Fn(u) is extremely small except when u is close to 0, but
when u is close to 0, the other factor in the integral, f(x+u)+f(x−u)−2f(x),
is very small. Here are the technical details.

Theorem 4.10.5 If f ∈ D, then Sn converges to f on [−π, π], i.e. the
Fourier series converges in Cesaro mean. The convergence is uniform on
each subinterval [a, b] ⊂ [−π, π] where f is continuous.

Proof: Given ε > 0, we must find an N ∈ N such that |Sn(x) − f(x)| < ε
when n ≥ N . Since f is in D, there is a δ > 0 such that

|f(x + u)− f(x− u)− 2f(x)| < ε

when |u| < δ (keep in mind that since f ∈ D, f(x) = 1
2 limu↑0(f(x + u) −

f(x− u))). We have

|Sn(x)− f(x)| = 1
4π

∫ π

−π
|f(x + u) + f(x− u)− 2f(x)|Fn(u) du =
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=
1
4π

∫ δ

−δ
|f(x + u) + f(x− u)− 2f(x)|Fn(u) du+

+
1
4π

∫ −δ

−π
|f(x + u) + f(x− u)− 2f(x)|Fn(u) du+

+
1
4π

∫ π

−δ
|f(x + u) + f(x− u)− 2f(x)|Fn(u) du

For the first integral we have

1
4π

∫ δ

−δ
|f(x + u) + f(x− u)− 2f(x)|Fn(u) du ≤

≤ 1
4π

∫ δ

−δ
εFn(u) du ≤ 1

4π

∫ π

−π
εFn(u) du =

ε

2

For the second integral we get

1
4π

∫ −δ

−π
|f(x + u) + f(x− u)− 2f(x)|Fn(u) du ≤

≤ 1
4π

∫ −δ

−π
4||f ||∞

π2

nδ2
du =

π2||f ||∞
nδ2

Exactly the same estimate holds for the third integral, and by choosing
N > 4π2||f ||∞

εδ2 , we get the sum of the last two integrals less than ε
2 . But then

|Sn(x)− f(x)| < ε , and the convergence is proved.
So what about the uniform convergence? We need to check that we can

choose the same N for all x ∈ [a, b]. Note that N only depends on x through
the choice of δ, and hence it suffices to show that we can use the same δ for all
x ∈ [a, b]. One might think that this follows immediately from the fact that
a continuous function on a compact interval [a, b] is uniformly continuous,
but we need to be a little careful as x+u or x−u may be outside the inter-
val [a, b] even if x is inside. The quickest way to fix this, is to observe that
since f is in D, it must be continuous — and hence uniformly continuous
— on a slightly larger interval [a−η, b+η]. This means that we can use the
same δ < η for all x and x±u in [a−η, b+η], and this clinches the argument.2

We have now finally proved Theorem 4.8.2 which we restate here:

Corollary 4.10.6 The trigonometric polynomials are dense in Cp in || · ||∞-
norm, i.e. for any f ∈ CP there is a sequence of trigonometric polynomials
converging uniformly to f .

Proof: According to the theorem, the sums SN (x) = 1
N

∑N−1
n=0 sn(x) con-

verge uniformly to f . Since each sn is a trigonometric polynomial, so are
the SN ’s. 2
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Exercises to Section 4.10

1. Let {an} be the sequence 1, 0, 1, 0, 1, 0, 1, 0, . . .. Prove that C-limn→∞ an = 1
2 .

2. Show that C-limn→∞(an + bn) = C− limn→∞ an + C− limn→∞ bn

3. Check that Fn(0) = n by computing limu→0
sin2( nu

2 )

n sin2 u
2

.

4. Show that SN (x) =
∑N−1

n=−(N−1) αn(1 − |n|
N )en(x), where αn = 〈f, en〉 is the

Fourier coefficient.

5. Assume that f ∈ CP . Work through the details of the proof of Theorem
4.10.5 and check that Sn converges uniformly to f .

4.11 The Riemann-Lebesgue lemma

The Riemann-Lebesgue lemma is a seemingly simple observation about the
size of the Fourier coefficients, but it turns out to be a very efficient tool in
the study of pointwise convergence.

Theorem 4.11.1 (Riemann-Lebesgue Lemma) If f ∈ D and

αn =
1
2π

∫ π

−π
f(x)e−inx dx, n ∈ Z,

are the Fourier coefficients of f , then lim|n|→∞ αn → 0.

Proof: According to Bessel’s inequality 4.6.9,
∑∞

n=−∞ |αn|2 ≤ ||f ||22 < ∞,
and hence αn → 0 as |n| → ∞. 2

Remark: We are cheating a little here as we only prove the Riemann-
Lebesgue lemma for function which are in D and hence square integrable.
The lemma holds for integrable functions in general, but even in that case
the proof is quite easy.

The Riemann-Lebesgue lemma is quite deceptive. It seems to be a result
about the coefficients of certain series, and it is proved by very general and
abstract methods, but it is really a theorem about oscillating integrals as
the following corollary makes clear.

Corollary 4.11.2 If f ∈ D and [a, b] ⊂ [−π, π], then

lim
|n|→∞

∫ b

a
f(x)e−inx dx = 0

Also

lim
|n|→∞

∫ b

a
f(x) cos(nx) dx = lim

|n|→∞

∫ b

a
f(x) sin(nx) dx = 0
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Proof: Let g be the function (this looks more horrible than it is!)

g(x) =



0 if x /∈ [a, b]

f(x) if x ∈ (a, b)

1
2 limx↓a f(x) if x = a

1
2 limx↑b f(x) if x = b

then g is in D, and∫ b

a
f(x)e−inx dx =

∫ π

−π
g(x)e−inx dx = 2παn

where αn is the Fourier coefficient of g. By the Riemann-Lebesgue lemma,
αn → 0. The last two parts follows from what we have just proved and the
identities sin(nx) = einx−e−inx

2i and cos(nx) = einx+e−inx

2 2

Let us pause for a moment to discuss why these results hold. The reason
is simply that for large values of n, the functions sinnx, cos nx, and einx

(if we consider the real and imaginary parts separately) oscillate between
positive and negative values. If the function f is relatively smooth, the
positive and negative contributions cancel more and more as n increases,
and in the limit there is nothing left. This argument also indicates why
rapidly oscillating, continuous functions are a bigger challenge for Fourier
analysis than jump discontinuities — functions with jumps average out on
each side of the jump, while for wildly oscillating functions “the averaging”
procedure may not work.

Since the Dirichlet kernel contains the factor sin((n+ 1
2)x), the following

result will be useful in the next section:

Corollary 4.11.3 If f ∈ D and [a, b] ⊂ [−π, π], then

lim
|n|→∞

∫ b

a
f(x) sin

(
(n +

1
2
)x
)
dx = 0

Proof: Follows from the corollary above and the identity

sin
(
(n +

1
2
)x
)

= sin(nx) cos
x

2
+ cos(nx) sin

x

2

2

Exercises to Section 4.11

1. Work out the details of the sin(nx)- and cos(nx)-part of Corollary 4.11.2.
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2. Work out the details of the proof of Corollary 4.11.3.

3. a) Show that if p is a trigonometric polynomial, then the Fourier coeffi-
cients βn = 〈p, en〉 are zero when |n| is sufficiently large.

b) Let f be an integrable function, and assume that for each ε > 0 there is
a trigonometric polynomial such that 1

2π

∫ π

−π
|f(t)− p(t)| dt < ε. Show

that if αn = 1
2π

∫ π

−π
f(t)e−int dt are the Fourier coefficients of f , then

lim|n|→∞ αn = 0.

4.12 Dini’s test

We shall finally take a serious look at pointwise convergence of Fourier series.
As aready indicated, this is a rather tricky business, and there is no ultimate
theorem, just a collection of scattered results useful in different settings. We
shall concentrate on a criterion called Dini’s test which is relatively easy to
prove and sufficiently general to cover a lot of different situations.

Recall from Section 4.9 that if

sN (x) =
N∑

n=−N

〈f, en〉en(x)

is the partial sum of a Fourier series, then

sN (x) =
1
2π

∫ π

−π
f(x− u)DN (u) du

If we change variable in the intergral and use the symmetry of DN , we see
that we also get

sN (x) =
1
2π

∫ π

−π
f(x + u)DN (u) du

Combining these two expressions, we get

sN (x) =
1
4π

∫ π

−π

(
f(x + u) + f(x− u)

)
DN (u) du

Since 1
2π

∫ π
−π DN (u) du = 1, we also have

f(x) =
1
2π

∫ π

−π
f(x)DN (u) du

and hence

sN (x)− f(x) =
1
4π

∫ π

−π
(f(x + u) + f(x− u)− 2f(x))DN (u) du

(note that the we are now doing exactly the same to the Dirichlet kernel as
we did to the Fejér kernel in Section 4.10). To prove that the Fourier series
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converges pointwise to f , we just have to prove that the integral converges
to 0.

The next lemma simplifies the problem by telling us that we can con-
centrate on what happens close to the origin:

Lemma 4.12.1 Let f ∈ D and assume that there is a η > 0 such that

lim
N→∞

1
4π

∫ η

−η
(f(x + u) + f(x− u)− 2f(x))DN (u) du = 0

Then the Fourier series {sN (x)} converges to f(x).

Proof: Note that since 1
sin x

2
is a bounded function on [η, π], Corollary 4.11.3

tells us that

lim
N→∞

1
4π

∫ π

η
(f(x + u) + f(x− u)− 2f(x))DN (u) du =

= lim
N→∞

1
4π

∫ π

η

[
(f(x + u) + f(x− u)− 2f(x))

1
sin u

2

]
sin
(
(N +

1
2
)u
)
du = 0

The same obviously holds for the integral from −π to −η, and hence

sN (x)− f(x) =
1
4π

∫ π

−π
(f(x + u) + f(x− u)− 2f(x))DN (u) du =

=
1
4π

∫ η

−π
(f(x + u) + f(x− u)− 2f(x))DN (u) du+

+
1
4π

∫ η

−η
(f(x + u) + f(x− u)− 2f(x))DN (u) du+

+
1
4π

∫ π

η
(f(x + u) + f(x− u)− 2f(x))DN (u) du

→ 0 + 0 + 0 = 0

2

Theorem 4.12.2 (Dini’s test) Let x ∈ [−π, π], and assume that there is
a δ > 0 such that∫ δ

−δ

∣∣∣∣f(x + u) + f(x− u)− 2f(x)
u

∣∣∣∣ du < ∞

Then the Fourier series converges to the function f at the point x, i.e.
sN (x) → f(x).
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Proof: According to the lemma, it suffices to prove that

lim
N→∞

1
4π

∫ δ

−δ
(f(x + u) + f(x− u)− 2f(x))DN (u) du = 0

Given an ε > 0, we have to show that if N ∈ N is large enough, then

1
4π

∫ δ

−δ
(f(x + u) + f(x− u)− 2f(x))DN (u) du < ε

Since the integral in the theorem converges, there is an η > 0 such that∫ η

−η

∣∣∣∣f(x + u) + f(x− u)− 2f(x)
u

∣∣∣∣ du < ε

Since | sin v| ≥ 2|v|
π for v ∈ [−π

2 , π
2 ] (make a drawing), we have |DN (u)| =

| sin((N+ 1
2
)u)

sin u
2

| ≤ π
|u| for u ∈ [−π, π]. Hence

| 1
4π

∫ η

−η
(f(x + u) + f(x− u)− 2f(x))DN (u) du| ≤

≤ 1
4π

∫ η

−η
|f(x + u) + f(x− u)− 2f(x)| π

|u|
du <

ε

4

By Corollary 4.11.3 we can get

1
4π

∫ δ

η
(f(x + u) + f(x− u)− 2f(x))DN (u) du

as small as we want by choosing N large enough and similarly for the integral
from −δ to −η. In particular, we can get

1
4π

∫ δ

−δ
(f(x + u) + f(x− u)− 2f(x))DN (u) du =

=
1
4π

∫ −η

−δ
(f(x + u) + f(x− u)− 2f(x))DN (u) du+

+
1
4π

∫ η

−η
(f(x + u) + f(x− u)− 2f(x))DN (u) du+

+
1
4π

∫ δ

η
(f(x + u) + f(x− u)− 2f(x))DN (u) du

less than ε, and hence the theorem is proved. 2

Dini’s test have some immediate consequences that we leave to the reader
to prove.
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Corollary 4.12.3 If f ∈ D is differentiable at a point x, then the Fourier
series converges to f(x) at this point.

We may even extend this result to one-sided derivatives:

Corollary 4.12.4 Assume f ∈ D and that the limits

lim
u↓0

f(x + u)− f(x+)
u

and

lim
u↑0

f(x + u)− f(x−)
u

exist at a point x. Then the Fourier series sN (x) converges to f(x) at this
point.

