
MAT2400: Solution to Mandatory
Assignment 2, Spring 2022

After some of the problems I have added comments in blue to discuss com-
mon mistakes or alternative approaches.

Problem 1.
a) According to section 10.1, the real Fourier series of f is of the form

a0
2

+
∞∑
n=1

(an cosnx+ bn sinnx)

where

an =
1

π

∫ π

−π
f(x) cosnx dx =

1

π

∫ π

−π
|x| cosnx dx

bn =
1

π

∫ π

−π
f(x) sinnx dx =

1

π

∫ π

−π
|x| sinnx dx

We first observe that since f(x) = |x| is an even function, the integrands
|x| sinnx are odd, and hence all the bn’s are zero. Turning to the an’s, we
observe that since cosnx is even, so is |x| cosnx, and hence by symmetry

an =
1

π

∫ π

−π
|x| cosnx dx =

2

π

∫ π

0
x cosnx dx

We first compute a0:

a0 =
2

π

∫ π

0
x cos 0 dx =

2

π

∫ π

0
x dx =

2

π
· π

2

2
= π

For n > 0, we get

an =
1

π

∫ π

−π
|x| cosnx dx =

2

π

∫ π

0
x cosnx dx

If we use integration by parts with u = x and v′ = cosnx, we get u′ = 1 and
v = sinnx

n , and hence

an =
2

π

∫ π

0
x cosnx dx =

2

π

([
x · sinnx

n

]π
0

−
∫ π

0
1 · sinnx

n
dx

)
=

2

π

(
0−

[
−cosnx

n2

]π
0

)
=

2

πn2
(cos(nπ)− 1)

Observing that cosnπ equals −1 when n is odd and 1 when n is even, we
get

an =


0 for n even

− 4
πn2 for n odd
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Using that an odd number is of the form 2n+1 for an integer n, we get that
the real Fourier series of f is

a0
2

+
∞∑
n=1

an cosnx =
π

2
− 4

π

∞∑
n=0

cos[(2n+ 1)x]

(2n+ 1)2
.

As this problem illustrates, the computation of Fourier series can often be
simplified by exploiting the symmetry of the functions involved. Some of
you have solved the problem by first finding the complex Fourier series, but
that is hardly more efficient here.

b) If we put x = 0 in the formula

f(x) =
π

2
− 4

π

∞∑
n=0

cos[(2n+ 1)x]

(2n+ 1)2
,

we get

0 =
π

2
− 4

π

∞∑
n=0

1

(2n+ 1)2
.

Rearranging the terms, we see that

π2

8
=

∞∑
n=0

1

(2n+ 1)2
= 1 +

1

32
+

1

52
+ · · ·+ 1

(2n+ 1)2
+ · · ·

It’s also possible to use x = ±π.

c) The figure below shows the graphs of f and the three approximations.
The function f is in black, the approximations for N = 0, N = 1, and N = 2
in blue, green, and red, respectively. Note that the bigger N gets, the closer
the approximation follows the graph, especially at the “corners”.

Problem 2. a) We have

||en − em||2 = 〈en − em, en − em〉

= 〈en, en〉 − 〈en, em〉 − 〈em, en〉+ 〈em, em〉

= 1 + 0 + 0 + 1 = 2

and hence ||en − em|| =
√

2.

It is also possible to use the Pythagorean Theorem here.
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Figure 1: Function f in black, approximations N = 0, N = 1, N = 2 in blue,
green, and red, respectively.

b) Note that {en} is a sequence in S. If {enk
} is any subsequence of

{en}, part a) tells us that if k 6= l, then ||enk
− enl

|| =
√

2. This means that
the subsequence {enk

} is not a Cauchy sequence and hence cannot converge.
Thus {en} is a sequence in S without any convergent subsequence, which
means that S isn’t compact.

It is also possible to solve this problem by using the open covering property,
but that seems a little less natural to me.

