
Perron’s theorem

There is a famous theorem by the german mathematician Oskar Perron going back
to 1907. It is extremely usefull in many situations, and it has important applications
in many fields, just to mention s few:

Economics, theoretical physics, statistics. A more fancy application is Google’s al-
gortihm for ranging web-pages, which is based on the Perron-theorem.

The Perron theorem is about matrices with strictly positive entries and it states
that the eigenvalue of such a matrix with maximal modulus ( a priori it is a complex
number) is real, and that its eigenspace is of dimesion one. Furthermore, there is an
eigenvector whose entries all are strictly positive.

In these notes we treat a simplified version of Perron’s, which we can prove without
to much trouble by using the Banach fixed point theorem.

Our version is about what is called probality matrices. That is, matrices P = (pij)
— of some size, say n× n — whose entries are real numbers between zero and one —
i.e., 0 ≤ pij ≤ 1 — and whose column-sums all are equal to one — i.e.,

�n
i=1 pij = 1.

The way of thinking about such a matrix is to regard it as a transition matrix for
a system. Such a system consists of a population whose individuals can be in a certain
states. The numbers between 1 and n form a numbering of the states, and the entries
pij of the matrix are the probabilities that a member of the population being in state
i swops to state j.

There are plenty of examples: For example, the population can be all the molecules
in a fixed volume of gas, say hydrogen, in which case the states are the different
excitation levels of the hydrogen molecule. A more mundane example: The population
can be the set of TV-slaves in a given country and the states all possible TV-channels
they have access to. And finally, we mention the Google example again: The population
then being the population of the world having access to the internet, and the states
are the set of web pages indexed by Google (which is quit a big number)!.

A vector x = (x1, . . . , xn) — with
�

i xi = 1 — represents a distribution in per-
centage of the population among the states, and a vector satisfying Px = x, i.e., an
eigenvector with eigenvalue one, is a stable distribution; i.e., one that does not change
with time. And Perron says, that under certain conditions, such a stable distribution
exists and is unique. In addition, the vector x has all components strictly positive;
meaning that in the stable situation any state has some part of the population in it.

A conclusion like Px = x immediatly sets our brain-vibrations in fixed-point-mode;
and indeed, Perrons theorem follows rather easily from Banach’s fixed point theorem.
Which of course is the reason for these notes. One more comment about the applica-
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tions: The iteration prosess in the proof of Banach’s fixed point therem, also gives a
good way to compute an approximation to the stabel eigenvector.

We shall mostly use what we call the Manhattan metric on Rn. Being equivalent to
the Euclidian metric, it does not change the topology: The two metrics have the same
open and closed sets, the same continuous functions, the same convergent sequences
etc., but using it, the few computations we face, are much more agreeable.

A fixed point theorem

Allthough the Perron theorem folows from the Banach’s fixed point theorem, we
shall use a slightly different theorem (also given as an exercise in Tom’s notes; 2.5
exercise 14) . Strengthening the hypothesis in Banach’s theorem on the space allows a
weakening of the hypothesis on the map:

Theorem 1 Let X be a compact metric space with metric d and let f : X → X be a
map. Assume that

d(f(x), f(y)) < d(x, y) (✣)

for all x, y ∈ X with x �= y. Then there is a unique point x0 ∈ X such that f(x0) = x0.

Proof. The function F (x) = d(x, f(x)) is a continuous real valued function on X.
Since X is compact, it achieves its minimum value at a point x0 ∈ X. We claim that x0

is a fixed point for f . Indeed, if x0 �= f(x0), the hypothesis (✣) above gives F (f(x0)) =
d(f(x0), f(f(x0))) < d(x0, f(x0)) = F (x0) which is absurd since F (x0) = d(x0, f(x0))
was the minimal value of F (x). Hence x0 = f(x0).

Uniqueness follows since x = f(x) and y = f(y), we get d(x, y) = d(f(x), f(y)) <
d(x, y) unless x = y. �

Perron’s theorem.

Theorem 2 Let P = (pij) be a probability matrix, i.e., a matrix with 0 ≤ pij ≤ 1 and�
i pij = 1 for j = 1, . . . , n. Assume that all the entries of P are strictly positive, i.e.,

pij > 0 for 1 ≤ i, j ≤ n. Then there is an eigenvector for P with eigenvalue 1 all whose
components are strictly positive. That is, there is an x ∈ Rn with Px = x satisfying
xi > 0 for 1 ≤ i ≤ n.