Exercises to Section 4.12

1. Show that the Fourier series
∑∞

n=1
2(−1)n+1

n sin(nx) in Example 4.7.1 con-
verges to f(x) = x for x ∈ (−π, π). What happens in the endpoints?

2. Prove Corollary 4.12.3

3. Prove Corollary 4.12.4

4.13 Termwise operations

In Section 4.3 we saw that power series can be integrated and differentiated
term by term, and we now want to take a quick look at the corresponding
questions for Fourier series. Let us begin by integration which is by far the
easiest operation to deal with.

The first thing we should observe, is that when we integrate a Fourier
series

∑∞
−∞ αneinx term by term, we do not get a new Fourier series since

the constant term α0 integrates to α0x, which is not a term in a Fourier
series when α0 6= 0. However, we may, of course, still integrate term by
term to get the series

α0x +
∑

n∈Z,n6=0

(
− iαn

n

)
einx

The question is if this series converges to the integral of f .

Proposition 4.13.1 Let f ∈ D, and define g(x) =
∫ x
0 f(t) dt. If sn is the

partial sums of the Fourier series of f , then the functions tn(x) =
∫ x
0 sn(t) dt

converge uniformly to g on [−π, π]. Hence

g(x) =
∫ x

0
f(t) dt = α0x +

∑
n∈Z,n6=0

− iαn

n

(
einx − 1

)
where the convergence of the series is uniform.
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Proof: By Cauchy-Schwarz’s inequality we have

|g(x)− tn(x)| = |
∫ π

0
(f(t)− sn(t)) dt| ≤

∫ π

−π
|f(t)− sn(t)| dt ≤

≤ 2π

(
1
2π

∫ π

−π
|f(s)− sn(s)| · 1 ds

)
= 2π〈|f − sn|, 1〉 ≤

≤ 2π||f − sn||2||1||2 = 2π||f − sn||2
By Theorem 4.8.6, we see that ||f − sn||2 → 0, and hence tn converges uni-
formly to g(x). 2

If we move the term α0x to the other side in the formula above, we get

g(x)− α0x =
∑

n∈Z,n6=0

iαn

n
−

∑
n∈Z,n6=0

iαn

n
einx

where the series on the right is the Fourier series of g(x) − α0x (the first
sum is just the constant term of the series).

As always, termwise differentiation is a much trickier subject. In Exam-
ple 1 of Section 4.7, we showed that the Fourier series of x is

∞∑
n=1

2(−1)n+1

n
sin(nx),

and by what we now know, it is clear that the series converges pointwise to x
on (−π, π). However, if we differentiate term by term, we get the hopelessly
divergent series

∞∑
n=1

2(−1)n+1 cos(nx)

Fortunately, there is more hope when f ∈ Cp, i.e. when f is continuous
and f(−π) = f(π):

Proposition 4.13.2 Assume that f ∈ CP and that f ′ is continuous on
[−π, π]. If

∑∞
n=0 αneinx is the Fourier series of f , then the differentiated

series
∑∞

n=0 inαneinx is the Fourier series of f ′, and it converges pointwise
to f ′ at any point x where f ′′(x) exists.

Proof: Let βn be the Fourier coefficient of f ′. By integration by parts

βn =
1
2π

∫ π

−π
f ′(t)e−int dt =

1
2π

[
f(t)e−int

]π
−π
− 1

2π

∫ π

−π
f(t)(−ine−int) dt =

= 0 + in
1
2π

∫ π

−π
f(t)e−int dt = inαn
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which shows that
∑∞

n=0 inαneinx is the Fourier series of f ′. The convergence
follows from Corollary 4.12.3. 2

Final remark: In this chapter we have developed Fourier analysis over the
interval [−π, π]. If we want to study Fourier series over another interval
[a − r, a + r], all we have to do is to move and rescale the functions: The
basis now consists of the functions

en(x) = e
inπ

r
(x−a),

the inner product is defined by

〈f, g〉 =
1
2r

∫ a+r

a−r
f(x)g(x) dx

and the Fourier series becomes

∞∑
n=−∞

αne
inπ

r
(x−a)

Note that when the length r of the interval increases, the frequencies inπ
r of

the basis functions e
inπ

r
(x−a) get closer and closer. In the limit, one might

imagine that the sum
∑∞

n=−∞ αne
inπ

r
(x−a) turns into an integral (think of

the case a = 0): ∫ ∞

−∞
α(t)eixt dt

This leads to the theory of Fourier integrals and Fourier transforms, but we
shall not look into these topics here.

Exercises for Section 4.13

1. Use integration by parts to check that
∑

n∈Z,n 6=0
iαn

n −
∑

n∈Z,n 6=0
iαn

n einx is
the Fourier series of g(x)−α0x (see the passage after the proof of Proposition
4.13.1).

2. Show that
∑n

k=1 cos((2k − 1)x) = sin 2nx
2 sin x .

3. In this problem we shall study a feature of Fourier series known as Gibbs’
phenomenon. Let f : [−π, π] → R be given by

f(x) =


−1 for x < 0

0 for x = 0

1 for x > 1

The figure shows the partial sums sn(x) of order n = 5, 11, 17, 23.
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We see that although the approximation in general seems to get better and
better, the maximal distance between f and sn remains more or less constant
— it seems that the partial sums have “bumps” of more or less constant
height near the jump in function values. We shall take a closer look at this
phenomenon. Along the way you will need the solution of problem 3.

a) Show that the partial sums can be expressed as

s2n−1(x) =
4
π

n∑
k=1

sin((2k − 1)x)
2k − 1

b) Use problem 2 to find a short expression for s′2n−1(x).

c) Show that the local minimum and maxima of s2n−1 closest to 0 are
x− = − π

2n and x+ = π
2n .

d) Show that

s2n−1(±
π

2n
) = ± 4

π

n∑
k=1

sin (2k−1)π
2n

2k − 1

e) Show that s2n−1(± π
2n ) → ± 2

π

∫ π

0
sin x

x dx by recognizing the sum above
as a Riemann sum.

f) Use a calculator or a computer or whatever you want to show that
2
π

∫ π

0
sin x

x dx ≈ 1.18

These calculations show that the size of the “bumps” is 9% of the size of the
jump in the function value. Gibbs showed that this number holds in general
for functions in D.
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Chapter 5

Lebesgue measure and
integration

If you look back at what you have learned in your earlier mathematics
courses, you will definitely recall a lot about area and volume — from the
simple formulas for the areas of rectangles and triangles that you learned in
grade school, to the quite sophisticated calculations with double and triple
integrals that you had to perform in calculus class. What you have probably
never seen, is a systematic theory for area and volume that unifies all the
different methods and techniques.

In this chapter we shall first study such a unified theory for d-dimensional
volume based on the notion of a measure, and then we shall use this theory
to build a stronger and more flexible theory for integration. You may think
of this as a reversal of previous strategies; instead of basing the calculation
of volumes on integration, we shall create a theory of integration based on
a more fundamental notion of volume.

The theory will cover volume in Rd for all d ∈ N, including d = 1 and
d = 2. To get a unified terminology, we shall think of the length of a set in R
and the area of a set in R2 as one- and two-dimensional volume, respectively.

To get a feeling for what we are aiming for, let us assume that we want
to measure the volume of subsets A ⊂ R3, and that we denote the volume
of A by µ(A). What properties would we expext µ to have?

(i) µ(A) should be a nonnegative number or ∞. There are subsets of R3

that have an infinite volume in an intuitive sense, and we capture this
intuition by the symbol ∞.

(ii) µ(∅) = 0. It will be convenient to assign a volume to the empty set,
and the only reasonable alternative is 0.

(iii) If A1, A2, . . . , An, . . . are disjoint (i.e. non-overlapping) sets, then
µ(
⋃∞

n=1 An) =
∑∞

n=1 µ(An). This means that the volume of the whole
is equal to the sum of the volumes of the parts.

143
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(iv) If A = (a1, a2) × (b1, b2) × (c1, c2) is a rectangular box, then µ(A) is
equal to the volume of A in the traditional sence, i.e.

µ(A) = (a2 − a1)(b2 − b1)(c2 − c1)

It turns out that it is impossible to measure the size of all subsets of A
such that all these requirements are satisfied; there are sets that are simply
too irregular to be measured in a good way. For this reason we shall restrict
ourselves to a class of measurable sets which behave the way we want. The
hardest part of the theory will be to decide which sets are measurable.

We shall use a two step procedure to construct our measure µ: First we
shall construct an outer measure µ∗ which will assign a size µ∗(A) to all
subsets A ∈ R3, but which will not satisfy all the conditions (i)-(iv) above.
Then we shall use µ∗ to single out the class of measurable sets, and prove
that if we restrict µ∗ to this class, our four conditions are satisfied.

5.1 Outer measure in Rd

The first step in our construction is to define outer measure in Rd. The
outer measure is built from rectangular boxes, and we begin by intoducing
the appropriate notation and teminology.

Definition 5.1.1 A subset A of Rd is called an open box if there are num-
bers a

(1)
1 < a

(1)
2 , a

(2)
1 < a

(2)
2 , . . . , a

(d)
1 < a

(d)
2 such that

A = (a(1)
1 , a

(1)
2 )× (a(2)

1 , a
(2)
2 )× . . .× (a(d)

1 , a
(d)
2 )

In addition, we count the empty set as a rectangular box. We define the
volume |A| of A to be 0 if A is the empty set, and otherwise

|A| = (a(1)
2 − a

(1)
1 )(a(2)

2 − a
(2)
1 ) · . . . · (a(d)

2 − a
(d)
1 )

Observe that when d = 1, 2 and 3, |A| denotes the length, area and
volume of A in the usual sense.

If A = {A1, A2, . . . , An, . . .} is a countable collection of open boxes, we
define its size |A| by

|A| =
∞∑

k=1

|Ak|

(we may clearly have |A| = ∞). Note that we can think of a finite collection
A = {A1, A2, . . . , An} of open boxes as a countable one by putting in the
empty set in the missing positions: A = {A1, A2, . . . , An, ∅, ∅, . . .}. This is
the main reason for including the empty set among the open boxes. Note
also that since the boxes A1, A2, . . . may overlap, the size |A| need not be
closely connected to the volume of

⋃∞
n=1 An.
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A covering of a set B ⊂ Rd is a countable collection

A = {A1, A2, . . . , An, . . .}

of open boxes such that B ⊂
⋃∞

n=1 An. We are now ready to define outer
measure.

Definition 5.1.2 The outer measure of a set B ∈ Rd is defined by

µ∗(B) = inf{|A| : A is a covering of B by open boxes}

The idea behind outer measure should be clear – we measure the size
of B by approximating it as economically as possible from the outside by
unions of open boxes. You may wonder why we use open boxes and not
closed boxes

A = [a(1)
1 , a

(1)
2 ]× [a(2)

1 , a
(2)
2 ]× . . .× [a(d)

1 , a
(d)
2 ]

in the definition above. The answer is that it does not really matter, but that
open boxes are a little more convenient in some arguments. The following
lemma tells us that closed boxes would have given us exactly the same result.
You may want to skip the proof at the first reading.

Lemma 5.1.3 For all B ⊂ Rd,

µ∗(B) = inf{|A| : A is a covering of B by closed boxes}

Proof: We must prove that

inf{|A| : A is a covering of B by open boxes} =

= inf{|A| : A is a covering of B by closed boxes}

Observe first that if A0 = {A1, A2, . . .} is a covering of B by open boxes, we
can get a covering A = {A1, A2, . . .} of B by closed boxes just by closing
each box. Since the two coverings have the same size, this means that

µ∗(B) = inf{|A| : A is a covering of B by open boxes} ≥

≥ inf{|A| : A is a covering of B by closed boxes}

To prove the opposite inequality, assume that ε > 0 is given. If A =
{A1, A2, . . .} is a covering of B by closed boxes, we can for each n find
an open box Ãn containing An such that |Ãn| < |An|+ ε

2n . Then Ã = {Ãn}
is a covering of B by open boxes, and |Ã| < |A|+ ε. Since ε > 0 is arbitrary,
this shows that to any closed covering, there is an open covering arbitrarily
close in size, and hence

inf{|A| : A is a covering of B by open boxes} ≤
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≤ inf{|A| : A is a covering of B by closed boxes}

2

Here are some properties of the outer measure:

Proposition 5.1.4 The outer measure µ∗ on Rd satisfies:

(i) µ∗(∅) = 0.

(ii) (Monotonicity) If B ⊂ C, then µ∗(B) ≤ µ∗(C).

(iii) (Subadditivity) If {Bn}n∈N is a sequence of subsets of Rd, then

µ∗(
∞⋃

n=1

Bn) ≤
∞∑

n=1

µ∗(Bn)

(iv) For all closed boxes

B = [b(1)
1 , b

(1)
2 ]× [b(2)

1 , b
(2)
2 ]× . . .× [b(d)

1 , b
(d)
2 ]

we have

µ∗(B) = |B| = (b(1)
2 − b

(1)
1 )(b(2)

2 − b
(2)
1 ) · . . . · (b(d)

2 − b
(d)
1 )

Proof: (i) Since A = {∅, ∅, ∅, . . .} is a covering of ∅, µ∗(∅) = 0.

