Perron's theorem

There is a famous theorem by the german mathematician Oskar Perron going back to 1907. It is extremely usefull in many situations, and it has important applications in many fields, just to mention s few:

Economics, theoretical physics, statistics. A more fancy application is Google's algortihm for ranging web-pages, which is based on the Perron-theorem.

The Perron theorem is about matrices with strictly positive entries and it states that the eigenvalue of such a matrix with maximal modulus (a priori it is a complex number) is real, and that its eigenspace is of dimesion one. Furthermore, there is an eigenvector whose entries all are strictly positive.

In these notes we treat a simplified version of Perron's, which we can prove without to much trouble by using the Banach fixed point theorem.

Our version is about what is called probality matrices. That is, matrices $P=\left(p_{i j}\right)$ - of some size, say $n \times n$ - whose entries are real numbers between zero and one i.e., $0 \leq p_{i j} \leq 1$ - and whose column-sums all are equal to one - i.e., $\sum_{i=1}^{n} p_{i j}=1$.

The way of thinking about such a matrix is to regard it as a transition matrix for a system. Such a system consists of a population whose individuals can be in a certain states. The numbers between 1 and n form a numbering of the states, and the entries $p_{i j}$ of the matrix are the probabilities that a member of the population being in state i swops to state j.

There are plenty of examples: For example, the population can be all the molecules in a fixed volume of gas, say hydrogen, in which case the states are the different excitation levels of the hydrogen molecule. A more mundane example: The population can be the set of TV-slaves in a given country and the states all possible TV-channels they have access to. And finally, we mention the Google example again: The population then being the population of the world having access to the internet, and the states are the set of web pages indexed by Google (which is quit a big number)!.

A vector $x=\left(x_{1}, \ldots, x_{n}\right)$ - with $\sum_{i} x_{i}=1$ - represents a distribution in percentage of the population among the states, and a vector satisfying $P x=x$, i.e., an eigenvector with eigenvalue one, is a stable distribution; i.e., one that does not change with time. And Perron says, that under certain conditions, such a stable distribution exists and is unique. In addition, the vector x has all components strictly positive; meaning that in the stable situation any state has some part of the population in it.

A conclusion like $P x=x$ immediatly sets our brain-vibrations in fixed-point-mode; and indeed, Perrons theorem follows rather easily from Banach's fixed point theorem. Which of course is the reason for these notes. One more comment about the applica-
tions: The iteration prosess in the proof of Banach's fixed point therem, also gives a good way to compute an approximation to the stabel eigenvector.

We shall mostly use what we call the Manhattan metric on \mathbb{R}^{n}. Being equivalent to the Euclidian metric, it does not change the topology: The two metrics have the same open and closed sets, the same continuous functions, the same convergent sequences etc., but using it, the few computations we face, are much more agreeable.

A fixed point theorem

Allthough the Perron theorem folows from the Banach's fixed point theorem, we shall use a slightly different theorem (also given as an exercise in Tom's notes; 2.5 exercise 14) . Strengthening the hypothesis in Banach's theorem on the space allows a weakening of the hypothesis on the map:

Theorem 1 Let X be a compact metric space with metric d and let $f: X \rightarrow X$ be a map. Assume that

$$
d(f(x), f(y))<d(x, y)
$$

for all $x, y \in X$ with $x \neq y$. Then there is a unique point $x_{0} \in X$ such that $f\left(x_{0}\right)=x_{0}$.
Proof. The function $F(x)=d(x, f(x))$ is a continuous real valued function on X. Since X is compact, it achieves its minimum value at a point $x_{0} \in X$. We claim that x_{0} is a fixed point for f. Indeed, if $x_{0} \neq f\left(x_{0}\right)$, the hypothesis $(\because \div)$ above gives $F\left(f\left(x_{0}\right)\right)=$ $d\left(f\left(x_{0}\right), f\left(f\left(x_{0}\right)\right)\right)<d\left(x_{0}, f\left(x_{0}\right)\right)=F\left(x_{0}\right)$ which is absurd since $F\left(x_{0}\right)=d\left(x_{0}, f\left(x_{0}\right)\right)$ was the minimal value of $F(x)$. Hence $x_{0}=f\left(x_{0}\right)$.

Uniqueness follows since $x=f(x)$ and $y=f(y)$, we get $d(x, y)=d(f(x), f(y))<$ $d(x, y)$ unless $x=y$.

Perron's theorem.

Theorem 2 Let $P=\left(p_{i j}\right)$ be a probability matrix, i.e., a matrix with $0 \leq p_{i j} \leq 1$ and $\sum_{i} p_{i j}=1$ for $j=1, \ldots, n$. Assume that all the entries of P are strictly positive, i.e., $p_{i j}>0$ for $1 \leq i, j \leq n$. Then there is an eigenvector for P with eigenvalue 1 all whose components are strictly positive. That is, there is an $x \in \mathbb{R}^{n}$ with $P x=x$ satisfying $x_{i}>0$ for $1 \leq i \leq n$.

Furthermore, if we impose $\sum_{i} x_{i}=1$, the vector x is unique.