Furthermore, if we impose
�

i xi = 1, the vector x is unique.

As we said, we are going to apply the above version of the Banach fixed point
theorem, and for that we need a compact metric space. The one we are going to use,

— 2 —



Perron’s theorem MAT2400 — spring 2012

is what is called the unit simplex in Rn, that is the set

∆ = {(x1, . . . , xn) ∈ Rn | 0 ≤ xi for 1 ≤ i ≤ n and
�

i

xi = 1}. (✤)

We will give ∆ the metric d which is the restriction of what popularly is called the
Manhattan metric or the Taxi Cab metric on Rn, and which is given by:

d(x, y) =
�

i

|xi − yi|.

It is easy to see that this metric is equivalent to the standard, Euclidian metric.

Lemma 1 ∆ is compact.

Proof. The conditions xi ≥ 0 all define closed sets as well as the condition
�

i xi = 1,
so ∆ is closed in Rn. Since xi ≥ 0, we see that each xj satisfies 0 ≤ xj ≤

�
i xi = 1

Hence ∆ is also bounded, hence compact.

The Manhattan metric being equivalent to the Euclidian one, implies that ∆ is also
compact with respect to that metric. �

The next observation is:

Lemma 2 If x ∈ ∆, then Px ∈ ∆; i.e., P defines a mapping P : ∆→ ∆.

This is crucial since fixed point theorems deal with mappings from a set to itself.

Proof. We compute, using that the i-th coordinate of Px is
�

j pijxj:

�

i

(
�

j

pijxj) =
�

j

(
�

i

pijxj) =
�

j

(
�

i

pij)xj =
�

j

xj = 1,

where the main trick is to change the order of summation. �

The next, and most important step, is to see that the mapping P satisfies the
condition (✣) of the fixed point theorem above. We start with the following lemma,
where we introduce the condition

�
j zj = 0; the reason is that it is satisfied by what

interests us, namely the difference z = x− y of two elements x and y from ∆ (the sum
of the components of both being one).

Lemma 3 Let z ∈ Rn satisfy
�

j zj = 0, then

�

i

|
�

j

pijzj| <
�

i

|zi| ( ✥)

unless z = 0.
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Proof. We compute, using the triangle inequality and changing the order of summa-
tion: �

i

|
�

j

pijzj| ≤
�

i

(
�

j

pij|zj|) =
�

j

(
�

i

pij)|zj| =
�

j

|zj|,

and are left to argue that there is strict inequality. Indeed if equality holds, then�
i |

�
j pijzj| =

�
i(
�

j pij|zj|) and hence |
�

j pijzj| =
�

j pij|zj| since |
�

j pijzj| ≤�
j pij|zj|.
But if the absolute value of a sum of some real numbers is equal to the sum of

their absolute values, then those numbers all have the same sign. That means that the
pijzj’s — and hence the zj’s, as the pij are positive — are all of the same sign. But,
since the zi’s add up to zero, that is impossible unless they are all equal to zero. Hence
the strict inequality ( ✥ ) is established. �

We get immediatly

Lemma 4 Any two elements x, y ∈ ∆ with x �= y satisfy

d(Px, Py) < d(x, y).

Proof. Use lemma 3 with z = x− y; then
�

j zj =
�

j xj −
�

j yj = 1− 1 = 0. �

Now we we can apply the fixed point theorem 1, and we get:

Theorem 3 There is unique fixed point x ∈ ∆ for the mapping P ; i.e., a point with
Px = x. All the coordinates of x are strictly positive, i.e., if x = (x1, . . . , xn) then
xi > 0.

Proof. That there is a fixed point and that it is unique, follows from theorem 1: The
set ∆ is compact by lemma 1, and by lemma 4 above, the hypothesis (✣) is satisfied.

The only thing left, is the claim that xi > 0 for i between 1 and n. The set ∆
includes points not satisfying this, so we need to argue for it: Pick an i with 1 ≤ i ≤ n.
Now xi =

�
j pijxj, and since all the pij > 0 and all the xj ≥ 0, it follows that either

is xi > 0 or all the xj’s are zero. The latter can not be, since
�

j xj = 1. �
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