(ii) Since any covering of C is a covering of B, we have µ∗(B) ≤ µ∗(C).

(iii) If µ∗(Bn) = ∞ for some n ∈ N, there is nothing to prove, and we
may hence assume that µ∗(Bn) < ∞ for all n. Let ε > 0 be given. For each
n ∈ N, we can find a covering A

(n)
1 , A

(n)
2 , . . . of Bn such that

∞∑
k=1

|A(n)
k | < µ∗(Bn) +

ε

2n

The collection {A(n)
k }k,n∈N of all sets in all coverings is a countable covering

of
⋃∞

n=1 Bn, and

∑
k,n∈N

|A(n)
k | =

∞∑
n=1

( ∞∑
k=1

|A(n)
k |

)
≤

∞∑
n=1

(
µ∗(Bn) +

ε

2n

)
=

∞∑
n=1

µ∗(Bn) + ε

(if you are unsure about these manipulation, take a look at exercise 5). This
means that

µ∗(
∞⋃

n=1

Bn) ≤
∞∑

n=1

µ∗(Bn) + ε



5.1. OUTER MEASURE IN RD 147

and since ε is an arbitrary, positive number, we must have

µ∗(
∞⋃

n=1

Bn) ≤
∞∑

n=1

µ∗(Bn)

(iv) Since we can cover B by Bε = {Bε, ∅, ∅, . . .}, where

B = (b(1)
2 + ε, b

(1)
1 − ε)× (b(2)

2 + ε, b
(2)
1 − ε)× . . .× (b(d)

2 + ε, b
(d)
1 − ε),

for any ε > 0, we se that

µ∗(B) ≤ |B| = (b(1)
2 − b

(1)
1 )(b(2)

2 − b
(2)
1 ) · . . . · (b(d)

2 − b
(d)
1 )

The opposite inequality,

µ∗(B) ≥ |B| = (b(1)
2 − b

(1)
1 )(b(2)

2 − b
(2)
1 ) · . . . · (b(d)

2 − b
(d)
1 )

may seem obvious, but is actually quite tricky to prove. We shall need a
few lemmas to establish this and finish the proof. 2

I shall carry out the remaining part of the proof of Proposition 5.1.4(iv)
in the three dimensional case. The proof is exactly the same in the d-
dimensional case, but the notation becomes so messy that it tends to blur
the underlying ideas. Let us begin with a lemma.

Lemma 5.1.5 Assume that the intervals (a0, aK), (b0, bN ), (c0, cM ) are
partioned

a0 < a1 < a2 < . . . < aK

b0 < b1 < b2 < . . . < bN

c0 < c1 < c2 < . . . < cM

and let ∆ak = ak+1 − ak, ∆bn = an+1 − nn, ∆cm = cm+1 − cm. Then

(aK − a0)(bN − b0)(cm − c0) =
∑

k,n,m

∆ak∆bn∆cm

where the sum is over all triples (k, n,m) such that 0 ≤ k < K, 0 ≤ n < N ,
0 ≤ m < M . In other words, if we partition the box

A = (a0, aK)× (b0, bN )× (c0, cM )

into KNM smaller boxes B1, B2, . . . , BKNM , then

|A| =
KNM∑
j=1

|Bj |
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Proof: If you think geometrically, the lemma seems obvious — it just says
that if you divide a big box into smaller boxes, the volume of the big box
is equal to the sum of the volumes of the smaller boxes. An algebraic
proof is not much harder and has the advantage of working also in higher
dimensions: Note that since aK − a0 =

∑K−1
k=0 ∆ak, bN − b0 =

∑N−1
n=0 ∆bn,

cM − c0 =
∑M−1

m=0 ∆cm, we have

(aK − a0)(bN − b0)(cm − c0) =

=

(
K−1∑
k=0

∆ak

)(
N−1∑
n=0

∆bn

)(
M−1∑
m=0

∆cm

)
=

=
∑

k,n,m

∆ak∆bn∆cm

2

The next lemma reduces the problem from countable coverings to finite
ones. It is the main reason why we have chosen to work with open coverings
(If you have read section 2.6, you will see that this result is an immediate
consequence of Theorem 2.6.6).

Lemma 5.1.6 Assume that A = {A1, A2, . . . , An, . . .} is a countable cover-
ing of a compact set K by open boxes. Then K is covered by a finite number
A1, A2, . . . , An of elements in A.

Proof: Assume not, then we can for each n ∈ N find an element xn ∈ K
which does not belong to

⋃n
k=1 Ak. Since K is compact, there is a subse-

quence {xnk
} converging to an element x ∈ K. Since A is a covering of K,

x must belong to an Ai. Since Ai is open, xnk
∈ Ai for all sufficently large

k. But this is impossible since xnk
/∈ Ai when nk ≥ i. 2

We are now ready to prove the missing inequality in Proposition 5.1.4(iv).

Lemma 5.1.7 For all closed boxes

B = [a1, a2]× [b1, b2]× [c1, c2]

we have
µ∗(B) ≥ |B| = (a2 − a1)(b2 − b1)(c2 − c1)

Proof: By the lemma above, it suffices to show that if A1, A2, . . . , An is a
finite covering of B, then

|B| ≤ |A1|+ |A2] + . . . + |An|
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Let
Ai = (x(i)

1 , x
(i)
2 )× (y(i)

1 , y
(i)
2 )× (z(i)

1 , z
(i)
2 )

We collect all x-coordinates x
(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 , . . . , x

(n)
1 , x

(n)
2 and rearrange

them according to size:

x0 < x1 < x2 < . . . < xI

Doing the same with the y- and the z-coodinates, we get partitions

y0 < y1 < y2 < . . . < yJ

z0 < z1 < z2 < . . . < zK

Let B1, B2, . . . , BP be all boxes of the form (xi, xi+1)×(yj , yj+1)×(zk, zk+1)
that is contained in at least one of the sets A1, A2, . . . , An. Each Ai, 1 ≤
i ≤ n is made up of a finite number of Bj ’s, and each Bj belongs to at least
one of the Ai’s. According to Lemma 5.1.5,

|Ai| = |Bji1
|+ |Bji2

|+ . . . + |Bjiq
|

where Bji1
, Bji2

, . . . , Bjiq
are the small boxes making up Ai. If we sum over

all i, we get
n∑

i=1

|Ai| >
P∑

j=1

|Bj |

(we get an inequality since some of the Bj ’s belong to more than one Ai,
and hence are counted twice or more on the left hand side).

On the other hand, the Bj ’s almost form a partition of the original box
B, the only problem being that some of the Bj ’s stick partly outside B. If
we shrink these Bj ’s so that they just fit inside B, we get a partition of B
into even smaller boxes C1, C2, . . . , CQ (some boxes may disappear when we
shrink them). Using Lemma 5.1.5 again, we see that

|B| =
Q∑

k=1

|Ck| <
P∑

j=1

|Bj |

Combining the results we now have, we see that

|B| <
P∑

j=1

|Bj | <
n∑

i=1

|Ai|

and the lemma is proved. 2

We have now finally established all parts of Proposition 5.1.4. and are
ready to move on. The problem with the outer measure µ∗ is that it fails
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to be countably additive: If {An} is a disjoint sequence of sets, we can only
guarantee that

µ∗(
∞⋃

n=1

An) ≤
∞∑

n=1

µ∗(An)

not that

µ∗(
∞⋃

n=1

An) =
∞∑

n=1

µ∗(An) (5.1.1)

As it is impossible to change µ∗ such that (5.1.1) holds for all disjoint se-
quences {An} of subsets of Rd, we shall follow a different strategy: We shall
show that there is a large class M of subsets of Rd such that (5.1.1) holds
for all disjoint sequences where An ∈ M for all n ∈ N. The sets in M will
be called measurable sets.

Exercises for Section 5.1

1. Show that all countable sets have outer measure zero.

2. Show that the x-axis has outer measure 0 in R2.

3. If A is a subset of Rd and b ∈ Rd, we define

A + b = {a + b | a ∈ A}

Show that µ∗(A + b) = µ∗(A).

4. If A is a subset of Rd, define 2A = {2a | a ∈ A}. Show that µ∗(2A) =
2dµ∗(A).

5. Let {an,k}n,k∈N be a collection of nonnegative, real numbers, and let a be
the supremum over all finite sums of distinct elements in this collection, i.e.

A = sup{
I∑

i=1

ani,ki
: I ∈ N and all pairs (n1, k1), . . . , (nI , kI) are different}

a) Assume that {bm}m∈N is a sequence which contains each element in the
set {an,k}n,k∈N exactly ones. Show that

∑∞
m=1 bm = a.

b) Show that
∑∞

n=1 (
∑∞

k=1 an,k) = a.
c) Comment on the proof of Proposition 5.1.4(iii).

5.2 Measurable sets

We shall now begin our study of measurable sets — the sets that can be
assigned a “volume” in a coherent way. The definition is rather mysterious:

Definition 5.2.1 A subset E of Rd is called measurable if

µ∗(A ∩ E) + µ∗(A ∩ Ec) = µ∗(A)

for all A ⊂ Rd. The collection of all measurable sets is denoted by M.
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Although the definition above is easy to grasp, it is not easy too see
why it captures the essence of the sets that are possible to measure. The
best I can say is that the reason why some sets are impossible to measure,
is that they have very irregular boundaries. The definition above says that
a set is measurable if we can use it to split any other set in two without
introducing any further irregularities, i.e. all parts of its boundary must
be reasonably regular. Admittedly, this explanation is vague and not very
helpful in understanding why the definition captures exactly the right no-
tion of measurability. The best argument may simply be to show that the
definition works, so let us get started.

Let us first of all make a very simple observation. Since A = (A ∩ E) ∪
(A∩Ec), subadditivity (recall Proposition 5.1.4(iii)) tells us that we always
have

µ∗(A ∩ E) + µ∗(A ∩ Ec) ≥ µ∗(A)

Hence to prove that a set is measurable, we only need to prove that

µ∗(A ∩ E) + µ∗(A ∩ Ec) ≤ µ∗(A)

Our first observation on measurable sets is simple.

Lemma 5.2.2 If E has outer measure 0, then E is measurable. In partic-
ular, ∅ ∈ M.

Bevis: If E has measure 0, so has A ∩ E since A ∩ E ⊂ E. Hence

µ∗(A ∩ E) + µ∗(A ∩ Ec) = µ∗(A ∩ Ec) ≤ µ∗(A)

for all A ⊂ Rd. 2

Next we have:

Proposition 5.2.3 M is an algebra of sets, i.e.:

(i) ∅ ∈ M.

(ii) If E ∈M, then Ec ∈M.

(iii) If E1, E2, . . . , En ∈M, then E1 ∪ E2 ∪ . . . ∪ En ∈M.

(iv) If E1, E2, . . . , En ∈M, then E1 ∩ E2 ∩ . . . ∩ En ∈M.

Proof: We have already proved (i), and (ii) is obvious from the definition of
measurable sets. Since E1 ∪ E2 ∪ . . . ∪ En = (Ec

1 ∩ Ec
2 ∩ . . . ∩ Ec

n)c by De
Morgans laws, (iii) follows from (ii) and (iv). Hence it remains to prove (iv).
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To prove (iv) is suffices to prove that if E1, E2 ∈M, then E1 ∩E2 ∈M
as we can then add more sets by induction. If we first use the measurability
of E1, we see that for any set A ⊂ Rd

µ∗(A) = µ∗(A ∩ E1) + µ∗(A ∩ Ec
1)

Using the measurability of E2, we get

µ∗(A ∩ E1) = µ∗((A ∩ E1) ∩ E2) + µ∗((A ∩ E1) ∩ Ec
2)

Combining these two expressions, we have

µ∗(A) = µ∗((A ∩ (E1 ∩ E2)) + µ∗((A ∩ E1) ∩ Ec
2) + µ∗(A ∩ Ec

1)

Observe that (draw a picture!)

(A ∩ E1 ∩ Ec
2) ∪ (A ∩ Ec

1) = A ∩ (E1 ∩ E2)c

and hence

µ∗(A ∩ E1 ∩ Ec
2) + µ∗(A ∩ Ec

1) ≥ µ∗(A ∩ (E1 ∩ E2)c)

Putting this into the expression for µ∗(A) above, we get

µ∗(A) ≥ µ∗((A ∩ (E1 ∩ E2)) + µ∗(A ∩ (E1 ∩ E2)c)

which means that E1 ∩ E2 ∈M. 2

We would like to extend parts (iii) and (iv) in the proposition above to
countable unions and intersection. For this we need the following lemma:

Lemma 5.2.4 If E1, E2, . . . , En is a disjoint collection of measurable sets,
then

µ∗(A∩ (E1 ∪E2 ∪ . . .∪En)) = µ∗(A∩E1) + µ∗(A∩E2) + . . . + µ∗(A∩En)

Proof: It suffices to prove the lemma for two sets E1 and E2 as we can then
extend it by induction. Using the measurability of E1, we see that

µ∗(A ∩ (E1 ∪E2)) = µ∗((A ∩ (E1 ∪E2)) ∩E1) + µ∗(A ∩ (E1 ∪E2)) ∩Ec
1) =

= µ∗(A ∩ E1) + µ∗(A ∩ E2)

2

We can now prove that M is closed under countable unions.

