Answers to problems in exam MAT2410 2012

Jan Christophersen

December 20, 2012

Problem 1. Find all solutions of the equation $4 z^{2}+4 z+5=0$.
Solution. We may use the formula for quadratic equations and find

$$
z=\frac{-4 \pm \sqrt{16-80}}{8}=-\frac{1}{2} \pm i
$$

Problem 2. Find the Laurent series for

$$
f(z)=\frac{1}{z\left(4-z^{2}\right)}
$$

in the domains $0<|z|<2$ and $|z|>2$.
Solution. If $|z|<2$ then

$$
\frac{1}{4-z^{2}}=\frac{1}{4} \cdot \frac{1}{1-\frac{z^{2}}{4}}
$$

and $\frac{|z|^{2}}{4}<1$. Thus

$$
f(z)=\sum_{n=0}^{\infty} \frac{1}{4^{n+1}} z^{2 n-1}=\frac{1}{4} z^{-1}+\frac{1}{16} z+\frac{1}{64} z^{3}+\cdots
$$

If $|z|>2$ then

$$
\frac{1}{4-z^{2}}=\frac{-1}{z^{2}} \cdot \frac{1}{1-\frac{4}{z^{2}}}
$$

and $\frac{4}{|z|^{2}}<1$. Thus

$$
f(z)=-\sum_{n=0}^{\infty} 4^{n} z^{-2 n-3}=-z^{-3}-4 z^{-5}-16 z^{-7}+\cdots
$$

Problem 3. Let

$$
f(z)=\frac{z^{2}+1}{z^{3}+i}
$$

a) Find all the singularities of $f(z)$ and determine their type.
b) Compute the residues of $f(z)$ at all of the singularities.

Solution.

a) Note first that i is a zero of both $z^{2}+1$ and $z^{3}+i$ so it is a removable singularity. Polynomial division yields

$$
z^{3}+i=(z-i)\left(z^{2}+i z-1\right)
$$

Either by solving $z^{3}=e^{i 3 \pi / 2}$ or using the formula for $z^{2}+i z-1=0$ one finds the two singularities

$$
e^{i \frac{7 \pi}{6}}=-\frac{\sqrt{3}}{2}-\frac{1}{2} i \quad \text { and } \quad e^{i \frac{11 \pi}{6}}=\frac{\sqrt{3}}{2}-\frac{1}{2} i
$$

They are both simple poles.
b) Since the poles are simple we may use the formula

$$
\operatorname{Res}\left(\frac{p(z)}{q(z)} ; z_{0}\right)=\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)}
$$

and compute

$$
\operatorname{Res}\left(f(z) ;-\frac{\sqrt{3}}{2}-\frac{1}{2} i\right)=\frac{1}{2}-\frac{\sqrt{3}}{6} i
$$

and

$$
\operatorname{Res}\left(f(z) ; \frac{\sqrt{3}}{2}-\frac{1}{2} i\right)=\frac{1}{2}+\frac{\sqrt{3}}{6} i .
$$

Problem 4. Let n be a positive integer and set

$$
f(z)=\frac{1}{\left(1+z^{2}\right)^{n}} .
$$

a) Show that

$$
\operatorname{Res}(f ; i)=-\frac{2 i}{4^{n}}\binom{2 n-2}{n-1}
$$

where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ is the binomial number.
b) Compute the real integal

$$
\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{3}}
$$

Solution.

a) The function $f(z)$ has a pole of order n at i. Using the formula for residues at poles we get

$$
\begin{aligned}
\operatorname{Res}(f(z) ; i) & =\lim _{z \rightarrow i} \frac{1}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}} \frac{(z-i)^{n}}{\left(1+z^{2}\right)^{n}} \\
& =\lim _{z \rightarrow i} \frac{1}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}} \frac{1}{(z+i)^{n}} \\
& =\frac{1}{(n-1)!} \frac{(-n)(-n-1) \cdots(-2 n+2)}{(2 i)^{2 n-1}} \\
& =\frac{1}{(n-1)!} \frac{(-1)^{n-1} n(n+1) \cdots(2 n-2)}{2^{2 n-1}(-1)^{n}(-i)} \\
& =-\frac{2 i}{4^{n}} \frac{n(n+1) \cdots(2 n-2)}{(n-1)!}=-\frac{2 i}{4^{n}}\binom{2 n-2}{n-1} .
\end{aligned}
$$

b) If I is the integral then it satisfies the conditions for using the formula

$$
I=2 \pi i \sum_{z_{0} \in \text { upper half-plane }} \operatorname{Res}\left(f(z) ; z_{0}\right) .
$$

where $f(z)$ is the complex function $\frac{1}{\left(z^{2}+1\right)^{3}}$. Thus $I=\operatorname{Res}(f(z) ; i)=3 \pi / 8$ by setting $n=3$ in a).

Problem 5. Let a and b be complex numbers and set $f(z)=z^{3}+a z+b$.
a) Show that if $|a|+|b|<1$ then $f(z)$ has three zeroes counted with multiplicity in the open unit disk $|z|<1$.
b) Let t be a complex number and set $a=-3 t^{2}$ and $b=2 t^{3}$, i.e. now $f(z)=z^{3}-3 t^{2} z+$ $2 t^{3}$. Find a positive real number r so that $|t|<r$ implies that $f(z)$ has three zeroes counted with multiplicity in the open unit disk. Express these zeroes in terms of t.

Solution.

a) If $|z|=1$ and $|a|+|b|<1$ then $|z|^{3}=1$ and $|a z+b| \leq|a|+|b|<1$ so Rouché's theorem yields the result.
b) From a) we know that the number r can be chosen so that $3|t|^{2}+2|t|^{3}<1$ when $|t|<r$. Consider the real function $g(x)=3 x^{2}+2 x^{3}$. One computes that g is increasing when $x \geq 0$ and that $g(1 / 2)=1$ so if $r=1 / 2$ then f has 3 zeroes in the disk.

We see that $f(t)=0$, but also $f^{\prime}(t)=3 t^{2}-3 t^{2}=0$ so $z=t$ is a zero of multiplicity 2 . We may find the last zero by polynomial division and get

$$
z^{3}-3 t^{2} z+2 t^{3}=(z-t)^{2}(z+2 t)
$$

Thus $z=-2 t$ is also a zero in the disk.

Problem 6. Recall that a fixed point for a function $f(z)$ is a point z_{0} with $f\left(z_{0}\right)=z_{0}$. Consider the Möbius transformation

$$
f(z)=\frac{z+i}{i z+1}
$$

a) Find the fixed points of $f(z)$.
b) Describe the image of the open unit disk under $f(z)$.

Solution.

a) Fixed points of $f(z)$ are the solutions of the quadratic equation $z+i=z(i z+1)$ which is equivalent to $i=i z^{2}$. Thus the answer is $z= \pm 1$.
b) The circle $|z|=1$ maps to a line since $z=i$ is a pole for f and lies on the circle. Since the fixed points 1 and -1 also lie on this circle the image line must pass through 1 and -1 . It is therefore the real axis. The point 0 is in the open unit disk and $f(0)=i$ is in the upper half-plane, therefore the whole open unit disk maps to the upper half-plane, i.e. the set of complex numbers where the imaginary part is positive.