Problem 3. a) By definition, u0(x) = v0(x) = 1. To normalize, we compute

the norm: ||u0|| =
(∫ 1

0 12 dx
)1/2

= 1. Hence e0(x) = u0(x) = 1. The next

step is to compute u1:

u1(x) = v1(x)− 〈v1, u0〉
||u0||2

u0(x) = x− 〈v1, u0〉 = x−
∫ 1

0
x · 1 dx = x− 1

2

To normalize, we must compute the norm of u1:

||u1|| =

(∫ 1

0

(
x− 1

2

)2

dx

)1/2

=

[1

3

(
x− 1

2

)3
]1
0

1/2

=
1

2
√

3
.

Hence e1(x) = 2
√

3(x− 1
2).

b) Let Vn be the space of all polynomials of degree n or less. As any
element in Vn can be written uniquely as a sum a0 + a1x + a2x

2 + · · · +
anx

n, the original polynomials v0(x) = 1, v1(x) = x, . . . , vn(x) = xn form
a basis for Vn. Since Span(e0, e1, . . . en) = Span(v0, v1, . . . , vn), the new set
e0(x), e1(x), e2(x), . . . , en(x) is also a basis for Vn. Hence any polynomial
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p ∈ Vn can be written as a sum p(x) = cnen(x) + cn−1en−1(x) + · · · + c0.
Thus if 〈h, ei〉 = 0 for all i, we also have

〈h, p〉 = 〈h, cnen + cn−1en−1 + · · ·+ c0e0〉

= cn〈h, en〉+ cn−1〈h, en−1〉+ · · ·+ c0〈h, e0〉 = 0.

Many got the basis argument wrong here. It isn’t sufficient to say that
something is a basis; you have to say what it is a basis of – and prove it!
Also, many of those who were a bit careless with the arguments, ended up
stating that any element h in V can be written as a sum

∑∞
n=0 anen for

a sequence of numbers {an}. This statement is false or true depending on
how one interprets it. If it means that the series

∑∞
n=0 anen(x) converges

pointwise to h(x) for all x, it is false as there are many continuous functions
h that are not the sum of a power series (sums of power series are differen-
tiable, and there are many continuous functions that aren’t differentiable).
If, on the other hand, it means that every h in V is the sum of a series∑∞

n=0 anen with respect to the norm ‖ · ‖2 coming from the inner product

(i.e. limN→∞ ‖h −
∑N

n=0 anen‖2 = 0), then the statement is actually true,
but needs to be proved (it’s equivalent to proving that {en} is an orthonor-
mal basis for V ). This shows how treacherous the notation

∑∞
n=0 anen can

be – the sum depends on a sense of convergence that doesn’t show in the
notation.

I’ll give two solutions of 3c) and 3d), the first based primarily on Weier-
strass’s Approximation Theorem, and the second on abstract Fourier anal-
ysis.

Solution I

c) By the Weierstrass Approximation Theorem, there is a sequence {pn} of
polynomials converging uniformly to h. By the Extremal Value Theorem
there is a number M such that |h(x)| ≤M for all x ∈ [0, 1]. Hence

|
∫ 1

0
h(x)2 dx−

∫ 1

0
h(x)pn(x) dx| = |

∫ 1

0
h(x)(h(x)− pn(x)) dx|

≤
∫ 1

0
|h(x)||h(x)− pn(x)| dx ≤Mρ(h, pn)

where ρ(h, pn) = sup{|h(x)− pn(x)| : x ∈ [0, 1]} is the usual supremum met-
ric. As ρ(h, pn)→ 0, we see that

∫ 1
0 h(x)2 dx = limn→∞

∫ 1
0 h(x)pn(x) dx, and

since
∫ 1
0 h(x)pn(x) dx = 0 for all n, we must have 〈h, h〉 =

∫ 1
0 h(x)2 dx = 0.