Lemma 5.2.5 If An ∈M for each n ∈ N, then
⋃

n∈N An ∈M.
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Proof: Note that since M is an algebra,

En = An ∩ (E1 ∪ E2 ∪ . . . En−1)c

belongs to M for n > 1 (for n = 1, we just let E1 = A1). The new sequence
{En} is disjoint and have the same union as {An} (make a drawing!), and
hence it suffices to prove that

⋃
n∈N En ∈M, i.e.

µ∗(A) ≥ µ∗
(
A ∩

∞⋃
n=1

En

)
+ µ∗

(
A ∩

( ∞⋃
n=1

En

)c)
Since

⋃N
n=1 En ∈M for all N ∈ N, we have:

µ∗(A) = µ∗
(
A ∩

N⋃
n=1

En

)
+ µ∗

(
A ∩

( N⋃
n=1

En

)c) ≥
≥

N∑
n=1

µ∗(A ∩ En) + µ∗
(
A ∩

( ∞⋃
n=1

En

)c)
where we in the last step have used the lemma above plus the observation
that

(⋃∞
n=1 En

)c ⊂ (⋃N
n=1 En

)c. Since this inequality holds for all N ∈ N,
we get

µ∗(A) ≥
∞∑

n=1

µ∗(A ∩ En) + µ∗
(
A ∩

( ∞⋃
n=1

En

)c)
By sublinearity, we have

∑∞
n=1 µ∗(A ∩ En) ≥ µ∗(

⋃∞
n=1(A ∩ En)) = µ∗(A ∩⋃∞

n=1(En)), and hence

µ∗(A) ≥ µ∗
(
A ∩

∞⋃
n=1

En

)
+ µ∗

(
A ∩

( ∞⋃
n=1

En

)c)
2

Let us sum up our results so far.

Theorem 5.2.6 The measurable sets M form a σ-algebra, i.e.:

(i) ∅ ∈ M

(ii) If E ∈M, then Ec ∈M.

(iii) If En ∈M for all n ∈ N, then
⋃∞

n=1 En ∈M.

(iv) If En ∈M for all n ∈ N, then
⋂∞

n=1 En ∈M.
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Proof: We have proved everything except (iv), which follows from (ii) and
(iii) since

⋂∞
n=1 En =

(⋃∞
n=1 Ec

n

)c. 2

Remark: By definition, a σ-algebra is a collection of subsets satisfying (i)-
(iii), but — as we have seen — point (iv) follows from the others.

There is one more thing we have to check: that M contains sufficiently
many sets. So far we only know that M contains the sets of outer measure
0 and their complements!

In the first proof it is convenient to use closed coverings as in Lemma
5.1.3 to determine the outer measure.

Lemma 5.2.7 For each i and each a ∈ R, the open halfspaces

H = {(x1, . . . , xi, . . . , xd) ∈ Rd : xi < a}

and
K = {(x1, . . . , xi, . . . , xd) ∈ Rd : xi > a}

are measurable.

Proof: We only prove the H-part. We have to check that for any B ⊂ Rd,

µ∗(B) ≥ µ∗(B ∩H) + µ∗(B ∩Hc)

Given a covering A = {Ai} of B by closed boxes, we can create closed
coverings A(1) = {A(1)

i } and A(1) = {A(2)
i } of B∩H and B∩Hc, respectively,

by putting
A

(1)
i = {(x1, . . . , xi, . . . , xd) ∈ Ai : xi ≤ a}

A
(2)
i = {(x1, . . . , xi, . . . , xd) ∈ Ai : xi ≥ a}

Hence
|A| = |A(1)|+ |A(2)| ≥ µ∗(B ∩H) + µ∗(B ∩Hc)

and since this holds for all closed coverings A of B, we get

µ∗(B) ≥ µ∗(B ∩H) + µ∗(B ∩Hc)

2

The next step is now easy:

Lemma 5.2.8 All open boxes are measurable.

Proof: An open box is a finite intersection of open halfspaces. 2

The next result tells us that there are many measurable sets:
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Theorem 5.2.9 All open sets in Rd are countable unions of open boxes.
Hence all open and closed sets are measurable.

Proof: Note first that the measurability of closed sets follows from the mea-
surability of open sets since a closed set is the complement of an open set.
To prove the theorem for open sets, let us first agree to call an open box

A = (a(1)
1 , a

(1)
2 )× (a(2)

1 , a
(2)
2 )× . . .× (a(d)

1 , a
(d)
2 )

rational if all the coordinates a
(1)
1 , a

(1)
2 , a

(2)
1 , a

(2)
2 , . . . , a

(d)
1 , a

(d)
2 are rational.

There are only countably many rationals boxes, and hence we only need to
prove that if G is an open set, then

G =
⋃
{B : B is a rational box contained in G}

We leave the details to the reader. 2

Exercises for Section 5.2

1. Show that if A,B ∈M, then A \B ∈M.

2. Explain in detail why 5.2.3(iii) follows from (ii) and (iv).

3. Carry out the induction step in the proof of Proposition 5.2.3(iv).

4. Explain the equality (A∩E1 ∩Ec
2)∪ (A∩Ec

1) = A∩ (E1 ∩E2)c in the proof
of Lemma 5.2.3.

5. Carry out the induction step in the proof of Lemma 5.2.4.

6. Explain in detail why (iv) follows from (ii) and (iii) in Theorem 5.2.6.

7. Show that all closed halfspaces

H = {(x1, . . . , xi, . . . , xd) ∈ Rd : xi ≤ a}

and
K = {(x1, . . . , xi, . . . , xd) ∈ Rd : xi ≥ a}

are measurable

8. Recall that if A is a subset of Rd and b ∈ Rd, then

A + b = {a + b | a ∈ A}

Show that A + b is measurable if and only if A is.

9. If A is a subset of Rd, define 2A = {2a | a ∈ A}. Show that 2A is measurable
if and only if A is.

10. Fill in the details in the proof of Lemma 5.2.8.

11. Complete the proof of Theorem 5.2.9.
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5.3 Lebesgue measure

Having constructed the outer measure µ∗ and explored its basic properties,
we are now ready to define the measure µ.

Definition 5.3.1 The Lebesgue measure µ is the restriction of the outer
measure µ∗ to the measurable sets, i.e. it is the function

µ : M→ [0,∞]

defined by
µ(A) = µ∗(A)

for all A ∈M.

Remark: Since µ and µ∗ are essentially the same function, you may wonder
why we have introduced a new symbol for the Lebesgue measure. The an-
swer is that although it is not going to make much of a difference for us here,
it is convenient to distinguish between the two in more theoretical studies
of measurability. All you have to remember for this text, is that µ(A) and
µ∗(A) are defined and equal as long as A is measurable.

We can now prove that µ has the properties we asked for at the beginning
of the chapter:

Theorem 5.3.2 The Lebesgue measure µ : M → [0,∞] has the following
properties:

(i) µ(∅) = 0.

(ii) (Completeness) Assume that A ∈ M, and that µ(A) = 0. Then all
subset B ⊂ A are measurable, and µ(B) = 0.

(iv) (Countable subadditivity) If {An}n∈N is a sequence of measurable sets,
then

µ(
∞⋃

n=1

An) ≤
∞∑

n=1

µ(An)

(iv) (Countable additivity) If {En}n∈N is a disjoint sequence of measurable
sets, then

µ(
∞⋃

n=1

En) =
∞∑

n=1

µ(En)

(v) For all closed boxes

B = [b(1)
1 , b

(1)
2 ]× [b(2)

1 , b
(2)
2 ]× . . .× [b(d)

1 , b
(d)
2 ]

we have

µ(B) = |B| = (b(1)
2 − b

(1)
1 )(b(2)

2 − b
(2)
1 ) · . . . · (b(d)

2 − b
(d)
1 )
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Proof: (i) and (ii) follow from Lemma 5.2.2, and (iii) follows from part (iii) of
Proposisition 5.1.4 sinceM is a σ-algebra, and

⋃∞
n=1 An hence is measurable.

Since we know from Theorem 5.2.9 that closed boxes are measurable, part
(v) follows from Proposition 5.1.4(iv).

To prove (iv), we first observe that

µ(
∞⋃

n=1

En) ≤
∞∑

n=1

µ(En)

by (iii). To get the opposite inequality, we use Lemma 5.2.4 with A = Rd

to see that
N∑

n=1

µ(En) = µ(
N⋃

n=1

En) ≤ µ(
∞⋃

n=1

En)

Since this holds for all N ∈ N, we must have
∞∑

n=1

µ(En) ≤ µ(
∞⋃

n=1

En)

Hence we have both inequalities, and (iii) is proved. 2

In what follows, we shall often need the following simple lemma:

Lemma 5.3.3 If C,D are measurable sets such that C ⊂ D and µ(D) < ∞,
then

µ(D \ C) = µ(D)− µ(C)

Proof: By additivity
µ(D) = µ(C) + µ(D \ C)

Since µ(D) is finite, so is µ(C), and it makes sense to subtract µ(C) on both
sides to get

µ(D \ C) = µ(D)− µ(C)

2

The next properties are often referred to as continuity of measure:

Proposition 5.3.4 Let {An}n∈N be a sequence of measurable sets.

(i) If the sequence is increasing (i.e. An ⊂ An+1 for all n), then

µ(
∞⋃

n=1

An) = lim
n→∞

µ(An)

(ii) If the sequence is decreasing (i.e. An ⊃ An+1 for all n), and µ(A1) is
finite, then

µ(
∞⋂

n=1

An) = lim
n→∞

µ(An)
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Proof: (i) If we put E1 = A1 and En = An \ An−1 for n> 1, the sequence
{En} is disjoint, and

⋃n
k=1 Ek = An for all N (make a drawing). Hence

µ(
∞⋃

n=1

An) = µ(
∞⋃

n=1

En) =
∞∑

n=1

µ(En) =

= lim
n→∞

n∑
k=1

µ(Ek) = lim
n→∞

µ(
n⋃

k=1

Ek) = lim
n→∞

µ(An)

where we have used the additivity of µ twice.

(ii) We first observe that {A1 \An}n∈N is an increasing sequence of sets
with union A1 \

⋂∞
n=1 An. By part (ii), we thus have

µ(A1 \
∞⋂

n=1

An) = lim
n→∞

µ(A1 \An)

Applying Lemma 5.3.3 on both sides, we get

µ(A1)− µ(
∞⋂

n=1

An) = lim
n→∞

(µ(A1)− µ(An)) = µ(A1)− lim
n→∞

µ(An)

Since µ(A1) is finite, we get µ(
⋂∞

n=1 An) = limn→∞ µ(An), as we set out to
prove. 2

Remark: The finiteness condition in part (ii) may look like an unnecessary
consequence of a clumsy proof, but it is actually needed. To see why, let µ
be Lebesgue measure in R, and let An = [n,∞). Then µ(An) = ∞ for all n,
but µ(

⋂∞
n=1 An) = µ(∅) = 0. Hence limn→∞ µ(An) 6= µ(

⋂∞
n=1 An).

Example 1: We know already that closed boxes have the “right” measure
(Theorem 5.3.2 (iv)), but what about open boxes? If

B = (b(1)
1 , b

(1)
2 )× (b(2)

1 , b
(2)
2 )× . . .× (b(d)

1 , b
(d)
2 )

is an open box, let Bn be the closed box

Bn =
[
b
(1)
1 +

1
n

, b
(1)
2 − 1

n

]
×
[
b
(2)
1 +

1
n

, b
(2)
2 − 1

n

]
× . . .×

[
b
(d)
1 +

1
n

, b
(d)
2 − 1

n

]
obtained by moving all walls a distance 1

n inwards. By the proposition,

µ(B) = lim
n→∞

µ(Bn)

and since the closed boxes Bn have the “right” measure, it follows that so
does the open box B. ♣
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Example 2: Let
Kn = [−n, n]d

be the closed box centered at the origin and with edges of length 2n. For
any measurable set A, it follows from the proposition above that

µ(A) = lim
n→∞

µ(A ∩Kn)

♣

We shall need one more property of measurable sets. It tells us that
measurable sets can be approximated from the outside by open sets and
from the inside by closed sets.

Proposition 5.3.5 Assume that A ⊂ Rd is a measurable set. For each
ε > 0, there is an open set G ⊃ A such that µ(G \ A) < ε, and a closed set
F ⊂ A such that µ(A \ F ) < ε.