As we said, we are going to apply the above version of the Banach fixed point theorem, and for that we need a compact metric space. The one we are going to use,
is what is called the unit simplex in \mathbb{R}^{n}, that is the set

$$
\Delta=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid 0 \leq x_{i} \text { for } 1 \leq i \leq n \text { and } \sum_{i} x_{i}=1\right\}
$$

We will give Δ the metric d which is the restriction of what popularly is called the Manhattan metric or the Taxi Cab metric on \mathbb{R}^{n}, and which is given by:

$$
d(x, y)=\sum_{i}\left|x_{i}-y_{i}\right| .
$$

It is easy to see that this metric is equivalent to the standard, Euclidian metric.
Lemma 1Δ is compact.
Proof. The conditions $x_{i} \geq 0$ all define closed sets as well as the condition $\sum_{i} x_{i}=1$, so Δ is closed in \mathbb{R}^{n}. Since $x_{i} \geq 0$, we see that each x_{j} satisfies $0 \leq x_{j} \leq \sum_{i} x_{i}=1$ Hence Δ is also bounded, hence compact.

The Manhattan metric being equivalent to the Euclidian one, implies that Δ is also compact with respect to that metric.

The next observation is:
Lemma 2 If $x \in \Delta$, then $P x \in \Delta$; i.e., P defines a mapping $P: \Delta \rightarrow \Delta$.
This is crucial since fixed point theorems deal with mappings from a set to itself.
Proof. We compute, using that the i-th coordinate of $P x$ is $\sum_{j} p_{i j} x_{j}$:

$$
\sum_{i}\left(\sum_{j} p_{i j} x_{j}\right)=\sum_{j}\left(\sum_{i} p_{i j} x_{j}\right)=\sum_{j}\left(\sum_{i} p_{i j}\right) x_{j}=\sum_{j} x_{j}=1,
$$

where the main trick is to change the order of summation.
The next, and most important step, is to see that the mapping P satisfies the condition $(\because \div)$ of the fixed point theorem above. We start with the following lemma, where we introduce the condition $\sum_{j} z_{j}=0$; the reason is that it is satisfied by what interests us, namely the difference $z=x-y$ of two elements x and y from Δ (the sum of the components of both being one).

Lemma 3 Let $z \in \mathbb{R}^{n}$ satisfy $\sum_{j} z_{j}=0$, then

$$
\sum_{i}\left|\sum_{j} p_{i j} z_{j}\right|<\sum_{i}\left|z_{i}\right|
$$

unless $z=0$.

Proof. We compute, using the triangle inequality and changing the order of summation:

$$
\sum_{i}\left|\sum_{j} p_{i j} z_{j}\right| \leq \sum_{i}\left(\sum_{j} p_{i j}\left|z_{j}\right|\right)=\sum_{j}\left(\sum_{i} p_{i j}\right)\left|z_{j}\right|=\sum_{j}\left|z_{j}\right|,
$$

and are left to argue that there is strict inequality. Indeed if equality holds, then $\sum_{i}\left|\sum_{j} p_{i j} z_{j}\right|=\sum_{i}\left(\sum_{j} p_{i j}\left|z_{j}\right|\right)$ and hence $\left|\sum_{j} p_{i j} z_{j}\right|=\sum_{j} p_{i j}\left|z_{j}\right|$ since $\left|\sum_{j} p_{i j} z_{j}\right| \leq$ $\sum_{j} p_{i j}\left|z_{j}\right|$.

But if the absolute value of a sum of some real numbers is equal to the sum of their absolute values, then those numbers all have the same sign. That means that the $p_{i j} z_{j}$'s - and hence the z_{j} 's, as the $p_{i j}$ are positive - are all of the same sign. But, since the z_{i} 's add up to zero, that is impossible unless they are all equal to zero. Hence the strict inequality ($\overbrace{}^{*}$) is established.

We get immediatly
Lemma 4 Any two elements $x, y \in \Delta$ with $x \neq y$ satisfy

$$
d(P x, P y)<d(x, y) .
$$

Proof. Use lemma 3 with $z=x-y$; then $\sum_{j} z_{j}=\sum_{j} x_{j}-\sum_{j} y_{j}=1-1=0$.
Now we we can apply the fixed point theorem 1, and we get:
Theorem 3 There is unique fixed point $x \in \Delta$ for the mapping P; i.e., a point with $P x=x$. All the coordinates of x are strictly positive, i.e., if $x=\left(x_{1}, \ldots, x_{n}\right)$ then $x_{i}>0$.

Proof. That there is a fixed point and that it is unique, follows from theorem 1: The set Δ is compact by lemma 1 , and by lemma 4 above, the hypothesis ($\because 0)$ is satisfied.

The only thing left, is the claim that $x_{i}>0$ for i between 1 and n. The set Δ includes points not satisfying this, so we need to argue for it: Pick an i with $1 \leq i \leq n$. Now $x_{i}=\sum_{j} p_{i j} x_{j}$, and since all the $p_{i j}>0$ and all the $x_{j} \geq 0$, it follows that either is $x_{i}>0$ or all the x_{j} 's are zero. The latter can not be, since $\sum_{j} x_{j}=1$.