Since V is an inner product space, it follows that h = 0.
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Many solved this problem by writing:∫ 1

0
h(x)2 dx =

∫ 1

0
h(x) lim

n→∞
pn(x) dx = lim

∫ 1

0
f(x)pn(x) dx = 0,

but then one has to justify that one can pull the limit outside the integral
(recall from section 4.3 that this is not always the case). A possible attempt
is to rewrite the derivation in terms of inner products∫ 1

0
h(x)2 dx = 〈h, h〉 = 〈h, lim

n→∞
pn〉 = lim

n→∞
〈h, pn〉 = 0

and then refer to Proposition 5.7.3(iii) to justify pulling out the limit. The
problem with this is that the limit in 5.3.7 is a limit in terms of the norm
coming from the inner product, while our limit is in terms of uniform conver-
gence. In order to use 5.3.7, one first has to prove that uniform convergence
implies convergence in norm (which is basically what I did above).

d) First observe that

〈g, en〉 = 〈
∞∑
i=0

αiei, en〉 =

∞∑
i=0

〈αiei, en〉 = αn

where we have used Proposition 5.3.7(iv) to pull the sum outside. If we now
put h = f − g, then h is continuous since f and g are, and we can apply b)
and c) to h: As

〈h, en〉 = 〈f, en〉 − 〈g, en〉 = αn − αn = 0

for all n, we get that h = 0 and hence f = g.

This solution turned out to be surprisingly hard to find. I thought it would
be just putting the ball in the open net ...

Solution II

The idea of this solution is to use that {e0, e0, e2 . . . , en, . . .} is a basis for
V , but this isn’t something one can just take for granted, it’s something one
has to prove. So let us prove this first:

Theorem: {e0, e0, e2 . . . , en, . . .} is an orthonormal basis for V .

Proof: According to the definition (textbook page 148), we have to show
that each element f ∈ V can be written as a sum f =

∑∞
n=0 αnen in a
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unique way. The uniqueness is easy: If f =
∑∞

n=0 αnen =
∑∞

n=0 βnen, we
get

0 = ||f − f ||2 = ||
∞∑
n=0

(αn − βn)en||2 =
∞∑
n=0

(αn − βn)2

which implies that αn = βn for all n.
If we can prove that f =

∑∞
n=0 αnen, where αn = 〈f, en〉, we will be

done. This means that given an ε > 0, we must show that there is an N ∈ N
such that ||f−

∑k
n=0 αnen||2 < ε for all k ≥ N (here || · ||2 denotes the norm of

the inner product). By Weierstrass’s Approximation Theorem 4.10.1, there
is a polynomial q such that |f(x)− q(x)| < ε for all x ∈ [0, 1]. But then

||f − q||2 =

(∫ 1

0
|f(x)− q(x)| dx

) 1
2

<

(∫ 1

0
ε dx

) 1
2

= ε

Let N be the degree of q. If k ≥ N , q lies in Span{e0, e1, . . . , ek}, and
according to Proposition 5.3.8, we have

||f −
k∑

n=0

αnen||2 ≤ ||f − q||2 < ε

which is what we needed to prove. (Note that this argument is almost iden-
tical to the proof of Corollary 10.2.3.)

It is now easy to prove c) and d):

c) We have just proved that since h ∈ V , h = limk→∞
∑k

n=0 βnen where
βn = 〈h, en〉, and the convergence is in the norm of the inner product. Hence

〈f, f〉 = 〈f, lim
k→∞

k∑
n=0

βnen〉 = lim
k→∞
〈f,

k∑
n=0

βnen〉 = 0

where we have used Proposition 5.3.7(iii) to pull the limit outside the inner
product and c) to get the final equality.

d) This part follows immediately from the theorem: As we have both
f =

∑∞
n=0 αnen (this is what we actually proved in the theorem) and

g =
∑∞

n=0 αnen, we clearly have f = g.

Many solved d) by using Parseval’s Theorem:

||f − g||22 = ||
∞∑
n=0

(αn − αn)en||22 =
∞∑
n=0

02 = 0,

but Parseval’s Theorem requires that {en} is a basis (otherwise we only have
Bessel’s Inequality which gives the useless result ||f − g||2 ≥ 0).
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But why is it so important that {e0, e0, e2 . . . , en, . . .} is a basis? Well, if
{e0, e1, e2 . . . , en, . . .} hadn’t been a basis, there could have been an element
e in V orthogonal to all the en. If we had put f = g+e, we would then have

〈f, en〉 = 〈g + e, en〉 = 〈g, en〉+ 〈e, en〉 = 〈g, en〉,

and hence f and g would have had the same Fourier coefficients with respect
to {en} even though they are not equal.
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