Proof: We begin with the open sets. Assume first A has finite measure.
Then there is a covering {Bn} of A by open rectangles such that

∞∑
n=1

|Bn| < µ(A) + ε

Since µ(
⋃∞

n=1 Bn) ≤
∑∞

n=1 µ(Bn) =
∑∞

n=1 |Bn|, we see that G =
⋃∞

n=1 Bn

is an open set such that A ⊂ G, and µ(G) < µ(A) + ε. Hence

µ(G \A) = µ(G)− µ(A) < ε

by Lemma 5.3.3.
If µ(A) is infinite, we first use the boxes Kn in Example 2 to slice A into

pieces of finite measure. More precisely, we let An = A ∩ (Kn \Kn−1), and
use what we have already proved to find an open set Gn such that An ⊂ Gn

and µ(Gn \An) < ε
2n . Then G =

⋃∞
n=1 Gn is an open set which contains A,

and since G \A ⊂
⋃∞

n=1(Gn \An), we get

µ(G \A) ≤
∞∑

n=1

µ(Gn \An) <

∞∑
n=1

ε

2n
= ε,

proving the statement about approximation by open sets.
To prove the statement about closed sets, just note that if we apply

the first part of the theorem to Ac, we get an open set G ⊃ Ac such that
µ(G \ Ac) < ε. This means that F = Gc is a closed set such that F ⊂ A,
and since A \ F = G \Ac, we have µ(A \ F ) < ε. 2

We have now established the basic properties of the Lebesgue measure.
For the remainder of the chapter, you may forget about the construction of
the measure and concentrate on the results of this section plus the properties
of measurable sets summed up in theorems 5.2.6 and 5.2.9 of the previous
section.
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Exercises for Section 5.3

1. Explain that A \ F = G \Ac and the end of the proof of Proposition 5.3.5.

2. Show that if E1, E2 are measurable, then

µ(E1) + µ(E2) = µ(E1 ∪ E2) + µ(E1 ∩ E2)

3. The symmetric differenceA4B of two sets A, B is defined by

A4B = (A \B) ∪ (B \A)

A subset of Rd is called a Gδ-set if it is the intersection of countably many
open sets, and it is called a Fσ-set if it is union of countably many closed set.

a) Show that if A and B are measurable, then so is A4B.

b) Explain why all Gδ- and Fσ-sets are measurable.

c) Show that if A is measurable, there is a Gδ-set G such that µ(A4G) = 0.

d) Show that if A is measurable, there is a Fσ-set F such that µ(A4F ) =
0.

4. Assume that A ∈ M has finite measure. Show that for every ε > 0, there is
a compact set K ⊂ A such that µ(A \K) < ε.

5. Assume that {An} is a countable sequence of measurable sets, and assume
that

∑∞
n=1 µ(An) < ∞. Show that the set

A = {x ∈ Rd |x belongs to infinitely many An}

has measure zero.

5.4 Measurable functions

Before we turn to integration, we need to look at the functions we hope to
integrate, the measurable functions. As functions taking the values ±∞ will
occur naturally as limits of sequences of ordinary functions, we choose to
include them from the beginning; hence we shall study functions

f : Rd → R

where R = R ∪ {−∞,∞} is the set of extended real numbers. Don’t spend
too much effort on trying to figure out what −∞ and ∞ “really” are — they
are just convenient symbols for describing divergence.

To some extent we may extend ordinary algebra to R, e.g., we shall let

∞+∞ = ∞, −∞−∞ = −∞

and
∞ ·∞ = ∞, (−∞) · ∞ = −∞, (−∞) · (−∞) = ∞.
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If r ∈ R, we similarly let

∞+ r = ∞, −∞+ r = −∞

For products, we have to take the sign of r into account, hence

∞ · r =


∞ if r > 0

−∞ if r < 0

and similarly for (−∞) · r.
All the rules above are natural and intuitive. Expressions that do not

have an intuitive interpretation, are usually left undefined, e.g. is ∞−∞
not defined. There is one exception to this rule; it turns out that in measure
theory (but not in other parts of mathematics!) it is convenient to define
0 · ∞ = ∞ · 0 = 0.

Since algebraic expressions with extended real numbers are not always
defined, we need to be careful and always check that our expressions make
sense.

We are now ready to define measurable functions:

Definition 5.4.1 A function f : Rd → R is measurable if

f−1([−∞, r)) ∈M

for all r ∈ R. In other words, the set

{x ∈ Rd : f(x) < r}

must be measurable for all r ∈ R.

The half-open intervals in the definition are just a convenient starting
point for showing that the inverse images of more complicated sets are mea-
surable:

Proposition 5.4.2 If f : Rd → R is measurable, then f−1(I) ∈ M for all
intervals I = (s, r), I = (s, r], I = [s, r), I = [s, r] where s, r ∈ R. Indeed,
f−1(A) ∈M for all open and closed sets A.

Proof: We use that inverse images commute with intersections, unions and
complements. First observe that for any r ∈ R

f−1
(
[−∞, r]

)
= f−1

( ⋂
n∈N

[−∞, r +
1
n

)
)

=
⋂
n∈N

f−1
(
[−∞, r +

1
n

)
)
∈M

which shows that the closed intervals [−∞, r] are measurable. Taking com-
plements, we see that the intervals [s,∞] and (s,∞] are measurable:

f−1([s,∞]) = f−1([−∞, s)c) =
(
f−1([−∞, s)

)
)c ∈M
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and
f−1((s,∞]) = f−1([−∞, s]c) =

(
f−1([−∞, s]

)
)c ∈M

To show that finite intervals are measurable, we just take intersections, e.g.,

f−1((s, r)) = f−1([−∞, r) ∩ (s,∞]) = f−1([−∞, r)) ∩ f−1((s,∞]) ∈M

If A is open, we know from Theorem 5.2.9 that it is a countable union
A =

⋃
n∈N In of open intervals. Hence

f−1(A) = f−1
( ⋃

n∈N
In

)
=
⋃
n∈N

f−1(In) ∈M

Finally, if A is closed, we use that its complement is open to get

f−1(A) =
(
f−1(Ac)

)c ∈M
2

It is sometimes convenient to use other kinds of intervals than those in
the definition to check that a function is measurable:

Proposition 5.4.3 Consider a function f : Rd → R. If either

(i) f−1([−∞, r]) ∈M for all r ∈ R, or

(ii) f−1([r,∞]) ∈M for all r ∈ R, or

(iii) f−1((r,∞]) ∈M for all r ∈ R,

then f is measurable.

Proof: In either case we just have to check that f−1([−∞, r)) ∈ M for all
r ∈ R. This can be done by the techniques in the previous proof. The details
are left to the reader. 2

The next result tells us that there are many measurable functions:

Proposition 5.4.4 All continuous functions f : Rd → R are measurable.

Proof: Since f is continuous and takes values in R,

f−1([−∞, r)) = f−1((−∞, r))

is an open set by Proposition 2.3.9 and thus measurable by Theorem 5.2.9. 2

We shall now prove a series of results showing how we can obtain new
measurable functions from old ones. These results are not very exciting, but
they are necessary for the rest of the theory. Note that the functions in the
next two propositions take values in R and not R.



5.4. MEASURABLE FUNCTIONS 163

Proposition 5.4.5 If f : Rd → R is measurable, then φ ◦ f is measurable
for all continuous functions φ : R → R. In particular, f2 is measurable.

Proof: We have to check that

(φ ◦ f)−1((−∞, r)) = f−1(φ−1((−∞, r)))

is measurable. Since φ is contiunuous, φ−1((−∞, r)) is open, and con-
sequently f−1(φ−1((−∞, r))) is measurable by Proposition 5.4.2. To see
that f2 is measurable, apply the first part of the theorem to the function
φ(x) = x2. 2

Proposition 5.4.6 If the functions f, g :→ R are measurable, so are f + g,
f − g, and fg.

Proof: To prove that f +g is measurable, observe first that f +g < r means
that f < r − g. Since the rational numbers are dense, it follows that there
is a rational number q such that f < q < r − g. Hence

(f + g)−1([−∞, r)) = {x ∈ Rd | (f + g) < r) =⋃
q∈Q

(
{x ∈ Rd | f(x) < q} ∩ {x ∈ Rd | g < r − q}

)
which is measurable since Q is countable and a countabe union of measurable
sets is measurable. A similar argument proves that f − g is measurable.

To prove that fg is measurable, note that by Proposition 5.4.5 and what
we have already proved, f2, g2, and (f + g)2 are measurable, and hence

fg =
1
2
(
(f + g)2 − f2 − g2

)
is measurable (check the details). 2

We would often like to apply the result above to functions that take
values in the extended real numbers, but the problem is that the expressions
need not make sense. As we shall mainly be interested in functions that are
finite except on a set of measure zero, there is a way out of the problem.
Let us start with the terminology.

Definition 5.4.7 We say that a measurable function f : Rd → R is finite
almost everywhere if the set {x ∈ Rd : f(x) = ±∞} has measure zero. We
say that two measurable functions f, g : Rd → R are equal almost everywhere
if the set {x ∈ Rd : f(x) 6= g(x)} has measure zero. We usually abbreviate
“almost everywhere” by “a.e.”.
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If the measurable functions f and g are finite a.e., we can modify them
to get measurable functions f ′ and g′ which take values in R and are equal
a.e. to f and g, respectively (see exercise 11). By the proposition above,
f ′ + g′, f ′ − g′ and f ′g′ are measurable, and for many purposes they are
good representatives for f + g, f − g and fg.

Let us finally see what happens to limits of sequences.

Proposition 5.4.8 If {fn} is a sequence of measurable functions, then
supn∈N fn(x), infn∈N fn(x), lim supn→∞ fn(x) and lim infn→∞ fn(x) are mea-
surable. If the sequence converges pointwise, then limn→∞ fn(x) is a mea-
surable function.

Proof: To see that f(x) = supn∈N fn(x) is measurable, we use Proposition
5.4.3(iii). For any r ∈ R

f−1((r,∞)) = {x ∈ Rd : sup
n∈N

fn(x) > r} =

=
⋃
n∈N

{x ∈ Rd : fn(x) > r} =
⋃
n∈N

f−1
n ((r,∞]) ∈M

and hence f is measurable by Propostion 5.4.3(iii). The argument for
infn∈N fn(x) is similar.

To show that lim supn→∞ fn(x) is measurable, first observe that the
functions

gk(x) = sup
n≥k

fn(x)

are measurable by what we have already shown. Since

lim sup
n→∞

fn(x) = inf
k∈N

gk(x)
)
,

the measurability of lim supn→∞ fn(x) follows. A similar argument holds for
lim infn→∞ fn(x). If the sequence converges pointwise, then limn→∞ fn(x) =
lim supn→∞ fn(x) and is hence measurable. 2

Let us sum up what we have done so far in this chapter. We have
constructed the Lebesgue measure µ which assigns a d-dimensional volume
to a large class of subset of Rd, and we have explored the basic properties of
a class of measurable functions which are closely connected to the Lebesgue
measure. In the following sections we shall combine the two to create a
theory of integration which is stronger and more flexible than the one you
are used to.
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Exercises for Section 5.4

1. Show that if f : Rd → R is measurable, the sets f−1({∞}) and f−1({−∞})
are measurable.

2. Complete the proof of Proposition 5.4.2 by showing that f−1 of the intervals
(−∞, r), (−∞, r], [r,∞), (r,∞), (−∞,∞), where r ∈ R, are measurable.

3. Prove Proposition 5.4.3.

5. Show that if f1, f2, . . . , fn are measurable functions with values in R, then
f1 + f2 + · · ·+ fn and f1f2 · . . . · fn are measurable.

5. The indicator function of a set A ⊂ R is defined by

1A(x) =

 1 if x ∈ A

0 otherwise

a) Show that 1A is a measurable function if and only if A ∈M.
b) A simple function is a function f : Rd → R of the form

f(x) =
n∑

i=1

ai1Ai
(x)

where a1, a2, . . . , an ∈ R and A1, A2, . . . , An ∈M. Show that all simple
functions are measurable.

6. Let {En} be a disjoint sequence of measurable sets such that
⋃∞

n=1 En = Rd,
and let {fn} be a sequence of measurable functions. Show that the function
defined by

f(x) = fn(x) when x ∈ En

is measurable.

7. Fill in the details of the proof of the fg part of Proposition 5.4.6. You may
want to prove first that if h : Rd → R is measurable, then so is h

2 .

8. Prove the inf- and the lim inf-part of Proposition 5.4.8.

9. Let us write f ∼ g to denote that f and g are two measurable functions
which are equal a.e.. Show that ∼ is an equivalence relation, i.e.:

(i) f ∼ f

(ii) If f ∼ g, then g ∼ f .
(iii) If f ∼ g and g ∼ h, then f ∼ h.

10. Show that if f : Rd → R is measurable and g : Rd → R equals f almost
everywhere, then g is measurable.

11. Assume that f : Rd → R is finite a.e. Define a new function f ′ : Rd → R by

f ′(x) =

 f(x) if f(x) is finite

0 otherwise

Show that f ′ is measurable and equal to f a.e.

12. A sequence {fn} of measurable functions is said to converge almost every-
where to f if there is a set A of measure 0 such that fn(x) → f(x) for all
x /∈ A. Show that f is measurable.
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5.5 Integration of simple functions

If A is a subset of Rd, we define its indicator function by

1A(x) =


1 if x ∈ A

0 otherwise

The indicator function is measuable if and only if A is measurable.
A measurable function f : Rd → R is called a simple function if it takes

only finitely many different values a1, a2, . . . , an. We may then write

f(x) =
n∑

i=1

a11Ai(x)

where the sets Ai = {x ∈ Rd | f(x) = ai} are disjoint and measurable. Note
that if one of the ai’s is zero, the term does not contribute to the sum, and
it is occasionally convenient to drop it.

If we instead start with measurable sets B1, B2, . . . , Bm and real numbers
b1, b2, . . . , bm, then

g(x) =
m∑

i=1

bi1Bi(x)

is measurable and takes only finitely many values, and hence is a simple
function. The difference between f and g is that the sets A1, A2, . . . , An

in f are disjoint with union Rd, and that the numbers a1, a2, . . . , an are
distinct. The same need not be the case for g. We say that the simple
function f is on standard form, while g is not.

You may think of a simple function as a generalized step function. The
difference is that step functions are constant on intervals (in R), rectangles
(in R2), or boxes (in higher dimensions), while simple functions need only
be constant on much more complicated (but still measurable) sets.

We can now define the integral of a nonnegative simple function.

Definition 5.5.1 Assume that

f(x) =
n∑

i=1

ai1Ai(x)

is a nonnegative simple function on standard form. Then the (Lebesgue)
integral of f is defined by ∫

f dµ =
n∑

i=1

aiµ(Ai)

Recall that we are using the convention that 0·∞ = 0, and hence aiµ(Ai) = 0
if ai = 0 and µ(Ai) = ∞.
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Note that the integral of a simple function is∫
1A dµ = µ(A)

To see that the definition is reasonable, assume that you are in R2. Since
µ(Ai) measures the area of the set Ai, the product aiµ(Ai) measures in an
intuitive way the volume of the solid with base Ai and height ai.

We need to know that the formula in the definition also holds when the
simple function is not on standard form. The first step is the following,
simple lemma

Lemma 5.5.2 If

g(x) =
m∑

j=1

bj1Bj (x)

is a nonnegative simple function where the Bj’s are disjoint and Rd =⋃m
j=1 Bj, then ∫

g dµ =
n∑

j=1

bjµ(Bj)

Proof: The problem is that the values b1, b2, . . . , bm need not be distinct, but
this is easily fixed: If c1, c2, . . . , ck are the distinct values taken by g, let bi,1,
bi,2,. . . ,bi,ni be the bj ’s that are equal to ci, and let Ci = Bi,1∪Bi,2∪. . .∪Bi,ni .
Then µ(Ci) = µ(Bi,1) + µ(Bi,2) + . . . + µ(Bi,ni), and hence

n∑
j=1

bjµ(Bj) =
k∑

i=1

ciµ(Ci)

Since g(x) =
∑k

i=1 ci1Ci(x) is the standard form representation of g, we
have ∫

g dµ =
n∑

j=1

ciµ(Ci)

and the lemma is proved 2

The next step is also easy:

Proposition 5.5.3 Assume that f and g are two nonnegative simple func-
tions, and let c be a nonnnegative, real number. Then

(i)
∫

cf dµ = c
∫

f dµ

(ii)
∫

(f + g) dµ =
∫

f dµ +
∫

g dµ
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Proof: (i) is left to the reader. To prove (ii), let

f(x) =
n∑

i=1

ai1Ai(x)

g(x) =
n∑

j=1

bj1Bj (x)

be standard form representations of f and g, and define Ci,j = Ai ∩Bj . By
the lemma above ∫

f dµ =
∑
i,j

aiµ(Ci,j)

and ∫
g dµ =

∑
i,j

bjµ(Ci,j)

and also ∫
(f + g) dµ =

∑
i,j

(ai + bj)µ(Ci,j)

since the value of f + g on Ci,j is ai + bj 2

We can now easily prove that the formula in Definition 5.5.1 holds for
all positive representations of step functions:

Corollary 5.5.4 If f(x) =
∑

n=1 ai1Ai(x) is a step function with ai ≥ 0
for all i, then ∫

f dµ =
n∑

i=1

aiµ(Ai)

Proof: By the Proposition∫
f dµ =

∫ n∑
i=1

ai1Ai dµ =
n∑

i=1

∫
ai1Ai dµ =

n∑
i=1

ai

∫
1Ai dµ =

n∑
i=1

aiµ(Ai)

2

We need to prove yet another almost obvious result. We write g ≤ f to
say that g(x) ≤ f(x) for all x.

Proposition 5.5.5 Assume that f and g are two nonnegative simple func-
tions. If g ≤ f , then ∫

g dµ ≤
∫

f dµ
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Proof: We use the same trick as in the proof of Proposition 4.5.3: Let

f(x) =
n∑

i=1

ai1Ai(x)

g(x) =
n∑

j=1

bj1Bj (x)

be standard form representations of f and g, and define Ci,j = Ai ∩ Bj .
Then ∫

f dµ =
∑
i,j

aiµ(Ci,j) ≥
∑
i,j

bjµ(Ci,j) =
∫

g dµ

2

We shall end this section with a key result on limits of integrals, but
first we need some notation. Observe that if f =

∑n
i=1 an1An is a simple

function and B is a measurable set, then 1Bf =
∑n

i=1 an1An∩B is also a
measurable function. We shall write∫

B
f dµ =

∫
1Bf dµ

and call this the integral of f over B. The lemma below may seem obvious,
but it is the key to many later results.

Lemma 5.5.6 Assume that B is a measurable set, b a positive real number,
and {fn} an increasing sequence of nonnegative simple functions such that
limn→∞ fn(x) ≥ b for all x ∈ B. Then limn→∞

∫
B fn dµ ≥ bµ(B).

Proof: Let a be any positive number less than b, and define

An = {x ∈ B | fn(x) ≥ a}

Since fn(x) ↑ b for all x ∈ B, we see that the sequence {An} is increasing
and that

B =
∞⋃

n=1

An

By continuity of measure (Proposition 5.3.4(i)), µ(B) = limn→∞ µ(An), and
hence for any positive number m less that µ(B), we can find an N ∈ N such
that µ(An) > m when n ≥ N . Since fn ≥ a on An, we thus have∫

B
fn dµ ≥

∫
An

a dµ = am

whenever n ≥ N . Since this holds for any number a less than b and any
number m less than µ(B), we must have limn→∞

∫
B fn dµ ≥ bµ(B) 2

To get the result we need, we extend the lemma to simple functions:
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Proposition 5.5.7 Let g be a nonnegative simple function and assume that
{fn} is an increasing sequence of nonnegative simple functions such that
limn→∞ fn(x) ≥ g(x) for all x. Then

lim
n→∞

∫
fn dµ ≥

∫
g dµ

Proof: Let g(x) =
∑m

i=1 bi1B1(x) be the standard form of g. If any of the
bi’s is zero, we may just drop that term in the sum, so that we from now on
assume that all the bi’s are nonzero. By Corollary 5.5.3(ii), we have∫

B1∪B2∪...∪Bm

fn dµ =
∫

B1

fn dµ +
∫

B2

fn dµ + . . . +
∫

Bm

fn dµ

By the lemma, limn→∞
∫
Bi

fn dµ ≥ biµ(Bi), and hence

lim
n→∞

∫
fn dµ ≥ lim

n→∞

∫
B1∪B2∪...∪Bm

fn dµ ≥
m∑

i=1

biµ(Bi) =
∫

g dµ

2

We are now ready to extend the Lebesgue integral to all positive, mea-
surable functions. This will be the topic of the next section.

Exercises for Section 5.5

1. Show that if f is a measurable function, then the level set

Aa = {x ∈ Rd | f(x) = a}

is measurable for all a ∈ R.

2. Check that according to Definition 5.5.1,
∫

1A dµ = µ(A) for all A ∈M.

3. Prove part (i) of Proposition 5.5.3.

4. Show that if f1, f2, . . . , fn are simple functions, then so are

h(x) = max{f1(x), f2(x), . . . , fn(x)}

and

h(x) = min{f1(x), f2(x), . . . , fn(x)}

5. Let A = Q ∩ [0, 1]. This function is not integrable in the Riemann sense.
What is

∫
1A dµ?
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5.6 Integrals of nonnegative functions

We are now ready to define the integral of a general, nonnegative, measurable
function.

Definition 5.6.1 If f : Rd → [0,∞] is measurable, we define∫
f dµ = sup{

∫
g dµ | g is a nonnegative simple function, g ≤ f}

Remark: Note that if f is a simple function, we now have two definitions
of
∫

f dµ; the original one in Definition 5.5.1 and a new one in the definition
above. It follows from Proposition 5.5.5 that the two definitions agree.

The definition above is natural, but also quite abstract, and we shall
work toward a reformulation that is often easier to handle.

Proposition 5.6.2 Let f : Rd → [0,∞] be a measurable function, and
assume that {hn} is an increasing sequence of simple functions converging
pointwise to f . Then

lim
n→∞

∫
hn dµ =

∫
f dµ

Proof: Since the sequence {
∫

hn dµ} is increasing by Proposition 5.5.5, the
limit clearly exists (it may be ∞), and since

∫
hn dµ ≤

∫
f dµ for all n, we

must have
lim

n→∞

∫
hn dµ ≤

∫
f dµ

To get the opposite inequality, it suffices to show that

lim
n→∞

∫
hn dµ ≥

∫
g dµ

for each simple function g ≤ f , but this follows from Proposition 5.5.7. 2

The proposition above would lose much of its power if there weren’t any
increasing sequences of simple functions converging to f . The next result
tells us that there always are. Pay attention to the argument, it is a key to
why the theory works.

Proposition 5.6.3 If f : Rd → [0,∞) is measurable, there is an increasing
sequence {hn} of simple functions converging pointwise to f . Moreover, for
each n either fn(x)− 1

2n < hn(x) ≤ fn(x) or hn(x) = 2n

Proof: To construct the simple function hn, we cut the interval [0, 2n) into
half-open subintervals of length 1

2n , i.e. intervals

Ik =
[

k

2n
,
k + 1
2n

)
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where 0 ≤ k < 22n, and then let

Ak = f−1(Ik)

We now define

hn(x) =
22n−1∑
k=0

k

2n
1Ak

(x) + 2n1{x | f(x)≥2n}

By definition, hn is a simple function no greater than f . Since the intervals
get narrower and narrower and cover more and more of [0,∞), it is easy to
see that hn converges pointwise to f . To see why the sequence increases,
note that each time we increase n by one, we split each of the former intervals
Ik in two, and this will cause the new step function to equal the old one for
some x’s and jump one step upwards for others (make a drawing).

The last statement follows directly from the construction. 2

Remark: You should compare the partitions in the proof above to the par-
titions you have seen in earlier treatments of integration. When we integrate
a function of one variable in calculus, we partition an interval [a, b] on the
x-axis and use this partition to approximate the original function by a step
function. In the proof above, we instead partitioned the y-axis into intervals
and used this partition to approximate the original function by a simple
function. The difference is that the latter approach gives us much better
control over what is going one; the partition controls the oscillations of the
function. The price we have to pay, it that we get simple functions instead of
step functions, and to use simple functions for integration, we need measure
theory.

Let us combine the last two results in a handy corollary:

Corollary 5.6.4 If f : Rd → [0,∞) is measurable, there is an increasing
sequence {hn} of simple functions converging pointwise to f , and∫

f dµ = lim
n→∞

∫
hn dµ

Let us take a look at some properties of the integral.

Proposition 5.6.5 Assume that f, g : Rd → [0,∞] are measurable func-
tions and that c is a nonnegative, real number. Then:

(i)
∫

cf dµ = c
∫

f dµ.

(ii)
∫

(f + g) dµ =
∫

f dµ +
∫

g dµ.

(iii) If g ≤ f , then
∫

g dµ ≤
∫

f dµ.
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Proof: (iii) is immediate from the definition, and (i) is left to the reader. To
prove (ii), let {fn} and {gn} be to increasing sequence of simple functions
converging to f and g, respectively. Then {fn+gn} is an increasing sequence
of simple functions converging to f + g, and∫

(f + g) dµ = lim
n→∞

∫
(fn + gn) dµ = lim

n→∞

(∫
fn dµ +

∫
gn dµ

)
=

= lim
n→∞

∫
fn dµ + lim

n→∞

∫
gn dµ =

∫
f dµ +

∫
g dµ

2

One of the big advantages of Lebesgue integration over traditional Rie-
mann integration, is that the Lebesgue integral is much better behaved with
respect to limits. The next result is our first example:

Theorem 5.6.6 (Monotone Convergence Theorem) If {fn} is an in-
creasing sequence of nonnegative, measurable functions such that f(x) =
limn→∞ fn(x) for all x, then

lim
n→∞

∫
fn dµ =

∫
f dµ

In other words,

lim
n→∞

∫
fn dµ =

∫
lim

n→∞
fn dµ

Proof: We know from Proposition 5.4.8 that f is measurable, and hence the
integral

∫
f dµ is defined. Since fn ≤ f , we have

∫
fn dµ ≤

∫
f dµ for all n,

and hence
lim

n→∞

∫
fn dµ ≤

∫
f dµ

To prove the opposite inequality, we approximate each fn by simple functions
as in the proof of Proposition 5.6.3; in fact, let hn be the n-th approximation
to fn. Assume that we can prove that the sequence {hn} converges to f ;
then

lim
n→∞

∫
hn dµ =

∫
f dµ

by Proposition 5.6.2. Since fn ≥ hn, this would give us the desired inequality

lim
n→∞

∫
fn dµ ≥

∫
f dµ

It remains to show that hn(x) → f(x) for all x. From Proposition 5.6.3
we know that for all n, either fn(x)− 1

2n < hn(x) ≤ fn(x) or hn(x) = 2n. If
hn(x) = 2n for infinitely many n, then hn(x) goes to ∞, and hence to f(x).
If hn(x) is not equal to 2n for infinitely many n, then we eventually have
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fn(x)− 1
2n < hn(x) ≤ fn(x), and hence hn(x) converges to f(x) since fn(x)

does. 2

We would really have liked the formula

lim
n→∞

∫
fn dµ =

∫
lim

n→∞
fn dµ (5.6.1)

above to hold in general, but as the following example shows, this is not the
case.

Example 1: Let fn = 1[n,n+1]. Then limn→∞ fn(x) = 0 for all x, but∫
fn dµ = 1. Hence

lim
n→∞

∫
fn dµ = 1

but ∫
lim

n→∞
fn dµ = 0

There are many results in measure theory giving conditions for (5.6.1)
to hold, but there is no ultimate theorem covering all others. There is,
however, a simple inequality that always holds.

Theorem 5.6.7 (Fatou’s Lemma) Assume that {fn} is a sequence of non-
negative, measurable functions. Then

lim inf
n→∞

∫
fn dµ ≥

∫
lim inf
n→∞

fn dµ

Proof: Let gk(x) = infk≥n fn(x). Then {gk} is an increasing sequence of
measurable functions, and by the Monotone Convergence Theorem

lim
k→∞

∫
gk dµ =

∫
lim

k→∞
gk dµ =

∫
lim inf
n→∞

fn dµ

where we have used the definition of lim inf in the last step. Since fk ≥ gk,
we have

∫
fk dµ ≥

∫
gk dµ, and hence

lim inf
k→∞

∫
fk dµ ≥ lim

k→∞

∫
gk dµ =

∫
lim inf
n→∞

fn dµ

and the result is proved. 2

Fatou’s Lemma is often a useful tool in establishing more sophisticated
results, see Exercise 14 for a typical example.

Just as for simple functions, we define integrals over measurable subsets
A of Rd by the formula
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∫
A

f dµ =
∫

1Af dµ

So far we have allowed our integrals to be infinite, but we are mainly
interested in situations where

∫
f dµ is finite:

Definition 5.6.8 A function f : Rd → [0,∞] is said to be integrable if it
is measurable and

∫
f dµ < ∞.

Exercises for Section 5.6

1. Assume f : Rd → [0,∞] is a nonnegative simple function. Show that the two
definitions of

∫
f dµ given in Definitions 5.5.1 and 5.6.1 coincide.

2. Prove Proposition 5.6.5(i).

3. Show that if f : Rd → [0,∞] is measurable, then

µ({x ∈ Rd | f(x) ≥ a}) ≤ 1
a

∫
f dµ

for all positive, real numbers a.

4. In this problem, f, g : Rd → [0,∞] are measurable functions.

a) Show that
∫

f dµ = 0 if and only if f = 0 a.e.

b) Show that if f = g a.e., then
∫

f dµ =
∫

g dµ.

c) Show that if
∫

E
f dµ =

∫
E

g dµ for all measurable sets E, then f = g
a.e.

5. In this problem, f : Rd → [0,∞] is a measurable function and A,B are
measurable sets.

a) Show that
∫

A
f dµ ≤

∫
f dµ

b) Show that if A,B are disjoint, then
∫

A∪B
f dµ =

∫
A

f dµ +
∫

B
f dµ.

c) Show that in general
∫

A∪B
f dµ +

∫
A∩B

f dµ =
∫

A
f dµ +

∫
B

f dµ.

6. Show that if f : Rd → [0,∞] is integrable, then f is finite a.e.

7. Let f : R → R be the function

f(x) =

 1 if x is rational

0 otherwise

and for each n ∈ N, let fn : R → R be the function

fn(x) =


1 if x = p

q where p ∈ Z, q ∈ N, q ≤ n

0 otherwise

a) Show that {fn(x)} is an increasing sequence converging to f(x) for all
x ∈ R.
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b) Show that each fn is Riemann integrable over [0, 1] with
∫ 1

0
fn(x) dx = 0

(this is integration as taught in calculus courses).

c) Show that f is not Riemann integrable over [0, 1].

d) Show that the one-dimensional Lebesgue integral
∫
[0,1]

f dµ exists and
find its value.

8. a) Let {un} be a sequence of positive, measurable functions. Show that∫ ∞∑
n=1

un dµ =
∞∑

n=1

∫
un dµ

b) Assume that f is a nonnnegative, measurable function and that {Bn}
is a disjoint sequence of measurable sets with union B. Show that∫

B

f dµ =
∞∑

n=1

∫
Bn

f dµ

9. Assume that f is a nonnegative, measurable function and that {An} is an
increasing sequence of measurable sets with union A. Show that∫

A

f dµ = lim
n→∞

∫
An

f dµ

10. Show the following generalization of the Monotone Convergence Theorem:
If {fn} is an increasing sequence of nonnegative, measurable functions such
that f(x) = limn→∞ fn(x) almost everywhere. (i.e. for all x outside a set N
of measure zero), then

lim
n→∞

∫
fn dµ =

∫
f dµ

11. Find a decreasing sequence {fn} of measurable functions fn : R → [0,∞)
converging pointwise to zero such that limn→∞

∫
fn dµ 6= 0

12. Assume that f : Rd → [0,∞] is a measurable function, and that {fn} is a
sequence of measurable functions converging pointwise to f . Show that if
fn ≤ f for all n,

lim
n→∞

∫
fn dµ =

∫
f dµ

13. Assume that {fn} is a sequence of nonnegative functions converging pointwise
to f . Show that if

lim
n→∞

∫
fn dµ =

∫
f dµ < ∞,

then

lim
n→∞

∫
E

fn dµ =
∫

E

f dµ

for all measurable E ⊂ Rd.
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14. Assume that g : Rd → [0,∞] is an integrable function, and that {fn} is
a sequence of nonnegative, measurable functions converging pointwise to a
function f . Show that if fn ≤ g for all n, then

lim
n→∞

∫
fn dµ =

∫
f dµ

Hint: Apply Fatou’s Lemma to both sequences {fn} and {g − fn}.

5.7 Integrable functions

So far we only know how to integrate nonnegative functions, but it is not
difficult to extend the theory to general functions. Given a function f :
Rd → R, we first observe that f = f+ − f−, where f+ and f− are the
nonnegative functions

f+(x) =


f(x) if f(x) > 0

0 otherwise

and

f−(x) =


−f(x) if f(x) < 0

0 otherwise

Note that f+ and f− are measurable if f is. Recall that a nonnegative,
measurable function f is integrable if

∫
f dµ < ∞.

Definition 5.7.1 A function f : Rd → R is called integrable if it is mea-
surable, and f+ and f− are integrable. We define the (Lebesgue) integral
of f by ∫

f dµ =
∫

f+ dµ−
∫

f− dµ

The next lemma gives a useful characterization of integrable functions.
The proof is left to the reader.

Lemma 5.7.2 A measurable function f is integrable if and only if its ab-
solute value |f | is integrable, i.e. if and only if

∫
|f | dµ < ∞.

The next lemma is a useful technical tool:

Lemma 5.7.3 Assume that g : Rd → [0,∞] and h : Rd → [0,∞] are two
integrable, nonnegative functions, and that f(x) = g(x)− h(x) at all points
where the difference is defined. Then f is integrable and∫

f dµ =
∫

g dµ−
∫

h dµ
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Proof: Note that since g and h are integrable, they are finite a.e., and hence
f = g − h a.e. Modifying g and h on a set of measure zero (this will not
change their integrals), we may assume that f(x) = g(x) − h(x) for all x.
Since |f(x)| = |g(x) − h(x)| ≤ |g(x)| + |h(x)|, it follows from the lemma
above that f is integrable.

As
f(x) = f+(x)− f−(x) = g(x)− h(x)

we have
f+(x) + h(x) = g(x) + f−(x)

where we on both sides have sums of nonnegative functions. By Proposition
5.6.5(ii), we get ∫

f+ dµ +
∫

h dµ =
∫

g dµ +
∫

f− dµ

Rearranging the integrals (they are all finite), we get∫
f dµ =

∫
f+ dµ−

∫
f− dµ =

∫
g dµ−

∫
h dµ

and the lemma is proved. 2

We are now ready to prove that the integral behaves the way we expect:

Proposition 5.7.4 Assume that f, g : Rd → R are integrable functions,
and that c is a constant. Then f + g and cf are integrable, and

(i)
∫

cf dµ = c
∫

f dµ.

(ii)
∫

(f + g) dµ =
∫

f dµ +
∫

g dµ.

(iii) If g ≤ f , then
∫

g dµ ≤
∫

f dµ.

Proof: (i) is left to the reader (treat positive and negative c’s separately). To
prove (ii), first note that since f and g are integrable, the sum f(x) + g(x)
is defined a.e., and by changing f and g on a set of measure zero (this
doesn’t change their integrals), we may assume that f(x) + g(x) i defined
everywhere. Since

|f(x) + g(x)| ≤ |f(x)|+ |g(x)|,

f + g is integrable. Obviously,

f + g = (f+ − f−) + (g+ − g−) = (f+ + g+)− (f− + g−)

and hence by the lemma above and Proposition 5.6.5(ii)∫
(f + g) dµ =

∫
(f+ + g+) dµ−

∫
(f− + g−) dµ =
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=
∫

f+ dµ +
∫

g+ dµ−
∫

f− dµ−
∫

g− dµ =

=
∫

f+ dµ−
∫

f− dµ +
∫

g+ dµ−
∫

g− dµ =

=
∫

f dµ +
∫

g dµ

To prove (iii), note that f − g is a nonnegative function and hence by (i)
and (ii):∫

f dµ−
∫

g dµ =
∫

f dµ +
∫

(−1)g dµ =
∫

(f − g) dµ ≥ 0

Consequently,
∫

f dµ ≥
∫

g dµ and the proposition is proved. 2

We can now extend our limit theorems to integrable functions taking
both signs. The following result is probably the most useful of all limit
theorems for integrals as it quite strong and at the same time easy to use.
It tells us that if a convergent sequence of functions is dominated by an
integrable function, then

lim
n→∞

∫
fn dµ =

∫
lim

n→∞
fn dµ

Theorem 5.7.5 (Lebesgue’s Dominated Convergence Theorem) As-
sume that g : Rd → R is a nonnegative, integrable function and that {fn}
is a sequence of measurable functions converging pointwise to f . If |fn| ≤ g
for all n, then

lim
n→∞

∫
fn dµ =

∫
f dµ

Proof: First observe that since |f | ≤ g, f is integrable. Next note that
since {g − fn} and {g + fn} are two sequences of nonnegative measurable
functions, Fatou’s Lemma gives:

lim inf
n→∞

∫
(g−fn) dµ ≥

∫
lim inf
n→∞

(g−fn) dµ =
∫

(g−f) dµ =
∫

g dµ−
∫

f dµ

and

lim inf
n→∞

∫
(g+fn) dµ ≥

∫
lim inf
n→∞

(g+fn) dµ =
∫

(g+f) dµ =
∫

g dµ+
∫

f dµ

On the other hand,

lim inf
n→∞

∫
(g − fn) dµ =

∫
g dµ− lim sup

n→∞

∫
fn dµ
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and
lim inf
n→∞

∫
(g + fn) dµ =

∫
g dµ + lim inf

n→∞

∫
fn dµ

Combining the two expressions for lim infn→∞
∫

(g − fn) dµ, we see that∫
g dµ− lim sup

n→∞

∫
fn dµ ≥

∫
g dµ−

∫
f dµ

and hence
lim sup

n→∞

∫
fn dµ ≤

∫
f dµ

Combining the two expressions for lim infn→∞
∫

(g+fn) dµ, we similarly get

lim inf
n→∞

∫
fn dµ ≥

∫
f dµ

Hence
lim sup

n→∞

∫
fn dµ ≤

∫
f dµ ≤ lim inf

n→∞
fn dµ

which means that limn→∞
∫

fn dµ =
∫

f dµ. The theorem is proved. 2

Remark: It is easy to check that we can relax the conditions above some-
what: If fn(x) converges to f(x) a.e., and |fn(x)| ≤ g(x) fails on a set of
measure zero, the conclusion still holds (see Exercise 8 for the precise state-
ment).

Let us take a look at a typical application of the theorem:

Proposition 5.7.6 Assume that f : R2 → R is a continuous function,
and assume that there is an integrable function g : R → [0,∞] such that
|f(x, y)| ≤ g(y) for all x, y ∈ R. Then the function

h(x) =
∫

f(x, y) dµ(y)

is continuous (the expression
∫

f(x, y) dµ(y) means that we for each fixed x
integrate f(x, y) as a function of y).

Proof: According to Proposition 2.2.5 it suffices to prove that if {an} is a
sequence converging to a point a, then h(an) converges to h(a). Observe
that

h(an) =
∫

f(an, y) dµ(y)

and
h(a) =

∫
f(a, y) dµ(y)
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Observe also that since f is continuous, f(an, y) → f(a, y) for all y. Hence
{f(an, y)} is a sequence of functions which is dominated by the integrable
function g and which converges pointwise to f(a, y). By Lebesgue’s Domi-
nated Convergence Theorem,

lim
n→∞

h(an) = lim
n→∞

∫
f(an, y) dµ =

∫
f(a, y) dµ = h(a)

and the proposition is proved. 2

As before, we define
∫
A f dµ =

∫
f1A dµ for measurable sets A. We say

that f is integrable over A if f1A is integrable.

Exercises to Section 5.7

1. Show that if f is measurable, so are f+ and f−.

2. Show that if an integrable function f is zero a.e., then
∫

f dµ = 0.

3. Prove Lemma 5.7.1.

4. Prove Proposition 5.7.4(i). You may want to treat positive and negative c’s
separately.

5. Assume that f : Rd → R is a measurable function.

a) Show that if f is integrable over a measurable set A, and An is an
increasing sequence of measurable sets with union A, then

lim
n→∞

∫
An

f dµ =
∫

A

f dµ

b) Assume that {Bn} is a decreasing sequence of measurable sets with
intersection B. Show that if f is integrable over B1, then

lim
n→∞

∫
Bn

f dµ =
∫

B

f dµ

6. Show that if f : Rd → R is integrable over a measurable set A, and An is a
disjoint sequence of measurable sets with union A, then∫

A

f dµ =
∞∑

n=1

∫
An

f dµ

7. Let f : R → R be a measurable function, and define

An = {x ∈ Rd | f(x) ≥ n}

Show that
lim

n→∞

∫
An

f dµ = 0
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8. Prove the following slight extension of the Dominated Convergence Theorem:

Theorem: Assume that g : Rd → R is a nonnegative, integrable function
and that {fn} is a sequence of measurable functions converging a.e. to f . If
|fn(x)| ≤ g(x) a.e. for each n, then

lim
n→∞

∫
fn dµ =

∫
f dµ

9. Assume that g : R2 → R is continuous and that y → g(x, y) is integrable for
each x. Assume also that the partial derivative ∂g

∂x (x, y) exists for all x and
y, and that there is an integrable function h : R → [0,∞] such that∣∣∣∣∂g

∂x
(x, y)

∣∣∣∣ ≤ h(y)

for all x, y. Then the function

f(x) =
∫

g(x, y) dµ(y)

is differentiable at all points x and

f ′(x) =
∫

∂g

∂x
(x, y) dµ(y)

5.8 L1(Rd) and L2(Rd)

In this final section we shall connect integration theory to the theory of
normed spaces in Chapter 4. Recall from Definition 4.5.2 that a norm on a
real vector space V is a function || · || : V → [0,∞) satisfying

(i) ||u|| ≥ 0 with equality if and only if u = 0.

(ii) ||αu|| = |α|||u|| for all α ∈ R and all u ∈ V .

(iii) ||u + v|| ≤ ||u||+ ||v|| for all u,v ∈ V .

Let us now put

L1(Rd) = {f : Rd → R : f is integrable}

and define || · ||1 : L1(Rd) → [0,∞) by

||f ||1 =
∫
|f | dµ

It is not hard to see that || · ||1 satisfies the three axioms above with one
exception; ||f ||1 may be zero even when f is not zero — actually ||f ||1 = 0 if
and only if f = 0 a.e.
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The usual way to fix this is to consider two functions f and g to be equal
if they are equal almost everywhere. To be more precise, let us write f ∼ g
if f and g are equal a.e., and define the equivalence class of f to be the set

[f ] = {g ∈ L1(Rd) | g ∼ f}

Note that two such equivalence classes [f ] and [g] are either equal (if f
equals g a.e.) or disjoint (if f is not equal to g a.e.). If we let L1(Rd) be
the collection of all equivalence classes, we can organize L1(Rd) as a normed
vector space by defining

α[f ] = [αf ] and [f ] + [g] = [f + g] and |[f ]|1 = ||f ||1

The advantage of the space (L1(Rd), | · |1) compared to (L1(Rd), || · ||1) is that
it is a normed space where all the theorems we have proved about such spaces
apply — the disadvantage is that the elements are no longer functions, but
equivalence classes of functions. In practice, there is very little difference
between (L1(Rd), | · |1) and (L1(Rd), || · ||1), and mathematicians tend to blur
the distinction between the two spaces: they pretend to work in L1(Rd), but
still consider the elements as functions. We shall follow this practice here;
it is totally harmless as long as you remember that whenever we talk about
an element of L1(Rd) as a function, we are really choosing a representative
from an equivalence class (Exercise 3 gives a more thorough and systematic
treatment of L1(Rd)).

The most important fact about (L1(Rd), | · |1) is that it is complete. In
many ways, this is the most impressive success of the theory of Lebesgue
integration: We have seen in previous chapters how important completeness
is, and it is a great advantage to work with a theory of integration where
the space of integrable functions is naturally complete. Before we turn to
the proof, you may want to remind yourself of Proposition 4.5.5 which shall
be our main tool.

Theorem 5.8.1 (L1(Rd), | · |1) is complete.

Proof: Assume that {un} is a sequence of functions in L1(Rd) such that the
series

∑∞
n=1 |un|1 converges. According to Proposition 4.5.5, it suffices to

show that the series
∑∞

n=1 un(x) must converge in L1(Rd). Observe that

∞ >

∞∑
n=1

|un|1 = lim
N→∞

N∑
n=1

|un|1 = lim
N→∞

N∑
n=1

∫
|un| dµ =

= lim
N→∞

∫ N∑
n=1

|un| dµ =
∫

lim
N→∞

N∑
n=1

|un| dµ =
∫ ∞∑

n=1

|un| dµ
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where we have used the Monotone Convergence Theorem to move the limit
inside the integral sign. This means that the function

g(x) =
∞∑

n=1

|un(x)|

is integrable. We shall use g as the dominating function in the Dominated
Convergence Theorem.

Let us first observe that since g(x) =
∑∞

n=1 |un(x)| is integrable, the
series converges a.e. Hence the sequence

∑∞
n=1 un(x) (without the abso-

lute values) converges absolutely a.e., and hence it converges a.e. in the
ordinary sense. Let f(x) =

∑∞
n=1 un(x) (put f(x) = 0 on the null set

where the series does not converge). It remains to prove that the series
converges in L1-sense, i.e. that |f −

∑N
n=1 un|1 → 0 as N → ∞. By

definition of f , we see that limN→∞

(
f(x)−

∑N
n=1 un(x)

)
= 0 a.e. Since

|f(x) −
∑N

n=1 un(x)| = |
∑∞

n=N+1 un(x)| ≤ g(x) a.e., it follows from Domi-
nated Convergence Theorem (actually from the slight extension in Exercise
5.7.8) that

|f −
N∑

n=1

un|1 =
∫
|f −

N∑
n=1

un| dµ → 0

The theorem is proved. 2

Let us take a brief look at another space of the same kind. Let

L2(Rd) = {f : Rd → R : |f |2 is integrable}

and define || · ||2 : L2(Rd) → [0,∞) by

||f ||2 =
(∫

|f |2 dµ

) 1
2

It turns out (see Exercise 4) that L2(Rd) is a vector space, and that || · || is a
norm on L2(Rd), except that ||f ||2 = 0 if f = 0 a.e. If we consider functions
as equal if they are equal a.e., we can turn (L2(Rd), || · ||2) into a normed
space (L2(Rd), | · |2) just as we did with L1(Rd). One of the advantages of
this space, is that it is an inner product space with inner product

〈f, g〉 =
∫

fg dµ

By almost exactly the same argument as for L1(Rd), one may prove:

Theorem 5.8.2 (L2(Rd), | · |2) is complete.
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Let me finally mention that L1(Rd) and L2(Rd) are just two representa-
tives of a whole family of spaces. For any p ∈ [1,∞), we may let

Lp(Rd) = {f : Rd → R : |f |p is integrable}

and define || · ||p : Lp → [0,∞) by

||f ||2 =
(∫

|f |2 dµ

) 1
p

Proceeding as before, we get complete, normed spaces (Lp(Rd), | · |p).

Exercises for Section 5.8

1. Show that L1(Rd) is a vector space. Since the set of all functions from Rd

to R is a vector space, it suffices to show that L1(Rd) is a subspace, i.e. that
cf and f + g are in L1(Rd) whenever f, g ∈ L1(Rd) and c ∈ R.

2. Show that || · ||1 satisfies the following conditions:

(i) ||f ||1 ≥ 0 for all f , and ||0||1 = 0 (here 0 is the function that is constant
0).

(ii) ||cf ||1 = |c|||f ||1 for all f ∈ L1(Rd) and all c ∈ R.

(iii) ||f + g||1 ≤ ||f ||1 + ||g||1 for all f, g ∈ L1(Rd)

This means that || · ||1 is a seminorm.

3 If f, g ∈ L1(Rd), we write f ∼ g if f = g a.e. Recall that the equivalence
class [f ] of f is defined by

[f ] = {g ∈ L(Rd) : g ∼ f}

a) Show that two equivalence classes [f ] and [g] are either equal or disjoint.

b) Show that if f ∼ f ′ and g ∼ g′, then f + g ∼ f ′ + g′. Show also that
cf ∼ cf ′ for all c ∈ R.

c) Show that if f ∼ g, then ||f − g||1 = 0 and ||f ||1 = ||g||1.
d) Show that the set L1(Rd) of all equivalence classes is a normed space if

we define scalar multiplication, addition and norm by:

(i) c[f ] = [cf ] for all c ∈ R, f ∈ L1(Rd).
(ii) [f ] + [g] = [f + g] for all f, g ∈ L1(Rd)
(iii) |[f ]|1 = ||f ||1 for all f ∈ L1(Rd).

Why do we need to establish the results in (i), (ii), and (iii) before we
can make these definitions?

4. a) Show that L2(Rd) is a vector space. Since the set of all functions
from Rd to R is a vector space, it suffices to show that L2(Rd) is a
subspace, i.e. that cf and f + g are in L2(Rd) whenever f, g ∈ L2(Rd)
and c ∈ R. (To show that f + g ∈ L2(Rd), you may want to use that
|a + b|2 ≤ 2|a|2 + 2|b|2 for all real numbers a, b).
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b) Show that if f, g ∈ L2(Rd), then fg is integrable. (You may want to
use the identity |fg| = 1

2 ((|f |+ |g|)2 − |f |2 − |g|2).
c) Show that the semi inner product

〈f, g〉 =
∫

fg dµ

on L2(Rd) satisfies:

(i) 〈f, g〉 = 〈g, f〉 for all f, g ∈ L2(Rd).
(ii) 〈f + g, h〉 = 〈f, h〉+ 〈g, h〉 for all f, g, h ∈ L2(Rd) .
(iii) 〈cf, g〉 = c〈f, g〉 for all c ∈ R, f, g ∈ L2(Rd).
(iv) For all f ∈ L2(Rd), 〈f, f〉 ≥ 0 with equality if f = 0 (here 0 is the

function that is constant 0).

Show also that 〈f, f〉 = 0 if and only if f = 0 a.e.

e) Assume that f, f ′, g, g′ ∈ L2(Rd), and that f = f ′, g = g′ a.e. Show
that 〈f, g〉 = 〈f ′, g′〉

5. Show that (L2(Rd), | · |2) is complete by modifying the proof of Theorem
5.8.1.


